Gamma{}, L{}, X{}, Delta{}, HH{}, LH{}, SO{}
Calling sequence
quantum{ region{ Gamma{ } } }
quantum{ region{ L{ } } }
quantum{ region{ X{ } } }
quantum{ region{ Delta{ } } }
quantum{ region{ HH{ } } }
quantum{ region{ LH{ } } }
quantum{ region{ SO{ } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Gamma{}
, L{}
, X{}
, Delta{}
, HH{}
, LH{}
, and SO{}
trigger solving single-band effective mass Schrödinger equation for the Gamma conduction band, the L conduction band, the X conduction band, the Delta conduction band, the heavy hole valence band, the light hole valence band, and the split-off hole valence band, respectively.
Nested keywords
force_complex_solver
Calling sequence
quantum{ region{ Gamma{ force_complex_solver = ... } } }
quantum{ region{ L{ force_complex_solver = ... } } }
quantum{ region{ X{ force_complex_solver = ... } } }
quantum{ region{ Delta{ force_complex_solver = ... } } }
quantum{ region{ HH{ force_complex_solver = ... } } }
quantum{ region{ LH{ force_complex_solver = ... } } }
quantum{ region{ SO{ force_complex_solver = ... } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
yes
orno
default:
no
Functionality
If set to yes
, then resulting wave functions are expressed as complex functions, even though imaginary part is equal to zero.
Note
Complex envelopes are needed for optics{ } group.
force_pauli_solver
Calling sequence
quantum{ region{ Gamma{ force_pauli_solver = ... } } }
quantum{ region{ L{ force_pauli_solver = ... } } }
quantum{ region{ X{ force_pauli_solver = ... } } }
quantum{ region{ Delta{ force_pauli_solver = ... } } }
quantum{ region{ HH{ force_pauli_solver = ... } } }
quantum{ region{ LH{ force_pauli_solver = ... } } }
quantum{ region{ SO{ force_pauli_solver = ... } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
yes
orno
default:
no
Functionality
When se to yes
, the a Pauli equation is solved even in the absence of magnetic field.
num_ev
Calling sequence
quantum{ region{ Gamma{ num_ev = ... } } }
quantum{ region{ L{ num_ev = ... } } }
quantum{ region{ X{ num_ev = ... } } }
quantum{ region{ Delta{ num_ev = ... } } }
quantum{ region{ HH{ num_ev = ... } } }
quantum{ region{ LH{ num_ev = ... } } }
quantum{ region{ SO{ num_ev = ... } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: integer
values: \(z \geq 1\)
Functionality
Sets the number of eigenvalues to be calculated.
lapack{ }
Calling sequence
quantum{ region{ Gamma{ lapack{ } } } }
quantum{ region{ L{ lapack{ } } } }
quantum{ region{ X{ lapack{ } } } }
quantum{ region{ Delta{ lapack{ } } } }
quantum{ region{ HH{ lapack{ } } } }
quantum{ region{ LH{ lapack{ } } } }
quantum{ region{ SO{ lapack{ } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Triggers use of LAPACK eigensolver to solve dense matrix problem. It should be used for 1D and small 2D systems. For 1D simulations without periodic boundary conditions a tridiagonal LAPACK solver is used for the single-band Hamiltonian as default.
Note
It is a default eigensolver for 1-band model without magnetic field in 1) 1D simulation and in 2) 1D, 2D, and 3D simulations when quantum{ region{ quantize_x{ }, … } } is called.
lapack{ accuracy }
Calling sequence
quantum{ region{ Gamma{ lapack{ accuracy = ... } } } }
quantum{ region{ L{ lapack{ accuracy = ... } } } }
quantum{ region{ X{ lapack{ accuracy = ... } } } }
quantum{ region{ Delta{ lapack{ accuracy = ... } } } }
quantum{ region{ HH{ lapack{ accuracy = ... } } } }
quantum{ region{ LH{ lapack{ accuracy = ... } } } }
quantum{ region{ SO{ lapack{ accuracy = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: \(0.0 \leq r \leq 10^{-6}\)
default: \(r=0.0\)
unit: \(\mathrm{eV}\)
Functionality
Requested absolute accuracy of found eigenvalues to be lower than or equal to the value set here.
