classical{ bulk_dispersion{ } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

This group allows calculating bulk band structures of the materials at specific positions in the simulation domain within 1-band approximations or \(\mathbf{k} \cdot \mathbf{p}\) models. The computation is performed just after initialization of the structure. Related outputs are located in the root output directory of the simulation.

Important

The following general conditions must be satisfied when defining classical{ bulk_dispersion{ } }



Maintained Keywords

The keywords below are available in at least one of currently published releases and are not planned to change in the nearest future.


Gamma{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using effective mass tensor for the conduction band at \(\Gamma\).


HH{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using effective mass tensor for the heavy-hole valence band.


LH{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using effective mass tensor for the light-hole valence band.


SO{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using effective mass tensor for the split-off valence band.


KP6{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, 6-band \(\mathbf{k} \cdot \mathbf{p}\) model is applied to compute the bulk electronic band structure.

Important

The following general conditions must be satisfied when defining KP6{ }


KP6{ use_Luttinger_parameters }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger parameters (\(\gamma_1\), \(\gamma_2\), \(\gamma_3\)) instead.


KP6{ approximate_kappa }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

By default the \(\kappa\) for zinc blende crystal structure is taken from the database or input file. If this is enabled then the solver is forced to approximate kappa through others 6-band \(\mathbf{k} \cdot \mathbf{p}\) parameters, even though kappa is given in database or input file.


KP8{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, 8-band \(\mathbf{k} \cdot \mathbf{p}\) model is applied to compute the bulk electronic band structure.

Important

The following general conditions must be satisfied when defining KP8{ }


KP8{ use_Luttinger_parameters }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger parameters (\(\gamma_1\), \(\gamma_2\), \(\gamma_3\)) instead.


KP8{ from_6band_parameters }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

By default the 8-band \(\mathbf{k} \cdot \mathbf{p}\) parameters are taken from database or input file. If enabled then it evaluates the 8-band \(\mathbf{k} \cdot \mathbf{p}\) parameters from 6-band \(\mathbf{k} \cdot \mathbf{p}\) parameters, Kane parameter \(E_P\) and temperature dependent band gap \(E_g\).


KP8{ evaluate_S }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

By default \(S\) (\(S_1\), \(S_2\) for wurtzite) \(\mathbf{k} \cdot \mathbf{p}\) parameter(s) is (are) taken from database or input file. If enabled it evaluates \(S\) (\(S_1\), \(S_2\) for wurtzite) \(\mathbf{k} \cdot \mathbf{p}\) parameter(s) from effective mass \(m_e\) (\(m_{e,par}\), \(m_{e,perp}\) for wurtzite), Kane parameter(s), spin-orbit coupling(s) and temperature dependent band gap.


KP8{ rescale_S_to }

Zincblende:
  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{-}\)

set \(S\) for zinc blende crystal structure to specified value and rescale \(E_P\), \(L'\), \(N^{+}\) in order to preserve electron’s effective mass.

Wurtzite:
  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{vector\;of\;2\;real\;numbers}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \([0.0\;0.0]\)

  • unit: \(\mathrm{-}\)

set \(S_1\), \(S_2\) for wurtzite crystal structure to specified values respectively and rescale \(E_{P1}\), \(E_{P2}\), \(L_{1}'\), \(L_{2}'\), \(N^+_1\), \(N^+_2\) in order to preserve electron’s effective masses.


KP8{ approximate_kappa }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

By default, the \(\kappa\) for zincblende crystal structure is taken from the database or input file. If this is enabled then the solver is forced to approximate kappa through others 8-band \(\mathbf{k} \cdot \mathbf{p}\) parameters, even though kappa is given in database or input file.


KP14{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, 30-band \(\mathbf{k} \cdot \mathbf{p}\) model is applied to compute the bulk electronic band structure.


KP30{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

When this group is defined, 30-band \(\mathbf{k} \cdot \mathbf{p}\) model [RideauPRB2006] is applied to compute the bulk electronic band structure.


full{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{no\;constraints}\)

calculate bulk \(\mathbf{k} \cdot \mathbf{p}\) dispersion in 3D k-space. Multiple instances are allowed.


full{ name }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{character\;string}\)

name of the dispersions which also defines the names of the output files.


full{ position{ } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • items: \(\mathrm{exactly\;1}\)

specifies the point (x,y,z) in the simulation domain, where the dispersion has to be calculated.

