kp_6band{ }
Calling sequence
quantum{ region{ kp_6band{ } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Solves 6-band \(\mathbf{k} \cdot \mathbf{p}\) Schrödinger equation for the ** heavy, light and split-off hole** valence band. The options are the same as Gamma{} with some additional options, which are
Nested keywords
num_ev
Calling sequence
quantum{ region{ kp_6band{ num_ev = ... } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: integer
values: \(z \geq 1\)
Functionality
Sets the number of eigenvalues to be calculated.
lapack{ }
Calling sequence
quantum{ region{ kp_6band{ lapack{ } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Triggers use of LAPACK eigensolver if not already chosen by default, and organizes its parameters.
lapack{ accuracy }
Calling sequence
quantum{ region{ kp_6band{ lapack{ accuracy } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: \(0.0 \leq r \leq 10^{-6}\)
default: \(r=0.0\)
unit: \(\mathrm{eV}\)
Functionality
Requested absolute accuracy of found eigenvalues to be lower than or equal to the value set here.
The default value 0.0
means that the routine will try to achieve the best possible accuracy.
arpack{ }
Calling sequence
quantum{ region{ kp_6band{ arpack{ } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Organizes parameters of ARPACK eigensolver.
Note
This is the default eigensolver when 6-band \(\mathbf{k} \cdot \mathbf{p}\) method is used.
Warning
The method may occur unstable for 8-band model in general. Common reasons of failure of ARPACK eigensolver are too low cutoff energy, not enough number of states selected to compute, and residuals set too low for large systems.
arpack{ accuracy }
Calling sequence
quantum{ region{ kp_6band{ arpack{ accuracy } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: \(10^{-16} \leq r \leq 10^{-6}\)
default: \(r=1e-10\)
unit: \(\mathrm{-}\)
Functionality
Relative accuracy of the Ritz values which are approximating eigenvalues. See Rayleigh-Ritz method for reference.
arpack{ iterations }
Calling sequence
quantum{ region{ kp_6band{ arpack{ iterations } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: no constraints
default: \(z=100000\)
Functionality
Sets the maximum number of iterations allowed in this solver.
arpack{ energy_cutoff }
Calling sequence
quantum{ region{ kp_6band{ arpack{ energy_cutoff } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values:
[1e-3, ...)
default: \(r=0.3\)
unit: \(\mathrm{eV}\)
Functionality
Sets the minimum energy of the valence-band states ($E_{v,min} = E_{v1} - Delta E$) to be found by the solver, where $E_{v1}$ is the energy of the first hole state in the valence bands (the highest one) and $Delta E = r$ is defined by this keyword.
arpack{ initial_energy_cutoff }
Calling sequence
quantum{ region{ kp_6band{ arpack{ initial_energy_cutoff } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: no constraints
unit: \(\mathrm{eV}\)
Functionality
If specified then Chebyshev or Legendre polynomials (according to what is selected in arpack{ preconditioner }) are used for preconditioning in the first iteration of the eigensolver.
Then it also sets the minimum energy of the valence-band states ($E_{v,min} = VBO - Delta E$) for the first iteration of the solver, where $VBO$ is the top valence band energy and $Delta E = r$ is defined by this keyword.
Attention
It is advised not to specify this value, unless it is already known, where the energy spectrum is located. It is very easy to destabilize the solver when specifying this keyword.
arpack{ preconditioner }
Calling sequence
quantum{ region{ kp_6band{ arpack{ preconditioner } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
polynomial
orchebyshev
orlegendre
default:
chebyshev
Functionality
Selects type of polynomials for the preconditioner used in this solver.
When polynomial
is selected, then quantum{ region{ kp_6band{ arpack{ energy_cutoff } } } }
and arpack{ initial_energy_cutoff }
are not used, even if specified.
These polynomials give the slowest convergence but stable.
Selecting chebyshev
or legendre
results in the algorithm using the value specified in quantum{ region{ kp_6band{ arpack{ energy_cutoff } } } }
or its default.
The arpack{ initial_energy_cutoff }
is used only if specified for the first iteration.
arpack{ order_polynomial }
Calling sequence
quantum{ region{ kp_6band{ arpack{ order_polynomial } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: \(z \geq 0\)
default: \(z=20\)
Functionality
Sets the order of the polynomial used for the preconditioning.
forward_differences
Calling sequence
quantum{ region{ kp_6band{ forward_differences = "..." } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
yes
orno
default:
no
Functionality
If set to yes
then forward and backward differences are used for the first derivative discretization of the Kane parameter \(P\) in the the 8-band k.p Hamiltonian.
By default, set to no
, centered differences are used.
This parameter might affect spurious solutions of the wave functions.
See eq. (1.50) and eq. (1.51) of PhD thesis T. Andlauer for more details.
kp_parameters{ }
Calling sequence
quantum{ region{ kp_6band{ kp_parameters{ } } } }
Properties
—
Functionality
advanced manipulation of \(\mathbf{k} \cdot \mathbf{p}\) parameters from the database.