The default value 0.0
means that the routine will try to achieve the best possible accuracy.
arpack{ }
Calling sequence
quantum{ region{ Gamma{ arpack{ } } } }
quantum{ region{ L{ arpack{ } } } }
quantum{ region{ X{ arpack{ } } } }
quantum{ region{ Delta{ arpack{ } } } }
quantum{ region{ HH{ arpack{ } } } }
quantum{ region{ LH{ arpack{ } } } }
quantum{ region{ SO{ arpack{ } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Organizes parameters of ARPACK eigensolver.
Note
This is the default eigensolver for 1-band models 1) without magnetic field in 2D and 3D simulations, and in 2) 1D, 2D, and 3D simulations with magnetic field or force_pauli_solver set to yes
.
Warning
The method may occur unstable for 8-band model in general. Common reasons of failure of ARPACK eigensolver are too low cutoff energy, not enough number of states selected to compute, and residuals set too low for large systems.
arpack{ accuracy }
Calling sequence
quantum{ region{ Gamma{ arpack{ accuracy = ... } } } }
quantum{ region{ L{ arpack{ accuracy = ... } } } }
quantum{ region{ X{ arpack{ accuracy = ... } } } }
quantum{ region{ Delta{ arpack{ accuracy = ... } } } }
quantum{ region{ HH{ arpack{ accuracy = ... } } } }
quantum{ region{ LH{ arpack{ accuracy = ... } } } }
quantum{ region{ SO{ arpack{ accuracy = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: \(10^{-16} \leq r \leq 10^{-6}\)
default: \(r=1e-10\)
unit: \(\mathrm{-}\)
Functionality
Relative accuracy of the Ritz values which are approximating eigenvalues. See Rayleigh-Ritz method for reference.
arpack{ iterations }
Calling sequence
quantum{ region{ Gamma{ arpack{ iterations = ... } } } }
quantum{ region{ L{ arpack{ iterations = ... } } } }
quantum{ region{ X{ arpack{ iterations = ... } } } }
quantum{ region{ Delta{ arpack{ iterations = ... } } } }
quantum{ region{ HH{ arpack{ iterations = ... } } } }
quantum{ region{ LH{ arpack{ iterations = ... } } } }
quantum{ region{ SO{ arpack{ iterations = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: no constraints
default: \(z=100000\)
Functionality
Sets the maximum number of iterations allowed in this solver.
arpack{ energy_cutoff }
Calling sequence
quantum{ region{ Gamma{ arpack{ energy_cutoff = ... } } } }
quantum{ region{ L{ arpack{ energy_cutoff = ... } } } }
quantum{ region{ X{ arpack{ energy_cutoff = ... } } } }
quantum{ region{ Delta{ arpack{ energy_cutoff = ... } } } }
quantum{ region{ HH{ arpack{ energy_cutoff = ... } } } }
quantum{ region{ LH{ arpack{ energy_cutoff = ... } } } }
quantum{ region{ SO{ arpack{ energy_cutoff = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values:
[1e-3, ...)
default: \(r=0.3\)
unit: \(\mathrm{eV}\)
Functionality
Sets the maximum eigenenergy of the conduction-band states ($E_{c,max} = E_{c1} + Delta E$) or minimum energy of the valence-band states ($E_{v,min} = E_{v1} - Delta E$) to be found by the solver, where $E_{c1}$ is the energy of the first electron state in the conduction band (the lowest one), $E_{v1}$ is the energy of the first hole state in the valence bands (the highest one), and $Delta E = r$ is defined by this keyword.
arpack{ initial_energy_cutoff }
Calling sequence
quantum{ region{ Gamma{ arpack{ initial_energy_cutoff = ... } } } }
quantum{ region{ L{ arpack{ initial_energy_cutoff = ... } } } }
quantum{ region{ X{ arpack{ initial_energy_cutoff = ... } } } }
quantum{ region{ Delta{ arpack{ initial_energy_cutoff = ... } } } }
quantum{ region{ HH{ arpack{ initial_energy_cutoff = ... } } } }
quantum{ region{ LH{ arpack{ initial_energy_cutoff = ... } } } }
quantum{ region{ SO{ arpack{ initial_energy_cutoff = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: no constraints
unit: \(\mathrm{eV}\)
Functionality
If specified then Chebyshev or Legendre polynomials (according to what is selected in arpack{ preconditioner }) are used for preconditioning in the first iteration of the eigensolver.
