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Assume carriers to be in local equilibrium,
determined by spatially varying quasi-Fermi levels

Current calculated semiclassically with quantum
mechanical density and self-consistently determined
quasi-Fermi levels

Motivation

InGaAs
QD’s

270 nm

h�

Lens shape

Realistic prediction of fully three-dimensional
nano-devices:

This work: 3-D Device simulator

Calculation of carrier transport limited to situations
near equilibrium

Method

Application:
Study of single-quantum-dot photodiodes

Comparison with experimental*
photocurrent data as a function of
applied bias

*) Findeis et al, APL 78, 2958 (01)

Self-assembled InGaAs quantum dots embedded in
Schottky diode

Results:
Relation between shape and piezo-charges

in InGaAs quantum dots

Truncated pyramid

Height: 8 nm

� : 40 nm
Av. 22% In

Strain-induced piezoelectric charges are large
for pyramidal shapes and small for lens shapes

Height: 8 nm

� : 30 nm
Av. 22% In

Results:
Exciton Stark shifts as a function of applied bias

Novel method to calculate 3-D electronic structure
and current density of nano-structures

Electronic structure:

Current calculation:

- 8-band k p method
- Charge self-consistency, including piezo-effect
- Fully strain relaxed
- Strain dependent band shifts
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Single-quantum-dot photodiodes
Cleaved-edge overgrowth wire and dot structures
...

Self-assembled InGaAs quantum dots possess
highly non-uniform alloy composition and can lead to

State-of-the-art electronic structure calculation from

nm to m scale for any 3-D geometry/composition and
applied bias
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Nominally 50% InAs -> Exciton energy of 1.3 eV

Efficient optical generation only for lens-shaped dots

Localization of andelectrons holes

Summary

reversed electron-hole alignment

large Stark shifts and corresponding changes in
optical transition rates

higher tunneling rate for holes than for electrons
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Experiment

Stark shift reflects alloy profile and resulting
electron and hole localization

Electron and hole localization
shows up in luminescence:

Steep alloy profiles

Strong localization
of holes at top of dot

Large Stark shift

Hole tunnels faster than
electron because of lower barrier

For F = 50 kV/cm:
Decay time for holes ~ ns

Decay time for electrons ~ s�

Dot height


