| binary-wz-defaultWurtzite material parametersMore information can be found under the keyword
binary-wz-default (binary wurtzite parameters) under the section
Keywords. !-------------------------------------------------------------------!total number of conduction bands$binary-wz-default                                       
 required !
 binary-type                               
character      
required !
 conduction-bands                          
integer        
required !
for each band. Ordering of numbers corresponds to band no. 1, 2, ...conduction-band-masses                   
 double_array   required 
! [m0]
including 
spin 
degeneracyconduction-band-degeneracies              
integer_array  required !
As used in a 
hyperbolic dispersionconduction-band-nonparabolicities         
double_array   
required !
 k^2 ~ E(1+aE). a = nonparabolicity (1/eV)conduction band edge energies relative to a reference level (could be vacuum) (numbering according cb 
numberingband-gaps              
                 
 double_array   optional !
 conduction-band-energies                 
 double_array   required !
total number of valence bands!
 valence-bands                            
 integer        
required !
,valence-band-masses                      
 double_array   required ! 
[m0] mxx
 myy, mzz for each band 
(heavy, light and crystal-field split-off hole). Ordering of numbers corresponds to band 
no. 1, 
2, ...including 
spin 
degeneracyvalence-band-degeneracies                 
integer_array  required !
As used in a 
hyperbolic dispersionvalence-band-nonparabolicities            
double_array   required !
 k^2 ~ E(1+aE). a = nonparabolicity (1/eV)"average" valence band edge energy Ev (see 
comments below)valence-band-energies                     
double         required 
!
(Gamma,indirect,indirect),!
 varshni-parameters                  
       double_array  
required ! alpha [eV/K]
 beta [K] (Gamma,L,indirect,indirect)to adjust band alignments (should be zero in database): adds to all 
band energiesband-shift                                
double         
required !
!
  absolute-deformation-potential-vb         
double         
required ! not used in wurtziteabsolute 
deformation potentials of conduction band minimaabsolute-deformation-potentials-cbs       
double_array   required !
 a_c, a_ci's!
   uniax-vb-deformation-potentials           
double_array   required ! b,d related [eV]not used in wurtziteuniax-cb-deformation-potentials          
 double_array   required !
3 positive 
numbers!
 lattice-constants                         
double_array   required ! 
[nm]
3 numberslattice-constants-temp-coeff        
       double_array  
required ! [nm/K]
 !
 elastic-constants                         
double_array   
required !
 piezo-electric-constants                 
 double_array   
required !
 pyro-polarization                         
double_array   
required !
!
 static-dielectric-constants               
double_array   required !
 optical-dielectric-constants              
double_array   
required !
 !
 6x6kp-parameters                          
double_array   
required !
 8x8kp-parameters                         
 double_array   required !
 !
 LO-phonon-energy          
                double_array  
 required ! [eV]
 !
 number-of-minima-of-cband                
 integer_array  required !
 conduction-band-minima                    
double_array   required !
 principal-axes-cb-masses                 
 double_array   
required !
 !
 number-of-minima-of-vband                 
integer_array  required !
 valence-band-minima                       
double_array   required !
 principal-axes-vb-masses                 
 double_array   required !
 !
 $end_binary-wz-default                                   
 required !
 !-------------------------------------------------------------------!
   Syntaxbinary-type = GaN-wz-default
 conduction-bands = 3total number of conduction bands
 conduction-band-masses = 0.202d0 0.202d0 0.206d0 ! 
[m0] masses at the Gamma point m_|_, m_|_, m|| 
(with respect to c-axis)masses at the indirect ??? point0.330d0 0.330d0 1.430d0 ! 
[m0]
masses at the indirect ??? point0.280d0 0.280d0 2.170d0 ! 
[m0]
 conduction-band-degeneracies = 2 8 6including spin degeneracy
   conduction-band-nonparabolicities = 0.6d0 0.2d0 0.3d0Nonparabolicity factors for the Gamma, L and X conduction bands as used in a hyperbolic dispersion k2 ~ E (1 +
aE) = E + aE2.
a = nonparabolicity
  [1/eV] (usually 
denoted with alpha)The energy of the 
Gamma valley is assumed to be nonparabolic, spherical (CHECK: is this also true 
for wurtzite?), and of the form
 hbar2 k2 / (2 m*) = Eparabolic = Enonparabolic (1 + aEnonparabolic) 
where a is given by a = (1 - m*/m0)2 / Eg.
 Eparabolic is the energy of the carriers in the usual 
parabolic band.
Enonparabolic is the energy of the carriers in the 
nonparabolic band.
The nonparabolic band factor a can be calculated from the Kane model.
Note that this nonparabolicity correction only influences the classically 
calculated electron densities.
 Quantum mechanically calculated densities are unaffected.
   band-gaps = 1.5d0 2.0d0 2.3d0  ! [eV]  Note that this flag is optional. It is only used if the flag use-band-gaps 
= yes is used.Energy band gaps of the three valleys (Gamma, ?, ?).
 conduction-band-energies = 3.500d0 10.00d0 10.00d0conduction band edge energies relative to valence band number 1 (number 
corrsponds to the ordering of the entries below)
 valence-bands = 3total number of valence bands
 
