User Tools

Site Tools


nnp:cbr_1d_potential

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:cbr_1d_potential [2019/10/21 15:26]
takuma.sato [CBR efficiency assessment]
nnp:cbr_1d_potential [2024/01/03 16:50]
stefan.birner removed
Line 1: Line 1:
 ===== 1D Transmission (CBR) ===== ===== 1D Transmission (CBR) =====
 +Author: Takuma Sato, nextnano GmbH
 +
 In this tutorial we calculate the transmission coefficient $T(E)$ as a function of energy $E$. We consider the following pedagogical examples we learn in undergraduate quantum mechanics courses. In this tutorial we calculate the transmission coefficient $T(E)$ as a function of energy $E$. We consider the following pedagogical examples we learn in undergraduate quantum mechanics courses.
   * Single potential barrier   * Single potential barrier
Line 18: Line 20:
   * Transmission_CBRpaper_1Ddoublebarrier_nnp.in   * Transmission_CBRpaper_1Ddoublebarrier_nnp.in
 ==== Single Potential Barrier ==== ==== Single Potential Barrier ====
-We first consider transmission through a finite quantum barrier. 10 nm Al<​sub>​0.3</​sub>​Ga<​sub>​0.7</​sub>​As ​barrier is located in a 50 nm GaAs sample. ​For this compound ​the top of the barrier is at $E_{\mathrm{barrier}}=3.243$ eV.+We first consider transmission through a finite quantum barrier. 10 nm barrier is located in a 50 nm sample. ​After running ​the input file, we obtain ​the following bandedge profile. The barrier ​height ​is set to $E_{\mathrm{barrier}}=0.3$ eV.
    
-<​figure ​single barrier gamma+<​figure ​single_barrier_gamma
-{{:​nnp::​transmission_1dsinglebarrier_gamma.png?​direct&​600}} +{{:​nnp::​transmission_1dsinglebarrier_gamma.png}} 
-<​caption>​The conduction bandedge profile.</​caption>​+<​caption>​The conduction bandedge profile ​(''​bandedge_Gamma.dat''​).</​caption>​
 </​figure>​ </​figure>​
  
 With nextnano++, one can calculate the transmission spectrum using the CBR method (cf. [[https://​www.nextnano.com/​nextnanoplus/​software_documentation/​input_file/​cbr.htm|here]] for details). The sample input file is generalised so that you can change the barrier width and alloy content (which determines the barrier height). ​ With nextnano++, one can calculate the transmission spectrum using the CBR method (cf. [[https://​www.nextnano.com/​nextnanoplus/​software_documentation/​input_file/​cbr.htm|here]] for details). The sample input file is generalised so that you can change the barrier width and alloy content (which determines the barrier height). ​
  
-Here we look into the barrier width dependence. In nextnanomat,​ go to **'​Template'​** tab and select the input file. Then in the bottom you can select how to sweep the value ''​List of values''​ and variable ''​Barrier_Width''​. The list of values shows up automatically,​ as it is specified in the input file with the tag ''​ListOfValues''​. Clicking the button ''​Create input files''​ generates multiple input files by sweeping variables. Please go to **'​Simulation'​** tab and start the simulation.+Here we look into the barrier width dependence. In nextnanomat,​ go to **'​Template'​** tab and select the input file. Then at the bottom you can select how to sweep the value (here ''​List of values''​and variable ''​Barrier_Width''​. The list of values shows up automatically,​ as it is specified in the input file with the tag ''​ListOfValues''​. Clicking the button ''​Create input files''​ generates multiple input files by sweeping variables. Please go to **'​Simulation'​** tab and run the simulation.
  
 {{:​nnp::​transmission_1dsinglebarrier_nnm.png}} {{:​nnp::​transmission_1dsinglebarrier_nnm.png}}
  
-The result is written in ''​~\bias_000_000\transmission_cbr_Gamma1.dat''​. The barrier width $w$ affects the transmission coefficient as shown in Figure {{ref>​single_barrier}}.+The result is written in ''​transmission_cbr_Gamma1.dat''​. The barrier width $w$ affects the transmission coefficient as shown in Figure {{ref>​single_barrier}}.
    