Then it also sets the maximum eigenenergy of the conduction-band states ($E_{c,max} = E_{cb} + Delta E$) or minimum energy of the valence-band states ($E_{v,min} = VBO - Delta E$) for the first iteration of the solver, where $E_{cb}$ is the minimum of the conduction band, $VBO$ is the top valence band energy, and $Delta E = r$ is defined by this keyword.
Attention
It is advised not to specify this value, unless it is already known, where the energy spectrum is located. It is very easy to destabilize the solver when specifying this keyword.
arpack{ preconditioner }
Calling sequence
quantum{ region{ Gamma{ arpack{ preconditioner = ... } } } }
quantum{ region{ L{ arpack{ preconditioner = ... } } } }
quantum{ region{ X{ arpack{ preconditioner = ... } } } }
quantum{ region{ Delta{ arpack{ preconditioner = ... } } } }
quantum{ region{ HH{ arpack{ preconditioner = ... } } } }
quantum{ region{ LH{ arpack{ preconditioner = ... } } } }
quantum{ region{ SO{ arpack{ preconditioner = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
polynomial
orchebyshev
orlegendre
default:
chebyshev
Functionality
Selects type of polynomials for the preconditioner used in this solver.
When polynomial
is selected, then quantum{ region{ kp_6band{ arpack{ energy_cutoff } } } }
and arpack{ initial_energy_cutoff }
are not used, even if specified.
These polynomials give the slowest convergence but stable.
Selecting chebyshev
or legendre
results in the algorithm using the value specified in quantum{ region{ kp_6band{ arpack{ energy_cutoff } } } }
or its default.
The arpack{ initial_energy_cutoff }
is used only if specified for the first iteration.
arpack{ order_polynomial }
Calling sequence
quantum{ region{ Gamma{ arpack{ order_polynomial = ... } } } }
quantum{ region{ L{ arpack{ order_polynomial = ... } } } }
quantum{ region{ X{ arpack{ order_polynomial = ... } } } }
quantum{ region{ Delta{ arpack{ order_polynomial = ... } } } }
quantum{ region{ HH{ arpack{ order_polynomial = ... } } } }
quantum{ region{ LH{ arpack{ order_polynomial = ... } } } }
quantum{ region{ SO{ arpack{ order_polynomial = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: \(z \geq 0\)
default: \(z=20\)
Functionality
Sets the order of the polynomial used for the preconditioning.
k_integration{ }
Calling sequence
quantum{ region{ Gamma{ k_integration{ } } } }
quantum{ region{ L{ k_integration{ } } } }
quantum{ region{ X{ k_integration{ } } } }
quantum{ region{ Delta{ k_integration{ } } } }
quantum{ region{ HH{ k_integration{ } } } }
quantum{ region{ LH{ k_integration{ } } } }
quantum{ region{ SO{ k_integration{ } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Provides options for integration over \(\mathbf{k_{||}}\) space for density calculations (for 1D and 2D only).
