Equilibrium{ }¶
- Calling sequence
Equilibrium{ }
- Functionality
If present, equilibrium condition is assumed for the Green’s functions. That is, the lesser Green’s function is equal to the spectral function multiplied by the Fermi-Dirac distribution.
- Examples
Equilibrium{ Fermi = 2.0 Broadening = 30 }
Equilibrium{ Broadening = 30 SplitFermi = yes }
Equilibrium{ Broadening = 30 FermiElectron = 2.1 FermiHole = 1.9 EnergyBorderElectronHole = 2.0 }
The following keywords are available within this group.
Fermi¶
- Calling sequence
Equilibrium{ Fermi }
- Properties
type: \(\mathrm{real\;number}\)
unit: \(\mathrm{eV}\)
- Functionality
Sets the Fermi energy.
Broadening¶
- Calling sequence
Equilibrium{ Broadening }
- Properties
type: \(\mathrm{real\;number}\)
unit: \(\mathrm{meV}\)
- Functionality
If present, sets the phenomenological broadening parameter for the Green’s functions and switches off the scattering calculation.
SplitFermi¶
- Calling sequence
Equilibrium{ SplitFermi }
- Properties
choices:
yes
;no
default:
no
- Functionality
If
yes
, splits the Fermi level for electrons and holes by the potential drop per period.
FermiElectron¶
- Calling sequence
Equilibrium{ FermiElectron }
- Properties
type: \(\mathrm{real\;number}\)
unit: \(\mathrm{eV}\)
- Dependencies
Requires EnergyBorderElectronHole.
- Functionality
If
SplitFermi = no
, sets the quasi-Fermi energy for electrons.
FermiHole¶
- Calling sequence
Equilibrium{ FermiHole }
- Properties
type: \(\mathrm{real\;number}\)
unit: \(\mathrm{eV}\)
- Dependencies
Requires EnergyBorderElectronHole.
- Functionality
If
SplitFermi = no
, sets the quasi-Fermi energy for holes.
EnergyBorderElectronHole¶
- Calling sequence
Equilibrium{ EnergyBorderElectronHole }
- Properties
type: \(\mathrm{real\;number}\)
unit: \(\mathrm{eV}\)
- Functionality
Sets the energy border for distinguishing electrons and holes. It is used in the energy integration of carrier densities as well as for the background density calculation if AssumeIntrinsicNeutrality is
yes
.