User Tools

Site Tools


nnp:cbr_1d_potential

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:cbr_1d_potential [2019/10/22 13:13]
takuma.sato [Single Potential Barrier]
nnp:cbr_1d_potential [2024/01/03 16:50]
stefan.birner removed
Line 20: Line 20:
   * Transmission_CBRpaper_1Ddoublebarrier_nnp.in   * Transmission_CBRpaper_1Ddoublebarrier_nnp.in
 ==== Single Potential Barrier ==== ==== Single Potential Barrier ====
-We first consider transmission through a finite quantum barrier. 10 nm Al<​sub>​0.3</​sub>​Ga<​sub>​0.7</​sub>​As ​barrier is located in a 50 nm GaAs sample. After running the input file, we obtain the following bandedge profile. ​For this compound the top of the barrier is at $E_{\mathrm{barrier}}=3.243$ eV.+We first consider transmission through a finite quantum barrier. 10 nm barrier is located in a 50 nm sample. After running the input file, we obtain the following bandedge profile. ​The barrier ​height ​is set to $E_{\mathrm{barrier}}=0.3$ eV.
    
 <figure single_barrier_gamma>​ <figure single_barrier_gamma>​
-{{:​nnp::​transmission_1dsinglebarrier_gamma.png?​direct&​600}} +{{:​nnp::​transmission_1dsinglebarrier_gamma.png}} 
-<​caption>​The conduction bandedge profile (''​bandedges.dat''​).</​caption>​+<​caption>​The conduction bandedge profile (''​bandedge_Gamma.dat''​).</​caption>​
 </​figure>​ </​figure>​
  
Line 36: Line 36:
    
 <figure single_barrier>​ <figure single_barrier>​
-{{:​nnp::​transmission_1dsinglebarrier.png?​direct&​600}}+{{:​nnp::​transmission_1dsinglebarrier.png}}
 <​caption>​Transmission coefficient as a function of energy for different barrier width $w$ [nm]. The dashed line marks $E_{\mathrm{barrier}}$.</​caption>​ <​caption>​Transmission coefficient as a function of energy for different barrier width $w$ [nm]. The dashed line marks $E_{\mathrm{barrier}}$.</​caption>​
 </​figure>​ </​figure>​
Line 45: Line 45:
  
 <figure step_gamma>​ <figure step_gamma>​
-{{:​nnp::​transmission_1dstep_gamma.png?​direct&​600}}+{{:​nnp::​transmission_1dstep_gamma.png}}
 </​figure>​ </​figure>​
  
 <figure step> <figure step>
-{{:​nnp::​transmission_1dstep.png?​direct&​600}}+{{:​nnp::​transmission_1dstep.png}} 
 +<​caption>​Transmission spectrum for a step potential. Transmission is only allowed above the step.</​caption>​
 </​figure>​ </​figure>​
 ==== Quantum Well ==== ==== Quantum Well ====
-Similarly a quantum well structure can be simulated.+Similarly a quantum well structure can be simulated. The well width is w=10nm here.
  
 <figure well gamma> <figure well gamma>
-{{:​nnp::​transmission_1dwell_gamma.png?​direct&​600}}+{{:​nnp::​transmission_1dwell_gamma.png}}
 </​figure>​ </​figure>​
  
-Again the transmission of electron ​with energy lower than $E_{\mathrm{barrier}}$ ​is impossible because the barrier is infinitely thick. Above $E_{\mathrm{barrier}}$ ​the spectrum shows an oscillatory behaviour.+Again the transmission of electron ​within the barriers ​is impossible because the barrier is infinitely thick. Above 0eV, the spectrum shows an oscillatory behaviour.
  
 <figure well> <figure well>
-{{:​nnp::​transmission_1dwell.png?​direct&​600}}+{{:​nnp::​transmission_1dwell.png}} 
 +<​caption>​Transmission spectrum for the quantum well structure. The dashed line marks the top of the barrier.</​caption>​
 </​figure>​ </​figure>​
 ==== Double Potential Barrier ==== ==== Double Potential Barrier ====
-Finally we consider a double barrier structure with wall width 10 nm. The distance between the barriers ​is 10 nm.+Finally we consider a double barrier structure with wall width 10 nm. The barrier interval ​is 10 nm.
 <figure double barrier gamma> <figure double barrier gamma>
-{{:​nnp::​transmission_1ddoublebarrier_gamma.png?​direct&​600}}+{{:​nnp::​transmission_1ddoublebarrier_gamma.png}}
 </​figure>​ </​figure>​
  
-This system has two resonant modes localized between the barriers. The bandstructure and wavefunctions are written in ''​~\bias_000_000\bandedge_Gamma.dat''​ and ''​~\Quantum\wf_probabilities_shift_cbr_Gamma_0000.dat'',​ respectively.+This system has two resonant modes localized between the barriers. The bandstructure and wavefunctions are written in ''​bandedge_Gamma.dat''​ and ''​\Quantum\wf_probabilities_shift_cbr_Gamma_0000.dat'',​ respectively.
  
 <figure resonant>​ <figure resonant>​
-{{:​nnp::​transmission_1ddoublebarrier_resonant.png?​direct&​600}} +{{:​nnp::​transmission_1ddoublebarrier_resonant.png}} 
-<​caption>​Probability distribution $|\psi(x)|^2$ of the resonant modes.</​caption>​+<​caption>​Probability distribution $|\psi(x)|^2$ of the two resonant modes.</​caption>​
 </​figure>​ </​figure>​
  
-In the transmission spectrum, one can clearly see the 100% transmission at the energies of the resonant states in the quantum well. Please note that the vertical axis is logarithmic scale. ​+In the transmission spectrum, one can clearly see the sharp transmission at the energies of the resonant states in the quantum well. Please note that the vertical axis is logarithmic scale. ​
 <figure double_barrier>​ <figure double_barrier>​
-{{:​nnp::​transmission_1ddoublebarrier.png?​direct&​600}}+{{:​nnp::​transmission_1ddoublebarrier.png}}
 <​caption>​Transmission coefficient of the double barrier structure. The spectrum has two sharp peaks below the barrier height 3.084 eV, which corresponds to the resonant mode within the barriers.</​caption>​ <​caption>​Transmission coefficient of the double barrier structure. The spectrum has two sharp peaks below the barrier height 3.084 eV, which corresponds to the resonant mode within the barriers.</​caption>​
 </​figure>​ </​figure>​
  
-A [[https://​www.nextnano.de/​nextnano3/​tutorial/​1Dtutorial_RTD_green.htm|resonant tunneling diode (RTD)]] is an example of a device that exploits this particular feature ​of transmission coefficient $T(E)$.+A [[https://​www.nextnano.de/​nextnano3/​tutorial/​1Dtutorial_RTD_green.htm|resonant tunneling diode (RTD)]] is an example of a device that exploits this $\delta$-function-like behaviour ​of transmission coefficient $T(E)$.