valence-band-masses       = 0.370d0 0.370d0 2.090d0 ! 
[m0] heavy hole (HH) masses m_|_, m_|_, m|| 
(with respect to c-axis)0.390d0 0.390d0 0.740d0
 ! [m0] light   hole (LH) masses  m_|_, m_|_, m|| 
(with respect to c-axis)crystal-field split-hole (CH) masses m_|_, m_|_, 
m|| (with respect to c-axis)0.940d0 0.940d0 0.180d0 ! 
[m0]
Ordering of numbers corresponds 
to band no. 1, 2, 3 (heavy, light, crysta-field split-off hole).
 
 valence-band-degeneracies = 2 2 2including spin degeneracy
 valence-band-nonparabolicities = 0.0d0 0.0d0 0.0d0see comments for
 conduction-band-nonparabolicities
   valence-band-energies = 0.0The "average" valence band edge energy is according to Ev in:
S.L. Chuang, C.S. Chang
 k.p method for strained wurtzite semiconductors
 Phys. Rev. B 54 (4), 2491 (1996)
 The valence band energies for heavy hole (HH), light hole (LH) and 
crystal-field split-hole (CH) are calculated by 
  defining an "average" valence band energy Ev for all three bands and adding the 
  spin-orbit-splitting and crystal-field splitting energies afterwards. 
The crystal-field splitting energy Deltacr and the 
spin-orbit-splitting energies Delta2 = Delta3 = 1/3 Deltaso 
are defined together with the 6-band k.p parameters.
The "average" valence band energy Ev is defined on an absolute 
energy scale and must take into account the valence band offsets which are "averaged" over the three holes.
 Note: The real average of the three holes is: Ev,av = 
(EHH + ELH + ECH ) / 3 = Ev + 2/3 Deltacr
   varshni-parameters = 0.909d-3  0d0  0d0 
 ! 
alpha [eV/K](Gamma, indirect, indirect) Vurgaftman(Gamma, indirect, indirect) Vurgaftman830d0     0d0  0d0  ! beta  
[K]
Temperature dependent band gaps (here: GaN values).
More 
information...
   band-shift = 0d0    to adjust band alignments (should be zero in database): adds to all band 
energies
   absolute-deformation-potential-vb = 0.0d0 
! a_v [eV] -
not used in wurtziteAbsolute deformation potential of valence bands.
   absolute-deformation-potentials-cbs = ac,a (a axis)   ac,a (a axis)  
ac,c (c axis) ! [eV]absolute deformation potentials of Gamma conduction band minima= -10.0d0      -10.0d0     -5.0d0     ! [eV]
 
ac,a=a2 (a axis), 
ac,a=a2 (a axis), ac,c=a1 (c 
axis)
 Note that I. Vurgaftman et al., JAP 94, 3675 (2003) lists
a1 and a2 
parameters.
 They refer to the interband deformation potentials, i.e. to the 
deformation of the band gaps.
 Thus we have to add the deformation potentials of the valence bands to get 
the deformation potentials for the conduction band edge.
 
 ac,a = a2 
= a2 + D2
 ac,c = a1 
= a1 + D1
   uniax-vb-deformation-potentials = -3.7d0  
4.5d0  8.2d0 ! D1, D2, D3 [eV]Uniaxial deformation potentials of valence bands.-4.1d0 -4.0d0 -5.5d0 ! D4, D5, D6 [eV]
 
   uniax-cb-deformation-potentials  = 0d0     
0d0     0d0  ! not used in wurtziteUniaxial deformation potentials of conduction bands.
(at minimum)Xi_u
     lattice-constants            = 
0.3189d0  0.3189d0  0.5185d0  
! [nm]   300 K3 positive numbers= a        a        
c
 
For the ideal c/a ration it holds: c/a = SQRT(8/3) = 1.63299...
 lattice-constants-temp-coeff = 3.88d-6  
3.88d-6  3.88d-6     ! [nm/K]More 
information on temperature dependent lattice constants...
   elastic-constants = 374.0d0 106.0d0 70.0d0         
! C11,C12,C13Elastic constants379.0d0 101.0d0                
! C33,C44
 