k_integration{ relative_size }
Calling sequence
quantum{ region{ Gamma{ k_integration{ relative_size = ... } } } }
quantum{ region{ L{ k_integration{ relative_size = ... } } } }
quantum{ region{ X{ k_integration{ relative_size = ... } } } }
quantum{ region{ Delta{ k_integration{ relative_size = ... } } } }
quantum{ region{ HH{ k_integration{ relative_size = ... } } } }
quantum{ region{ LH{ k_integration{ relative_size = ... } } } }
quantum{ region{ SO{ k_integration{ relative_size = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: real number
values: \(10^{-3} \leq r \leq 10.0\)
default: \(z=1\)
unit: \(\mathrm{eV}\)
Functionality
—
k_integration{ symmetry }
Calling sequence
quantum{ region{ Gamma{ k_integration{ symmetry = ... } } } }
quantum{ region{ L{ k_integration{ symmetry = ... } } } }
quantum{ region{ X{ k_integration{ symmetry = ... } } } }
quantum{ region{ Delta{ k_integration{ symmetry = ... } } } }
quantum{ region{ HH{ k_integration{ symmetry = ... } } } }
quantum{ region{ LH{ k_integration{ symmetry = ... } } } }
quantum{ region{ SO{ k_integration{ symmetry = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
none
;C2
;C4
;D2
;D4
;C6
;D6`
default:
none
Functionality
If symmetry = none
then the solver does not reduce number of \(\mathbf{k_{||}}\) points.
If symmetry = C2
then the solver assumes \(C_2\) symmetry of Brillouin zone to reduce number of \(\mathbf{k_{||}}\) points.
Analogously for the other choices.
k_integration{ num_points }
Calling sequence
quantum{ region{ Gamma{ k_integration{ num_points = ... } } } }
quantum{ region{ L{ k_integration{ num_points = ... } } } }
quantum{ region{ X{ k_integration{ num_points = ... } } } }
quantum{ region{ Delta{ k_integration{ num_points = ... } } } }
quantum{ region{ HH{ k_integration{ num_points = ... } } } }
quantum{ region{ LH{ k_integration{ num_points = ... } } } }
quantum{ region{ SO{ k_integration{ num_points = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: \(2 \leq z \leq 100\)
default: \(z=10\)
Functionality
—
k_integration{ num_subpoints }
Calling sequence
quantum{ region{ Gamma{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ L{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ X{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ Delta{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ HH{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ LH{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ SO{ k_integration{ num_subpoints = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: \(0 \leq z \leq 1000\)
default: \(z=4\)
Functionality
—
k_integration{ force_k0_subspace }
Calling sequence
quantum{ region{ Gamma{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ L{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ X{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ Delta{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ HH{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ LH{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ SO{ k_integration{ force_k0_subspace = ... } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: choice
values:
yes
orno
default:
no
Functionality
When ste to yes
then wave functions computed at the \(\Gamma\) point are used for computation of carrier densities for every other wave vector within each band.
dispersion{ }
Calling sequence
quantum{ region{ Gamma{ dispersion{ } } } }
quantum{ region{ L{ dispersion{ } } } }
quantum{ region{ X{ dispersion{ } } } }
quantum{ region{ Delta{ dispersion{ } } } }
quantum{ region{ HH{ dispersion{ } } } }
quantum{ region{ LH{ dispersion{ } } } }
quantum{ region{ SO{ dispersion{ } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
These groups provide keywords to define a path for computation of \(\mathbf{k_{||}}\) and \(\mathbf{k_{\tiny{superlattice}}}\) (if applicable) dispersions.
The energy dispersion E(k) along the specified paths and for the specified k space resolutions are completely independent from the k space resolution that was used within the self-consistent cycle where the k.p density has been calculated.
The latter is specified in k_integration{ }
.
dispersion{ path{ } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ path{ } } } } }
quantum{ region{ L{ dispersion{ path{ } } } } }
quantum{ region{ X{ dispersion{ path{ } } } } }
quantum{ region{ Delta{ dispersion{ path{ } } } } }
quantum{ region{ HH{ dispersion{ path{ } } } } }
quantum{ region{ LH{ dispersion{ path{ } } } } }
quantum{ region{ SO{ dispersion{ path{ } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: no constraints
Functionality
Calculates dispersion along custom path in k-space. Multiple instances are allowed.
dispersion{ path{ name } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ path{ name = "..." } } } } }
quantum{ region{ L{ dispersion{ path{ name = "..." } } } } }
quantum{ region{ X{ dispersion{ path{ name = "..." } } } } }
quantum{ region{ Delta{ dispersion{ path{ name = "..." } } } } }
quantum{ region{ HH{ dispersion{ path{ name = "..." } } } } }
quantum{ region{ LH{ dispersion{ path{ name = "..." } } } } }
quantum{ region{ SO{ dispersion{ path{ name = "..." } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: character string
Functionality
Is a name of the dispersions which also defines the names of the output files.
