User Tools

Site Tools


nnp:cbr_1d_potential

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:cbr_1d_potential [2019/10/21 14:30]
takuma.sato [Step Potential]
— (current)
Line 1: Line 1:
-===== 1D Transmission (CBR) ===== 
-In this tutorial we calculate the transmission coefficient $T(E)$ as a function of energy $E$. We consider the following pedagogical examples we learn in undergraduate quantum mechanics courses. 
-  * Single potential barrier 
-  * Step potential 
-  * Quantum well 
-  * Double potential barrier 
  
-To calculate transmission spectra with nextnano++, we use **C**ontact **B**lock **R**eduction (CBR) method (see also [[https://​www.nextnano.com/​nextnanoplus/​software_documentation/​input_file/​cbr.htm|documentation]]). This tutorial is an analog of [[https://​www.nextnano.de/​nextnano3/​tutorial/​1Dtutorial_Transmission_NEGF.htm|nextnano3 tutorial]]. 
- 
-=== Reference === 
-  * Ballistic Quantum Transport using the Contact Block Reduction (CBR) Method - An introduction,​ S. Birner, C. Schindler, P. Greck, M. Sabathil, P. Vogl, Journal of Computational Electronics (2009) 
- 
-The corresponding input files are 
-  * Transmission_CBRtutorial_1Dsinglebarrier_nnp.in 
-  * Transmission_CBRtutorial_1Dstep_nnp.in 
-  * Transmission_CBRtutorial_1Dwell_nnp.in 
-  * Transmission_CBRtutorial_1Ddoublebarrier_nnp.in 
-  * Transmission_CBRpaper_1Ddoublebarrier_nnp.in 
-==== Single Potential Barrier ==== 
-We first consider transmission through a finite quantum barrier. 10 nm Al<​sub>​0.3</​sub>​Ga<​sub>​0.7</​sub>​As barrier is located in a 50 nm GaAs sample. For this compound the top of the barrier is at $E_{\mathrm{barrier}}=3.243$ eV. 
-  
-<figure single barrier gamma> 
-{{:​nnp::​transmission_1dsinglebarrier_gamma.png?​direct&​600}} 
-<​caption>​The conduction bandedge profile.</​caption>​ 
-</​figure>​ 
- 
-With nextnano++, one can calculate the transmission spectrum using the CBR method (cf. [[https://​www.nextnano.com/​nextnanoplus/​software_documentation/​input_file/​cbr.htm|here]] for details). The sample input file is generalised so that you can change the barrier width and alloy content (which determines the barrier height). The result is written in ''​~\bias_000_000\transmission_cbr_Gamma1.dat''​. 
-<figure single barrier> 
-{{:​nnp::​transmission_1dsinglebarrier.png?​direct&​600}} 
-<​caption>​Transmission coefficient as a function of energy. The dashed line marks $E_{\mathrm{barrier}}$.</​caption>​ 
-</​figure>​ 
- 
-Classical mechanics argues that the transmission is $0$ below $E_{\mathrm{barrier}}$ and abruptly increases to $1$ at $E_{\mathrm{barrier}}$. However, quantum mechanics allows electrons with energy below $E_{\mathrm{barrier}}$ to transmit the barrier, and predicts a oscillatory behaviour above $E_{\mathrm{barrier}}$. 
-==== Step Potential ==== 
-For a step potential structure as shown in Figure {{ref>​step gamma}}, the transmission of electrons with energy below $E_{\mathrm{barrier}}$ is prohibited because it can be seen as an infinitely thick barrier. ​ 
- 
-<figure step gamma> 
-{{:​nnp::​transmission_1dstep_gamma.png?​direct&​600}} 
-</​figure>​ 
- 
-<figure step> 
-{{:​nnp::​transmission_1dstep.png?​direct&​600}} 
-</​figure>​ 
-==== Quantum Well ==== 
-<figure well gamma> 
-{{:​nnp::​transmission_1dwell_gamma.png?​direct&​600}} 
-<​caption></​caption>​ 
-</​figure>​ 
- 
-<figure well> 
-{{:​nnp::​transmission_1dwell.png?​direct&​600}} 
-<​caption></​caption>​ 
-</​figure>​ 
-==== Double Potential Barrier ==== 
-Finally we consider a double barrier structure with wall width 10 nm. The distance between the barriers is 10 nm. 
-<figure double barrier gamma> 
-{{:​nnp::​transmission_1ddoublebarrier_gamma.png?​direct&​600}} 
-</​figure>​ 
- 
-This system has two resonant modes localized between the barriers. The bandstructure and wavefunctions are written in ''​~\bias_000_000\bandedge_Gamma.dat''​ and ''​~\Quantum\wf_probabilities_shift_cbr_Gamma_0000.dat'',​ respectively. 
- 
-<figure resonant>​ 
-{{:​nnp::​transmission_1ddoublebarrier_resonant.png?​direct&​600}} 
-<​caption>​Probability distribution $|\psi(x)|^2$ of the resonant modes.</​caption>​ 
-</​figure>​ 
- 
-In the transmission spectrum, one can clearly see the 100% transmission at the energies of the resonant states in the quantum well. 
-<figure double barrier> 
-{{:​nnp::​transmission_1ddoublebarrier.png?​direct&​600}} 
-<​caption>​Transmission coefficient of the double barrier structure. The spectrum has two sharp peaks below the barrier height 3.084 eV, which corresponds to the resonant mode within the barriers.</​caption>​ 
-</​figure>​ 
- 
-==== CBR efficiency assessment ==== 
-  * Input file: Transmission_CBRpaper_1Ddoublebarrier_nnp.in 
- 
-Figure 4 in [Birner2009] compares the transmission coefficient of a double barrier structure for different number of eigenstates considered in the CBR method. The following figure shows the result reproduced by nextnano++ and demonstrates that the first resonant peak is accurately reproduced using incomplete set of eigenstates. The spectrum is not identical to the previous result because the barrier width here is 2 nm. 
- 
-<figure assessment>​ 
-{{:​nnp::​transmission_1ddoublebarrier_paper.png?​direct&​600}} 
-<​caption>​Transmission coefficient for three different CBR parameters. The red curve is the result considering complete set of device eigenstates,​ while green and blue curves take into account only 40% and 10% of them, respectively.</​caption>​ 
-</​figure>​ 
- 
-See also [[https://​www.nextnano.com/​dokuwiki/​doku.php?​id=nnp:​cbr_3d_nanowire|3D case]] for another CBR efficiency assessment. 
nnp/cbr_1d_potential.1571661024.txt.gz ยท Last modified: 2019/10/21 14:30 by takuma.sato