
nextnano++ Documentation
Release 1.25.13

nextnano GmbH

Jul 01, 2025

GETTING STARTED

1 Overview 3

2 Models 5

3 Courses 43

4 Tutorials 45

5 Other Simulations 659

6 Material Database 661

7 Keywords 691

8 Input Syntax 1339

9 Simulation Output 1351

10 Command Line 1355

11 Maximizing Performance 1361

12 Release Notes 1363

13 FAQs 1373

14 Books 1381

15 Journal Papers 1383

16 Theses 1395

17 PDF Documentation 1397

i

ii

nextnano++ Documentation, Release 1.25.13

The nextnano++ tool is a Schrödinger-Poisson-current solver and simulates quantum wells, quantum wires, quan-
tum dots, . . .

Features of nextnano++ include:

• includes group IV materials (Si, Ge, SiGe) and all III-V materials, its ternaries and quaternaries;

• the nitrides are available in the zinc blende and wurtzite crystal structure

• flexible structures and geometries (1D, 2D and 3D)

• fully quantum mechanical electronic structure, based on the 8-band k · p model

• strain, piezo- and pyroelectric charges

• growth directions along [001], [011], [111], [211], . . . in short along any crystallographic direction

• equilibrium and non-equilibrium, calculation of current close to equilibrium (semi-classical)

• magnetic fields

This tool is documented in following sections:

GETTING STARTED 1

nextnano++ Documentation, Release 1.25.13

2 GETTING STARTED

CHAPTER

ONE

OVERVIEW

1.1 Running
The nextnano++ tool is a console application that is run from within nextnanomat. Alternatively, it can be executed
from the command line (Command Line). The input file specifies the device that shall be simulated.

1.2 Input file
The input file specifies all properties of the device, such as geometry, material composition, grid, contacts,. . .
Furthermore, it sets all parameters that are needed to define the program flow of nextnano++. The keywords that
can be used for this purpose are defined in the syntax (Input Syntax) of the input file.

1.3 Output
The nextnano++ tool exports its results to a directory and in a certain format that have to be specified in the section
(Simulation Output) of the input file.

1.4 Examples
The nextnano++ installation provides some example input files (Tutorials) (C:\Program Files\nextnano\
2020_12_09\Sample files\nextnano++ sample files) that can be run with nextnanomat, to get familiar
with the program.

1.5 Material database
All material properties that are needed for simulation are specified as material parameters in database files
(database{ }), which are provided with the nextnano++ installation. The database covers a large amount of
Zincblende-related . . . zb{} groups in database{ } (all III-V and diamond-type like Si, Ge, . . .), Wurtzite-related
. . .wz{} groups in database{ } (GaN, AlN, InN, . . .) materials, and their alloys.

3

nextnano++ Documentation, Release 1.25.13

4 Chapter 1. Overview

CHAPTER

TWO

MODELS

Some of models implemented in nextnano++.

2.1 Crystal coordinate systems
For zinc-blende materials there are three-digit Miller indices. The Miller indices define a plane. There exists a
vector that is perpendicular to this plane, e.g. in zinc blende blende materials, the [hkl] vector is always perpen-
dicular to the (hkl) plane. However, for wurtzite, this is not necessarily true. For instance, although the [0001]
vector is perpendicular to the (0001) plane, in general is does not hold that the vector that is perpendicular to the
(hkil) plane is defined by [hkil]. Note: For a 1D simulation, the heterostructure is always grown along the x axis.
For a 2D simulation, always the (x,y) plane is used.

Zinc blende

crystal_zb{
x_hkl = [1, 0, 0] # Specify (hkl) plane perpendicular to x axis
y_hkl = [0, 1, 0] # Specify (hkl) plane perpendicular to y axis

The x axis of the simulation coordinate system is perpendicular to this (hkl) plane of the crystal, here: (1 0 0). The
y axis of the simulation coordinate system is perpendicular to this (hkl) plane of the crystal, here: (0 1 0). The
Miller indices (here: (0 0 1)) for the z axis are determined automatically. For zinc blende it holds: The vector [hkl]
is perpendicular to the (hkl) plane.

Another example:

crystal_zb{
x_hkl = [3, 1, 1] #
y_hkl = [0, -1, 1] #

x axis of simulation coordinate system is perpendicular to (3 1 1) plane of crystal coordinate system, i.e. the x
axis is along [311] direction. y axis of simulation coordinate system is perpendicular to (0 -1 1) plane of crystal
coordinate system, i.e. the y axis is along [0-11] direction. The Miller indices (here: [2, -3, -3]) for the z axis are
determined automatically, i.e. (2 -3 -3) plane, i.e. the z axis is along [311] direction.