 C11,C12,C13,C33,C44 in [GPa] with their usual 
meaning.(
 C66 is not needed as it can be calculated. C66 = 0.5 * (C11 
- C12).)
   piezo-electric-constants  = 0.73d0 -0.49d0 -0.30d0          
! [C/m^2] e33  e31   e15                          
(1st   order coefficients)
                            
0d0 0d0 0d0 0d0 0d0 0d0 0d0 0d0  ! [C/m^2] B311  
B312  B313  B333  B115  
B125 B135  B344
(2nd order coefficients)Conventionally, the sign of the piezoelectric tensor components is fixed 
by assuming that the positive direction along the
- [111] direction (zincblende)
 - [0001] direction (wurtzite)
 goes from the cation to the anion.
 pyro-polarization        = 0d0       0d0      -0.029d0  
! [C/m^2] 0d0  0d0  Psp
   static-dielectric-constants = 9.28d0 9.28d0 
10.01d0eps1   eps2
  eps3
Static dielectric constants. The numbers 
correspond to the crystal directions (similar to
  lattice-constants):- in zinc blende:
  eps1 = eps2 
= eps3- in wurtzite:
   eps1 =
eps2   eps3
           eps3 is parallel to the c direction in wurtzite.
             
eps1 and eps2 are perpendicular to the c direction in wurtzite.low frequency dielectric constant
 epsilon(0)
 optical-dielectric-constants = 5.35d0  5.35d0  5.35d0  ! high frequency dielectric constant
epsilon(infinity); perpendicular and parallel to c axis
   6x6kp-parameters = -7.21d0  -0.44d0     6.68d0     
! 6-band k.p Rashba-Sheka-Pikus 
parameters6-band k.p Rashba-Sheka-Pikus parameters-3.46d0  -3.40d0    -4.90d0     !
0.010d0  0.00567d0  0.00567d0  ! Delta1   Delta2   Delta3       
[eV]
 8x8kp-parameters = -7.21d0  -0.44d0     6.68d0     
! 8-band k.p Rashba-Sheka-Pikus 
parameters8-band k.p Rashba-Sheka-Pikus parameters-3.46d0  -3.40d0    -4.90d0     !
Note: The0d0      0d0        0d0        
! B1   B2  B3  [hbar2/(2m0)]
 14.5d0   14.5d0                
! EP1  EP2      [eV]
 1d0      1d0                   
! S1   S2      []
 
 
 S
parameters are also defined in the literature as F
where S = 1 + 2F, e.g. I. Vurgaftman et al., JAP 89, 
5815 (2001).
   LO-phonon-energy = 0.09212d0 0.09212d0 0.09113d0   
! [eV] low-temperature optical phonon energy (perpendicular, 
perpendicular, parallel to c axis)
   number-of-minima-of-cband = 1 4 3
 conduction-band-minima = 0d0     
0d0     0d0components of k-vector along crystal
 0.860d0 0.860d0  0.860d0
 0.860d0 0.860d0 -0.860d0
 -0.860d0 0.860d0  0.860d0
 -0.860d0 0.860d0 -0.860d0
 
 0d0     0d0     
1d0
 1d0     0d0     0d0
 0d0     1d0     0d0
 
xyz [k0]
 principal-axes-cb-masses = 1d0     
0d0     0d0Normalization will be done internally by the 
program0d0     1d0     0d0
 0d0     0d0     1d0
 !c
 1d0    -1d0     
0d0      ! L1
 1d0     1d0    
-2d0
 1d0     1d0     1d0
 1d0    -1d0     0d0      ! L2
 -1d0    -1d0    -2d0
 1d0     1d0    -1d0
 1d0     1d0     0d0      ! L3
 -1d0     1d0    
-2d0
 -1d0     1d0     1d0
 1d0     1d0     0d0      ! L4
 1d0    -1d0    -2d0
 -1d0     1d0    -1d0
 !c
 1d0     0d0     
0d0      ! X1
 0d0     1d0     
0d0
 0d0     0d0     1d0
 0d0    -1d0     0d0      ! X2
 0d0     0d0    
-1d0
 1d0     0d0     0d0
 1d0     0d0     0d0    
 ! X3
 0d0     0d0    
-1d0
 0d0     1d0     0d0
 
 number-of-minima-of-vband = 1 1 1
 valence-band-minima = 0d0     
0d0     0d0components of k-vector along0d0     0d0     0d0
 0d0     0d0     0d0
 
crystal xyz 
[k0]
 principal-axes-vb-masses = 1d0     
0d0     0d0Normalization will be done internally by the program0d0     1d0     0d0
 0d0     0d0     1d0
 
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 
 1d0     0d0     0d0
 0d0     1d0     0d0
 0d0     0d0     1d0
 
 More information can be found under the keyword
binary-wz-default(binary wurtzite parameters) under the section
Keywords. |