dispersion{ path{ point{ } } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ path{ point{ } } } } } }
quantum{ region{ L{ dispersion{ path{ point{ } } } } } }
quantum{ region{ X{ dispersion{ path{ point{ } } } } } }
quantum{ region{ Delta{ dispersion{ path{ point{ } } } } } }
quantum{ region{ HH{ dispersion{ path{ point{ } } } } } }
quantum{ region{ LH{ dispersion{ path{ point{ } } } } } }
quantum{ region{ SO{ dispersion{ path{ point{ } } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
items: minimum 2
Functionality
Specifies points in the path through k-space. At least two k points have to be defined. Line between two such points is called segment.
dispersion{ path{ point{ k } } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
quantum{ region{ L{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
quantum{ region{ X{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
quantum{ region{ Delta{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
quantum{ region{ HH{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
quantum{ region{ LH{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
quantum{ region{ SO{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: vector of 3 real numbers: \((r_1, r_2, r_3)\)
values: no constraints
unit: \(\mathrm{nm^{-1}}\)
Functionality
Is a k-point represented by vector \([k_x, k_y, k_z]\).
For 1D simulation the \(\mathbf{k_{||}}\) space is a \(k_y-k_z\) plane so \(k_y\), \(k_z\) can be freely choosed. \(k_x\) can only be different from zero, if a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole x-domain.
for 2D simulation the \(\mathbf{k_{||}}\) space is a \(k_z\) axis so \(k_z\) can be freely choosed. \(kx\) can only be different from zero if a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole x-domain. \(k_y\) can only be different from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over the whole y-domain.
for 3D simulation the \(\mathbf{k_{||}}\) space is empty. \(k_x\) can only be different from zero if a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole x-domain. \(k_y\) can only be different from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over the whole y-domain. \(k_z\) can only be different from zero if a periodic boundary condition along the z-direction is defined and the quantum region extends over the whole z-domain.
dispersion{ path{ spacing } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ path{ spacing = ... } } } } }
quantum{ region{ L{ dispersion{ path{ spacing = ... } } } } }
quantum{ region{ X{ dispersion{ path{ spacing = ... } } } } }
quantum{ region{ Delta{ dispersion{ path{ spacing = ... } } } } }
quantum{ region{ HH{ dispersion{ path{ spacing = ... } } } } }
quantum{ region{ LH{ dispersion{ path{ spacing = ... } } } } }
quantum{ region{ SO{ dispersion{ path{ spacing = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{Dandelion}{conditional}}\)
type: real number
values:
[1e-6, ...)
unit: \(\mathrm{nm^{-1}}\)
Functionality
Specifies approximate spacing for intermediate points in the path segments in \(nm^{-1}\).
Excludes num_points
.
dispersion{ path{ num_points } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ path{ num_points = ... } } } } }
quantum{ region{ L{ dispersion{ path{ num_points = ... } } } } }
quantum{ region{ X{ dispersion{ path{ num_points = ... } } } } }
quantum{ region{ Delta{ dispersion{ path{ num_points = ... } } } } }
quantum{ region{ HH{ dispersion{ path{ num_points = ... } } } } }
quantum{ region{ LH{ dispersion{ path{ num_points = ... } } } } }
quantum{ region{ SO{ dispersion{ path{ num_points = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{Dandelion}{conditional}}\)
type: integer
values: \(z \geq 2\)
Functionality
Specifies number of points (intermediate + two corner points) for each single path segment.
