User Tools

Site Tools


nnp:piezoelectricity_in_wurtzite

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:piezoelectricity_in_wurtzite [2019/10/31 17:52]
stefan.birner [Specify crystal orientation]
nnp:piezoelectricity_in_wurtzite [2024/01/03 17:50]
stefan.birner removed
Line 7: Line 7:
  
 === References === === References ===
-  * A.E. Romanov ​//et al//., Journal of Applied Physics **100**, 023522 (2006)+  * A.E. Romanov, T.J. Baker, S. Nakamura, and J.S. Speck, Journal of Applied Physics **100**, 023522 (2006)
   * S. Schulz and O. Marquardt, Phys. Rev. Appl. **3**, 064020 (2015)   * S. Schulz and O. Marquardt, Phys. Rev. Appl. **3**, 064020 (2015)
   * S.K. Patra and S. Schulz, Phys. Rev. B **96**, 155307 (2017)   * S.K. Patra and S. Schulz, Phys. Rev. B **96**, 155307 (2017)
Line 45: Line 45:
 We note that the expression in the third case includes the other two special cases. To approximate the direction with integer entries, we multiply 100 and take the floor function: We note that the expression in the third case includes the other two special cases. To approximate the direction with integer entries, we multiply 100 and take the floor function:
 <​code>​ <​code>​
-$gamma = $c_InGaN / $a_InGaN # c/a ratioideal ratio of c/a in wurtzite is SQRT(8/​3)=1.63299+$gamma = $c_InGaN / $a_InGaN # c/a ratio 
 +                             # ​ideal c/a ratio in wurtzite is SQRT(8/​3)=1.63299
 $h = floor(100*sin(theta)) $h = floor(100*sin(theta))
 $l = floor(100*2*gamma*cos(theta)/​sqrt(3)) $l = floor(100*2*gamma*cos(theta)/​sqrt(3))
Line 147: Line 148:
 Analytical expression is derived as follows [Schulz2015]. Since we are interested in the polarization normal to the interface, it is useful to switch to the simulation coordinate system $(x', y', z')$. This can be done by transforming the polarization vector and the strain tensor to the simulation system, Analytical expression is derived as follows [Schulz2015]. Since we are interested in the polarization normal to the interface, it is useful to switch to the simulation coordinate system $(x', y', z')$. This can be done by transforming the polarization vector and the strain tensor to the simulation system,
 $$ $$
-P_{\mu'​}^{(1)}=\sum_{\mu=1}^3 R_{\mu'​\mu} P_\mu^{(1)},​\ \  +P_{\mu'​}^{(1)}=\left(R P^{(1)} \right)_{\mu'​}=\sum_{\mu=1}^3 R_{\mu'​\mu} P_\mu^{(1)},​\ \  
-\epsilon_{\mu'​\nu'​}=\sum_{\mu,​\nu=1}^3 R_{\mu'​\mu}R_{\nu'​\nu}\epsilon_{\mu\nu},​+\epsilon_{\mu'​\nu'​}=\left(R\epsilon R^{-1} \right)_{\mu'​\nu'​}=\sum_{\mu,​\nu=1}^3 R_{\mu'​\mu}R_{\nu'​\nu}\epsilon_{\mu\nu},​
 $$ $$
-where the $3\times3$ rotation matrix $R$ accounts for a rotation of angle $\theta$. Prime denotes the axes in simulation coordinate system. These equations can be expressed in vector form as+where the $3\times3$ rotation matrix $R$ accounts for a rotation of angle $\theta$ and we have used the fact that the rotation matrix is orthogonal: $(R^{-1})_{\mu\nu}=R_{\nu\mu}$. Prime denotes the axes in simulation coordinate system. These equations can be expressed in vector form as
 $$ $$
 \begin{pmatrix} \begin{pmatrix}