Important

The following general conditions must be satisfied when defining full{ position{ } }


full{ position{ x } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(x\)-coordinate of interest


full{ position{ y } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(y\)-coordinate of interest


full{ position{ z } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(z\)-coordinate of interest


full{ shift_holes_to_zero }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

If enabled shifts the whole dispersion, so that the energy for the Gamma point for the highest hole band is equal to 0.0 [eV].


full{ kxgrid{ } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{no\;constraints}\)

Specifies a grid along \(k_x\) for a 1D/2D/3D plot of the energy dispersion \(E(k_x, k_y, k_z)\).


full{ kxgrid{ line{ } } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • items: \(\mathrm{minimum\;2}\)

Setting options defining the grid in k-space.


full{ kxgrid{ line{ pos } } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • unit: \(\mathrm{nm^{-1}}\)

Position of defined k-grid spacing along kx direction.


full{ kxgrid{ line{ spacing } } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \([10^{-6}, \ldots)\)

  • unit: \(\mathrm{nm^{-1}}\)

k-grid spacing at defined positions


full{ kygrid{ } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{no\;constraints}\)

Specifies a grid along \(k_y\) for a 1D/2D/3D plot of the energy dispersion \(E(k_x, k_y, k_z)\). The keywords allowed within this group are analogous to full{ kxgrid{ } }.


full{ kzgrid{ } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{no\;constraints}\)

Specifies a grid along \(k_z\) for a 1D/2D/3D plot of the energy dispersion \(E(k_x, k_y, k_z)\). The keywords allowed within this group are analogous to full{ kxgrid{ } }.


path{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{no\;constraints}\)

calculate bulk \(\mathbf{k} \cdot \mathbf{p}\) dispersion along custom path in k-space. Multiple instances are allowed.

Important

The following general conditions must be satisfied when defining path{ }


path{ name }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{character\;string}\)

name of the dispersions which also defines the names of the output files.


path{ position{ } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • items: \(\mathrm{exactly\;1}\)

specifies the point (x,y,z) in the simulation domain, where the dispersion has to be calculated.

Important

The following general conditions must be satisfied when defining path{ position{ } }


path{ position{ x } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(x\)-coordinate of interest


path{ position{ y } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(y\)-coordinate of interest


path{ position{ z } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(z\)-coordinate of interest


path{ shift_holes_to_zero }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

If enabled shifts the whole dispersion, so that the energy for the Gamma point for the highest hole band is equal to 0.0 [eV].


path{ point{ } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • items: \(\mathrm{minimum\;2}\)

specifies points in the path through k-space. At least two k points have to be defined. Line between two such points is called segment.


path{ point{ k } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{vector\;of\;3\;real\;numbers}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \([0.0\;0.0\;0.0]\)

  • unit: \(\mathrm{nm^{-1}}\)

k-point represented by vector \([k_x, k_y, k_z]\).


path{ spacing }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \([10^{-6}, \ldots)\)

  • unit: \(\mathrm{nm^{-1}}\)

It specifies approximate spacing for intermediate points in the path segments.


path{ num_points }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{integer}\)

  • values: \(\{2,3,4,5,\ldots\}\)

  • unit: \(\mathrm{nm^{-1}}\)

It specifies number of points (intermediate + two corner-points) for each single path segment.


lines{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{no\;constraints}\)

calculate dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their equivalents (in total maximally 13).


lines{ name }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{character\;string}\)

name of the dispersions which also defines the names of the output files.


lines{ position{ } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • items: \(\mathrm{exactly\;1}\)

specifies the point (x,y,z) in the simulation domain, where the dispersion has to be calculated.

Important

The following general conditions must be satisfied when defining lines{ position{ } }


lines{ position{ x } }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(x\)-coordinate of interest


lines{ position{ y } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(y\)-coordinate of interest


lines{ position{ z } }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \(\mathrm{no\;constraints}\)

  • default: \(0.0\)

  • unit: \(\mathrm{nm}\)

\(z\)-coordinate of interest


lines{ shift_holes_to_zero }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • type: \(\mathrm{choice}\)

  • values: \(\mathrm{yes\;/\;no}\)

  • default: \(\mathrm{no}\)

If enabled shifts the whole dispersion, so that the energy for the Gamma point for the highest hole band is equal to 0.0 [eV].


lines{ k_max }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \([10^{-6}, \ldots)\)

  • unit: \(\mathrm{nm^{-1}}\)

specifies a maximum absolute value (radius) for the k-vector in \(nm^{-1}\)


lines{ spacing }

  • \(\mathrm{\textcolor{WildStrawberry}{required}}\)

  • type: \(\mathrm{real\;number}\)

  • values: \([10^{-6}, \ldots)\)

  • unit: \(\mathrm{nm^{-1}}\)

specifies approximate spacing for intermediate points in the path segments in \(nm^{-1}\).


output_bulk_dispersions{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

Outputs all defined bulk \(\mathbf{k} \cdot \mathbf{p}\) dispersions.


output_masses{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

Outputs effective masses calculated from the dispersions.


output_inverse_masses{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

Outputs inverse of effective masses calculated from the dispersions.


output_k_vectors{ }

  • \(\mathrm{\textcolor{Aquamarine}{optional}}\)

  • items: \(\mathrm{maximum\;1}\)

Outputs k-vectors for which the dispersions are computed.