Excludes spacing
.
dispersion{ lines{ } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ lines{ } } } } }
quantum{ region{ L{ dispersion{ lines{ } } } } }
quantum{ region{ X{ dispersion{ lines{ } } } } }
quantum{ region{ Delta{ dispersion{ lines{ } } } } }
quantum{ region{ HH{ dispersion{ lines{ } } } } }
quantum{ region{ LH{ dispersion{ lines{ } } } } }
quantum{ region{ SO{ dispersion{ lines{ } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Calculates dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their equivalents (in total maximally 13).
dispersion{ lines{ name } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ lines{ name = "..." } } } } }
quantum{ region{ L{ dispersion{ lines{ name = "..." } } } } }
quantum{ region{ X{ dispersion{ lines{ name = "..." } } } } }
quantum{ region{ Delta{ dispersion{ lines{ name = "..." } } } } }
quantum{ region{ HH{ dispersion{ lines{ name = "..." } } } } }
quantum{ region{ LH{ dispersion{ lines{ name = "..." } } } } }
quantum{ region{ SO{ dispersion{ lines{ name = "..." } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: character string
Functionality
Is a name of the dispersions which also defines the names of the output files.
dispersion{ lines{ k_max } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ lines{ k_max = ... } } } } }
quantum{ region{ L{ dispersion{ lines{ k_max = ... } } } } }
quantum{ region{ X{ dispersion{ lines{ k_max = ... } } } } }
quantum{ region{ Delta{ dispersion{ lines{ k_max = ... } } } } }
quantum{ region{ HH{ dispersion{ lines{ k_max = ... } } } } }
quantum{ region{ LH{ dispersion{ lines{ k_max = ... } } } } }
quantum{ region{ SO{ dispersion{ lines{ k_max = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: real number
values:
[1e-6, ...)
unit: \(\mathrm{nm^{-1}}\)
Functionality
Specifies a maximum absolute value (radius) for the k-vector in \(nm^{-1}\).
dispersion{ lines{ spacing } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ lines{ spacing = ... } } } } }
quantum{ region{ L{ dispersion{ lines{ spacing = ... } } } } }
quantum{ region{ X{ dispersion{ lines{ spacing = ... } } } } }
quantum{ region{ Delta{ dispersion{ lines{ spacing = ... } } } } }
quantum{ region{ HH{ dispersion{ lines{ spacing = ... } } } } }
quantum{ region{ LH{ dispersion{ lines{ spacing = ... } } } } }
quantum{ region{ SO{ dispersion{ lines{ spacing = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: real number
values:
[1e-6, ...)
unit: \(\mathrm{nm^{-1}}\)
Functionality
Specifies approximate spacing for intermediate points in the path segments in \(nm^{-1}\).
dispersion{ full{ } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ full{ } } } } }
quantum{ region{ L{ dispersion{ full{ } } } } }
quantum{ region{ X{ dispersion{ full{ } } } } }
quantum{ region{ Delta{ dispersion{ full{ } } } } }
quantum{ region{ HH{ dispersion{ full{ } } } } }
quantum{ region{ LH{ dispersion{ full{ } } } } }
quantum{ region{ SO{ dispersion{ full{ } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Calculates dispersion in 1D/2D/3D k-space depending on simulation dimensionality and pereodic boundary conditions.
dispersion{ full{ name } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ full{ name = "..." } } } } }
quantum{ region{ L{ dispersion{ full{ name = "..." } } } } }
quantum{ region{ X{ dispersion{ full{ name = "..." } } } } }
quantum{ region{ Delta{ dispersion{ full{ name = "..." } } } } }
quantum{ region{ HH{ dispersion{ full{ name = "..." } } } } }
quantum{ region{ LH{ dispersion{ full{ name = "..." } } } } }
quantum{ region{ SO{ dispersion{ full{ name = "..." } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: character string
Functionality
Is a name of the dispersion which also defines the name of the output file.
dispersion{ full{ kxgrid{ }, … } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ } } } } } }
quantum{ region{ L{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ L{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ L{ dispersion{ full{ kzgrid{ } } } } } }
quantum{ region{ X{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ X{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ X{ dispersion{ full{ kzgrid{ } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kzgrid{ } } } } } }
quantum{ region{ HH{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ HH{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ HH{ dispersion{ full{ kzgrid{ } } } } } }
quantum{ region{ LH{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ LH{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ LH{ dispersion{ full{ kzgrid{ } } } } } }
quantum{ region{ SO{ dispersion{ full{ kxgrid{ } } } } } }
quantum{ region{ SO{ dispersion{ full{ kygrid{ } } } } } }
quantum{ region{ SO{ dispersion{ full{ kzgrid{ } } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Specifies a grid{...}
in k-space for a 1D/2D/3D plot of the energy dispersion E(kx, ky, kz).