 <figure single_barrier>​ <figure single_barrier>​
-{{:​nnp::​transmission_1dsinglebarrier.png?​direct&​600}}+{{:​nnp::​transmission_1dsinglebarrier.png}}
 <​caption>​Transmission coefficient as a function of energy for different barrier width $w$ [nm]. The dashed line marks $E_{\mathrm{barrier}}$.</​caption>​ <​caption>​Transmission coefficient as a function of energy for different barrier width $w$ [nm]. The dashed line marks $E_{\mathrm{barrier}}$.</​caption>​
 </​figure>​ </​figure>​
Line 43: Line 45:
  
 <figure step_gamma>​ <figure step_gamma>​
-{{:​nnp::​transmission_1dstep_gamma.png?​direct&​600}}+{{:​nnp::​transmission_1dstep_gamma.png}}
 </​figure>​ </​figure>​
  
 <figure step> <figure step>
-{{:​nnp::​transmission_1dstep.png?​direct&​600}}+{{:​nnp::​transmission_1dstep.png}} 
 +<​caption>​Transmission spectrum for a step potential. Transmission is only allowed above the step.</​caption>​
 </​figure>​ </​figure>​
 ==== Quantum Well ==== ==== Quantum Well ====
-Similarly a quantum well structure can be simulated.+Similarly a quantum well structure can be simulated. The well width is w=10nm here.
  
 <figure well gamma> <figure well gamma>
-{{:​nnp::​transmission_1dwell_gamma.png?​direct&​600}}+{{:​nnp::​transmission_1dwell_gamma.png}}
 </​figure>​ </​figure>​
  
-Again the transmission of electron ​with energy lower than $E_{\mathrm{barrier}}$ ​is impossible because the barrier is infinitely thick.+Again the transmission of electron ​within the barriers ​is impossible because the barrier is infinitely thick. Above 0eV, the spectrum shows an oscillatory behaviour.
  
 <figure well> <figure well>
-{{:​nnp::​transmission_1dwell.png?​direct&​600}}+{{:​nnp::​transmission_1dwell.png}} 
 +<​caption>​Transmission spectrum for the quantum well structure. The dashed line marks the top of the barrier.</​caption>​
 </​figure>​ </​figure>​
 ==== Double Potential Barrier ==== ==== Double Potential Barrier ====
-Finally we consider a double barrier structure with wall width 10 nm. The distance between the barriers ​is 10 nm.+Finally we consider a double barrier structure with wall width 10 nm. The barrier interval ​is 10 nm.
 <figure double barrier gamma> <figure double barrier gamma>
-{{:​nnp::​transmission_1ddoublebarrier_gamma.png?​direct&​600}}+{{:​nnp::​transmission_1ddoublebarrier_gamma.png}}
 </​figure>​ </​figure>​
  
-This system has two resonant modes localized between the barriers. The bandstructure and wavefunctions are written in ''​~\bias_000_000\bandedge_Gamma.dat''​ and ''​~\Quantum\wf_probabilities_shift_cbr_Gamma_0000.dat'',​ respectively.+This system has two resonant modes localized between the barriers. The bandstructure and wavefunctions are written in ''​bandedge_Gamma.dat''​ and ''​\Quantum\wf_probabilities_shift_cbr_Gamma_0000.dat'',​ respectively.
  
 <figure resonant>​ <figure resonant>​
-{{:​nnp::​transmission_1ddoublebarrier_resonant.png?​direct&​600}} +{{:​nnp::​transmission_1ddoublebarrier_resonant.png}} 
-<​caption>​Probability distribution $|\psi(x)|^2$ of the resonant modes.</​caption>​+<​caption>​Probability distribution $|\psi(x)|^2$ of the two resonant modes.</​caption>​
 </​figure>​ </​figure>​
  
-In the transmission spectrum, one can clearly see the 100% transmission at the energies of the resonant states in the quantum well. Please note that the vertical axis is logarithmic scale. ​+In the transmission spectrum, one can clearly see the sharp transmission at the energies of the resonant states in the quantum well. Please note that the vertical axis is logarithmic scale. ​
 <figure double_barrier>​ <figure double_barrier>​
-{{:​nnp::​transmission_1ddoublebarrier.png?​direct&​600}}+{{:​nnp::​transmission_1ddoublebarrier.png}}
 <​caption>​Transmission coefficient of the double barrier structure. The spectrum has two sharp peaks below the barrier height 3.084 eV, which corresponds to the resonant mode within the barriers.</​caption>​ <​caption>​Transmission coefficient of the double barrier structure. The spectrum has two sharp peaks below the barrier height 3.084 eV, which corresponds to the resonant mode within the barriers.</​caption>​
 </​figure>​ </​figure>​
  
-A [[https://​www.nextnano.de/​nextnano3/​tutorial/​1Dtutorial_RTD_green.htm|resonant tunneling diode (RTD)]] is an example of a device that exploits this particular feature ​of transmission coefficient $T(E)$.+A [[https://​www.nextnano.de/​nextnano3/​tutorial/​1Dtutorial_RTD_green.htm|resonant tunneling diode (RTD)]] is an example of a device that exploits this $\delta$-function-like behaviour ​of transmission coefficient $T(E)$.