User Tools

Site Tools


nnp:1d_gaas_solar_cells

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
nnp:1d_gaas_solar_cells [2020/04/20 16:20]
stefan.birner [How does a solar cell work? & How do we simulate it?]
nnp:1d_gaas_solar_cells [2024/01/03 16:42]
stefan.birner removed
Line 211: Line 211:
 The maximum efficiency of the present device increases to **22.3% for 100-sun concentration** according to nextnano³ simulation, mainly due to the increase in open circuit voltage (Figure {{ref>​efficiency}},​ blue). This means one cell operating under 100 suns can produce the same power output as 100 P<​sub>​sun</​sub>​*0.223/​(P<​sub>​sun</​sub>​*0.17)=131 cells under 1 sun. Optical concentration reduces the total cost of solar cells since concentrator materials are usually less expensive than the ones for solar cells [Sze]. The maximum efficiency of the present device increases to **22.3% for 100-sun concentration** according to nextnano³ simulation, mainly due to the increase in open circuit voltage (Figure {{ref>​efficiency}},​ blue). This means one cell operating under 100 suns can produce the same power output as 100 P<​sub>​sun</​sub>​*0.223/​(P<​sub>​sun</​sub>​*0.17)=131 cells under 1 sun. Optical concentration reduces the total cost of solar cells since concentrator materials are usually less expensive than the ones for solar cells [Sze].
  
-The ''​.log'​ file and the file ''​solar_cell_info.txt''​ contain ​addition ​properties of the solar cell.+The ''​.log'' file and the file ''​solar_cell_info.txt''​ contain ​additional ​properties of the solar cell.
  
 <​code>​ <​code>​
  Solar cell results  Solar cell results
  ​****************************************************************************************  ​****************************************************************************************
- ​short-circuit current: ​      ​I_sc ​   =     68820.099637 ​[A/​m^2] ​ (photo current: It increases with smaller band gap.) + ​short-circuit current: ​      ​I_sc ​   =       184.149021 ​[A/​m^2] ​ (photo current: It increases with smaller band gap.) 
- ​open-circuit voltage: ​       U_oc    =        -1.162500 ​[V]      (U_oc <= built-in potential ~ band gap) + ​open-circuit voltage: ​       U_oc    =        -1.012500 ​[V]      (U_oc <= built-in potential ~ band gap) 
- ​current at maximum power: ​   I_max   ​= ​    63140.976306 ​[A/m^2] + ​current at maximum power: ​   I_max   ​= ​      180.613633 ​[A/m^2] 
- ​voltage at maximum power: ​   U_max   ​= ​       -0.975000 ​[V] + ​voltage at maximum power: ​   U_max   ​= ​       -0.900000 ​[V] 
- ​maximum power output: ​       P_max   = U_max * I_max =    -61562.451898 ​[W/m^2] (condition for maximum power output: dP/dV = 0) + ​maximum power output: ​       P_max   = U_max * I_max =      -162.552270 ​[W/m^2] (condition for maximum power output: dP/dV = 0) 
- ​maximum extracted power: ​    ​P_solar = - P_max     ​=       61562.451898 ​[W/m^2] + ​maximum extracted power: ​    ​P_solar = - P_max       ​=       162.552270 ​[W/m^2] 
- ​incident power: ​             P_in    =                    ​300110.889288 ​[W/m^2] + ​incident power: ​             P_in    =                      1000.369631 ​[W/m^2] 
- ideal conversion efficiency: eta     = P_max / P_in =        ​20.513235 ​+ ideal conversion efficiency: eta     = P_max / P_in  =        ​16.249221 ​
- fill factor: ​                ​FF ​     =         0.769498+ fill factor: ​                ​FF ​     =         0.871824
  In practice, a good fill factor is around 0.8.  In practice, a good fill factor is around 0.8.
  All these results are approximations.  All these results are approximations.