Allowed only, if simulation is periodic along respective direction and current quantum region extends over the entire domain.
dispersion{ full{ kxgrid{ line{ } }, … } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ line{ } } } } } } }
quantum{ region{ L{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ L{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ L{ dispersion{ full{ kzgrid{ line{ } } } } } } }
quantum{ region{ X{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ X{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ X{ dispersion{ full{ kzgrid{ line{ } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kzgrid{ line{ } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kzgrid{ line{ } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kzgrid{ line{ } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kxgrid{ line{ } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kygrid{ line{ } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kzgrid{ line{ } } } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
items: minimum 2
Functionality
—
dispersion{ full{ kxgrid{ line{ pos } }, … } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
quantum{ region{ L{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ L{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ L{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
quantum{ region{ X{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ X{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ X{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: real number
values: no constraints
unit: \(\mathrm{nm^{-1}}\)
Functionality
—
dispersion{ full{ kxgrid{ line{ spacing } }, … } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ L{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ L{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ L{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ X{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ X{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ X{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ Delta{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ HH{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ LH{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }
quantum{ region{ SO{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: real number
values:
[1e-6, ...)
unit: \(\mathrm{nm^{-1}}\)
Functionality
—
dispersion{ superlattice{ } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ superlattice{ } } } } }
quantum{ region{ L{ dispersion{ superlattice{ } } } } }
quantum{ region{ X{ dispersion{ superlattice{ } } } } }
quantum{ region{ Delta{ dispersion{ superlattice{ } } } } }
quantum{ region{ HH{ dispersion{ superlattice{ } } } } }
quantum{ region{ LH{ dispersion{ superlattice{ } } } } }
quantum{ region{ SO{ dispersion{ superlattice{ } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Is a convenience group to calculate superlattice dispersion \(E(k_{SL})\) along periodic directions. The intervals are set automatically to \([-\pi/L_i, \pi/L_i]\), where \(L_i\) is the simulation domain range along periodic directions with \(i = x,y,z\).
dispersion{ superlattice{ name } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ superlattice{ name = "..." } } } } }
quantum{ region{ L{ dispersion{ superlattice{ name = "..." } } } } }
quantum{ region{ X{ dispersion{ superlattice{ name = "..." } } } } }
quantum{ region{ Delta{ dispersion{ superlattice{ name = "..." } } } } }
quantum{ region{ HH{ dispersion{ superlattice{ name = "..." } } } } }
quantum{ region{ LH{ dispersion{ superlattice{ name = "..." } } } } }
quantum{ region{ SO{ dispersion{ superlattice{ name = "..." } } } } }
Properties
usage: \(\mathrm{\textcolor{WildStrawberry}{required}}\)
type: character string
Functionality
Is a name of the dispersion which also defines the name of the output file.
dispersion{ superlattice{ num_points } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ superlattice{ num_points = ... } } } } }
quantum{ region{ L{ dispersion{ superlattice{ num_points = ... } } } } }
quantum{ region{ X{ dispersion{ superlattice{ num_points = ... } } } } }
quantum{ region{ Delta{ dispersion{ superlattice{ num_points = ... } } } } }
quantum{ region{ HH{ dispersion{ superlattice{ num_points = ... } } } } }
quantum{ region{ LH{ dispersion{ superlattice{ num_points = ... } } } } }
quantum{ region{ SO{ dispersion{ superlattice{ num_points = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{Dandelion}{conditional}}\)
type: integer
values: \(z \geq 2\)
Functionality
Is a convenience keyword to specifies number of points along all appropriate directions in k space.