Attention
The groups use_Luttinger_parameters
and approximate_kappa
are available only for simulations with zincblende crystal symmetry.
kp_parameters{ use_Luttinger_parameters }
Calling sequence
quantum{ region{ kp_6band{ kp_parameters{ use_Luttinger_parameters } } } }
Properties
—
Functionality
By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger parameters (\(\gamma_1\), \(\gamma_2\), \(\gamma_3\)) instead.
- value:
yes
orno
- default:
no
kp_parameters{ approximate_kappa } }
Calling sequence
quantum{ region{ kp_6band{ kp_parameters{ approximate_kappa } } } }
Properties
—
Functionality
By default the \(\kappa\) for zincblende crystal structure is taken from the database or input file. If this is enabled then the solver is forced to approximate kappa through others 6-band \(\mathbf{k} \cdot \mathbf{p}\) parameters, even though kappa is given in database or input file.
- value:
yes
orno
- default:
no
k_integration{ }
Calling sequence
quantum{ region{ kp_6band{ k_integration{ } } } }
Properties
—
Functionality
Provides options for integration over \(\mathbf{k_{||}}\) space for \(\mathbf{k} \cdot \mathbf{p}\) density calculations (for 1D and 2D only). By default the quantum mechanical charge density is calculated (no_density = no
). Therefore, k_integration{}
is required. If you do not need a quantum mechanical density, e.g. because you are not interested in a self-consistent simulation, the calculation is much faster if you use (no_density = yes
). Then you can omit k_integration{}
and only the eigenstates for \(\mathbf{k_{||}} = (k_y,k_z) = (0,0) = 0\) are calculated.
k_integration{ relative_size }
Calling sequence
quantum{ region{ kp_6band{ k_integration{ relative_size } } } }
Properties
—
Functionality
Range of \(\mathbf{k_{||}}\) integration relative to size of Brillouin zone. Often a value between 0.1-0.2 is sufficient.
- value:
float between 0.0 and 1.0
- default:
1.0
k_integration{ symmetry }
Calling sequence
quantum{ region{ kp_6band{ k_integration{ symmetry } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
none
;C2
;C4
;D2
;D4
;C6
;D6`
default:
none
Functionality
If symmetry = none
then the solver does not reduce number of \(\mathbf{k_{||}}\) points.
If symmetry = C2
then the solver assumes \(C_2\) symmetry of Brillouin zone to reduce number of \(\mathbf{k_{||}}\) points.
Analogously for the other choices.
k_integration{ num_points }
Calling sequence
quantum{ region{ kp_6band{ k_integration{ num_points } } } }
Properties
—
Functionality
number of \(\mathbf{k_{||}}\) points, where Schrödinger equation has to be solved (in one direction).
In 1D, the number of Schrödinger equations that have to be solved depends quadratically on num_points
.
In 2D, the number of Schrödinger equations that have to be solved depends linearly on num_points
.
- value:
integer > 1
- default:
10
k_integration{ num_subpoints }
Calling sequence
quantum{ region{ kp_6band{ k_integration{ num_subpoints } } } }
Properties
—
Functionality
number of points between two \(\mathbf{k_{||}}\) points, where wave functions and eigenvalues will be interpolated.
- value:
integer >= 1
- default:
5
k_integration{ force_k0_subspace }
Calling sequence
quantum{ region{ kp_6band{ k_integration{ force_k0_subspace } } } }
Properties
—
Functionality
If set to yes
, \(k_\parallel\) integration in quantum{ } is modified in that only states for point \(k=0\) are computed exactly, whereas all other k points are computed in the subspace of the \(k=0\) wave functions.
As a result of this approximation, computational speed is much improved (you may even be able to also enlarge the number of eigenvalues).
In case you are planning to use this approximation for final results, please make sure to check whether the resulting loss of accuracy in density is acceptable.
- value:
yes
orno
- default:
no
dispersion{ }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ } } } }
Properties
—
Functionality
These groups provide keywords to define a path for computation of \(\mathbf{k_{||}}\) and \(\mathbf{k_{\tiny{superlattice}}}\) (if applicable) dispersions.
The energy dispersion E(k) along the specified paths and for the specified k space resolutions are completely independent from the k space resolution that was used within the self-consistent cycle where the k.p density has been calculated.
The latter is specified in k_integration{ }
.
dispersion{ lines{ } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ lines{ } } } } }
Properties
—
Functionality
Calculates dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their equivalents (in total maximally 13).
dispersion{ lines{ name } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ lines{ name } } } } }
Properties
—
Functionality
- value:
string
Is a name of the dispersions which also defines the names of the output files.
dispersion{ lines{ k_max } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ lines{ k_max } } } } }
Properties
—
Functionality
- value:
float
Specifies a maximum absolute value (radius) for the k-vector in \(nm^{-1}\).
dispersion{ lines{ spacing } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ lines{ spacing } } } } }
Properties
—
Functionality
- value:
float
Specifies approximate spacing for intermediate points in the path segments in \(nm^{-1}\).
dispersion{ path{ } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ path{ } } } } }
Properties
—
Functionality
Calculates dispersion along custom path in k-space. Multiple instances are allowed.
dispersion{ path{ name } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ path{ name } } } } }
Properties
—
Functionality
Is a name of the dispersions which also defines the names of the output files.