dispersion{ superlattice{ num_points_x, … } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ Gamma{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ Gamma{ dispersion{ superlattice{ num_points_z = ... } } } } }
quantum{ region{ L{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ L{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ L{ dispersion{ superlattice{ num_points_z = ... } } } } }
quantum{ region{ X{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ X{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ X{ dispersion{ superlattice{ num_points_z = ... } } } } }
quantum{ region{ Delta{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ Delta{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ Delta{ dispersion{ superlattice{ num_points_z = ... } } } } }
quantum{ region{ HH{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ HH{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ HH{ dispersion{ superlattice{ num_points_z = ... } } } } }
quantum{ region{ LH{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ LH{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ LH{ dispersion{ superlattice{ num_points_z = ... } } } } }
quantum{ region{ SO{ dispersion{ superlattice{ num_points_x = ... } } } } }
quantum{ region{ SO{ dispersion{ superlattice{ num_points_y = ... } } } } }
quantum{ region{ SO{ dispersion{ superlattice{ num_points_z = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{Dandelion}{conditional}}\)
type: integer
values: \(z \geq 2\)
Functionality
Specifies number of points along x direction in k space where dispersion is calculated. The simulation must be periodic along the x, y, or z directions in the position space.
dispersion{ output_dispersions{ } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ output_dispersions{ } } } } }
quantum{ region{ L{ dispersion{ output_dispersions{ } } } } }
quantum{ region{ X{ dispersion{ output_dispersions{ } } } } }
quantum{ region{ Delta{ dispersion{ output_dispersions{ } } } } }
quantum{ region{ HH{ dispersion{ output_dispersions{ } } } } }
quantum{ region{ LH{ dispersion{ output_dispersions{ } } } } }
quantum{ region{ SO{ dispersion{ output_dispersions{ } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Outputs all defined dispersions.
dispersion{ output_dispersions{ max_num } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ output_dispersions{ max_num = ... } } } } }
quantum{ region{ L{ dispersion{ output_dispersions{ max_num = ... } } } } }
quantum{ region{ X{ dispersion{ output_dispersions{ max_num = ... } } } } }
quantum{ region{ Delta{ dispersion{ output_dispersions{ max_num = ... } } } } }
quantum{ region{ HH{ dispersion{ output_dispersions{ max_num = ... } } } } }
quantum{ region{ LH{ dispersion{ output_dispersions{ max_num = ... } } } } }
quantum{ region{ SO{ dispersion{ output_dispersions{ max_num = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: \(1 \leq z \leq 9999\)
default: not defined
Functionality
It is a maximum number of bands to print out.
dispersion{ output_masses{ } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ output_masses{ } } } } }
quantum{ region{ L{ dispersion{ output_masses{ } } } } }
quantum{ region{ X{ dispersion{ output_masses{ } } } } }
quantum{ region{ Delta{ dispersion{ output_masses{ } } } } }
quantum{ region{ HH{ dispersion{ output_masses{ } } } } }
quantum{ region{ LH{ dispersion{ output_masses{ } } } } }
quantum{ region{ SO{ dispersion{ output_masses{ } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
items: maximum 1
Functionality
Outputs effective masses \(m^*\) calculated from the dispersions, expressed in masses of a free electron \(m_0\), following the formula:
where \(k\) is a “distance” along the path onto which the related band structure is computed.
dispersion{ output_masses{ max_num } }
Calling sequence
quantum{ region{ Gamma{ dispersion{ output_masses{ max_num = ... } } } } }
quantum{ region{ L{ dispersion{ output_masses{ max_num = ... } } } } }
quantum{ region{ X{ dispersion{ output_masses{ max_num = ... } } } } }
quantum{ region{ Delta{ dispersion{ output_masses{ max_num = ... } } } } }
quantum{ region{ HH{ dispersion{ output_masses{ max_num = ... } } } } }
quantum{ region{ LH{ dispersion{ output_masses{ max_num = ... } } } } }
quantum{ region{ SO{ dispersion{ output_masses{ max_num = ... } } } } }
Properties
usage: \(\mathrm{\textcolor{ForestGreen}{optional}}\)
type: integer
values: \(1 \leq z \leq 9999\)
default: not defined
Functionality
It is a maximum number of bands to print out.
Last update: 2025-08-14