- value:
string
dispersion{ path{ point{ } } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ path{ point{ } } } } } }
Properties
—
Functionality
Specifies points in the path through k-space. At least two k points have to be defined. Line between two such points is called segment.
dispersion{ path{ point{ k } } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ path{ point{ k } } } } } }
Properties
—
Functionality
- value:
3D float vector
Is a k-point represented by vector \([k_x, k_y, k_z]\). The units are \(nm^{-1}\).
For 1D simulation the \(\mathbf{k_{||}}\) space is a \(k_y-k_z\) plane so \(k_y\), \(k_z\) can be freely choosed. \(k_x\) can only be different from zero, if a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole x-domain.
for 2D simulation the \(\mathbf{k_{||}}\) space is a \(k_z\) axis so \(k_z\) can be freely choosed. \(kx\) can only be different from zero if a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole x-domain. \(k_y\) can only be different from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over the whole y-domain.
for 3D simulation the \(\mathbf{k_{||}}\) space is empty. \(k_x\) can only be different from zero if a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole x-domain. \(k_y\) can only be different from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over the whole y-domain. \(k_z\) can only be different from zero if a periodic boundary condition along the z-direction is defined and the quantum region extends over the whole z-domain.
dispersion{ path{ spacing } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ path{ spacing } } } } }
Properties
—
Functionality
- value:
float
Specifies approximate spacing for intermediate points in the path segments in \(nm^{-1}\). Excludes num_points
.
dispersion{ path{ num_points } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ path{ num_points } } } } }
Properties
—
Functionality
- value:
integer > 1
Specifies number of points (intermediate + two corner points) for each single path segment. Excludes spacing
.
dispersion{ full{ } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ full{ } } } } }
Properties
—
Functionality
Calculates dispersion in 1D/2D/3D k-space depending on simulation dimensionality and pereodic boundary conditions.
dispersion{ full{ name } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ full{ name } } } } }
Properties
—
Functionality
- value:
string
Is a name of the dispersion which also defines the name of the output file.
dispersion{ full{ kxgrid{ }, … } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ } } } } } }
Properties
—
Functionality
Specifies a grid{...}
in k-space for a 1D/2D/3D plot of the energy dispersion E(kx, ky, kz).
Allowed only, if simulation is periodic along x-direction and current quantum region extends over the whole x-domain.
The options are same as grid{ }
dispersion{ full{ kxgrid{ line{ } }, … } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ line{ } } } } } } }
Properties
—
Functionality
—
dispersion{ full{ kxgrid{ line{ pos } }, … } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ line{ pos } } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ line{ pos } } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ line{ pos } } } } } } }
Properties
—
Functionality
—
dispersion{ full{ kxgrid{ line{ spacing } }, … } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ line{ spacing } } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ line{ spacing } } } } } } }
quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ line{ spacing } } } } } } }
Properties
—
Functionality
—
dispersion{ superlattice{ } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ superlattice{ } } } } }
Properties
—
Functionality
Is a convenience group to calculate superlattice dispersion \(E(k_{SL})\) along periodic directions. The intervals are set automatically to \([-\pi/L_i, \pi/L_i]\), where \(L_i\) is the simulation domain range along periodic directions with \(i = x,y,z\).
dispersion{ superlattice{ name } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ superlattice{ name } } } } }
Properties
—
Functionality
- value:
string
Is a name of the dispersion which also defines the name of the output file.
dispersion{ superlattice{ num_points } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points } } } } }
Properties
—
Functionality
Is a convenience keyword to specifies number of points along all appropriate directions in k space.
- value:
any integer > 1
dispersion{ superlattice{ num_points_x, … } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points_x } } } } }
quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points_y } } } } }
quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points_z } } } } }
Properties
—
Functionality
- value:
any integer > 1
Specifies number of points along x direction in k space where dispersion is calculated. The simulation must be periodic along the x direction in direct space. Specifies number of points along y direction in k space where dispersion is calculated. The simulation must be periodic along the y direction in direct space. Specifies number of points along z direction in k space where dispersion is calculated. The simulation must be periodic along the z direction in direct space.
dispersion{ output_dispersions{ } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ output_dispersions{ } } } } }
Properties
—
Functionality
Outputs all defined dispersions.
dispersion{ output_dispersions{ max_num } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ output_dispersions{ max_num } } } } }
Properties
—
Functionality
Is a number of bands to print out
- value:
any integer between 1 and 9999
dispersion{ output_masses{ } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ output_masses{ } } } } }
Properties
—
Functionality
Outputs effective masses \(m^*\) calculated from the dispersions, expressed in masses of a free electron \(m_0\), following the formula:
where \(k\) is a “distance” along the path onto which the related band structure is computed.
dispersion{ output_masses{ max_num } }
Calling sequence
quantum{ region{ kp_6band{ dispersion{ output_masses{ max_num } } } } }
Properties
—
Functionality
Outputs effective masses calculated from the dispersions.
- value:
any integer between 1 and 9999
Last update: 2025-08-13