Wurtzite
Usually for wurtzite, the four-digit Miller-Bravais indices (h k i l) are used. We also use this notation but omit the
‘i’ because i = - h - k. The three integer values (Miller indices) that are given for x_hkl refer to a plane and not to
a direction. The x direction is then the one that is perpendicular to this plane.

This vector along the x axis has indices that are in general not identical to the Miller indices in wurtzite.

crystal_wz{ # e.g. hexagonal [0001] axis along x axis
x_hkl = [0, 0, 1] # Specify (hkil) plane perpendicular to x axis: (␣

→˓0, 0, 0, 1)
y_hkl = [1, 0, 0] # Specify (hkil) plane perpendicular to y axis: (␣

→˓1, 0, -1, 0)

5

nextnano++ Documentation, Release 1.25.13

This corresponds to the four-digit Miller-Bravais indices hkil = (0, 0, 0, 1) that define the (hkil)=(0001) plane.
Coincidently, the vector [0001] is pependicular to it. This corresponds to the four-digit Miller-Bravais indices hkil
= (1, 0, -1, 0) that define the (hkil)=(10-10) plane. The Miller-Bravais indices for the (hkil) plane perpendicular
to the z axis are determined automatically inside the code (here: (-1 2 -1 0)).

Another example:

crystal_wz{ # e.g. (10-10) plane is perpendicular to x axis
x_hkl = [1, 0, 0] # hkil = (1, 0, -1, 0)
y_hkl = [-1, 2, 0] # hkil = (-1, 2, -1, 0)

This corresponds to the four-digit Miller-Bravais indices hkil = (1, 0, -1, 0) that define the (hkil)=(10-10) plane. The
x axis of the simulation coordinate system is perpendicular to this plane. This corresponds to the four-digit Miller-
Bravais indices hkil = (-1, 2, -1, 0) that define the (hkil)=(-12-10) plane. The y axis of the simulation coordinate
system is perpendicular to this plane. The Miller-Bravais indices of the (hkil) plane perpendicular to the z axis are
determined automatically inside the code (here: (0001)). Coincidently, the vector [0001] is pependicular to it. In
this particular case, no rotation has to be applied to the crystal (rotation matrix = identity matrix).

crystal_wz{
...
rotation_c_a_ratio_use_substrate = yes # (default: yes)
rotation_c_a_ratio = 1.63299 # c/a ratio

In wurtzite, the c/a ratio of the two lattice constants ‘c’ and ‘a’ is important. The ideal one, 𝑐/𝑎 =
√︀
8/3 =

1.63299..., is not the one present in GaN, AlN or InN, i.e. in real materials. For the rotation of the crys-
tal coordinate system to the simulation coordinate system, a specific c/a ratio has to be assumed. By de-
fault, we use the one of the substrate material. If you want to use the ideal c/a ratio, you have to specify
rotation_c_a_ratio_use_substrate = no.

Additionally, one can specify a custom value for the c/a ratio. If no customized value is specified,
rotation_c_a_ratio = sqrt(8/3) (default). The actually used rotation matrix is written to the log file.

x_hkl = [., ., .]
y_hkl = [., ., .]
z_hkl = [., ., .]

Exactly two of these three axes have to be specified, the third one is calculated internally.

2.2 Introduction to strain calculation
Here we introduce the theoretical background of the strain and stress calculation in nextnano++. At first we will
describe the definition of a strain tensor 𝜀 and stress tensor 𝜎 and then describe the basis of strain tensor calculation
in nextnano++. A strain tensor is used to calculate the shifts and splittings of band-edge energies and piezoelectric
charges.

The detailed explanation for the syntax in strain{ } is here: strain{ }.

Table of contents

• Strain tensor 𝜀

• Stress tensor 𝜎

• Strain and stress calculation

– In general

– In nextnano++

6 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

2.2.1 Strain tensor 𝜀
The calculation of strain effects in nextnano++ is based on linear continuum elasticity theory, in which a crystal
can be described by a field of material points with coordinates x. A distortion of the crystal shifts any point to a
new position x′ = x′(x). A field of displacement vectors u is defined as the devision between the new position
and the original position:

u(x) := x′(x)− x

Figure 2.2.1.1: The field of displacement vector u at x. This is the vector along which the point that was at the
position x moved through the displacement.

A strain tensor 𝜀 is defined using this displacement vector:

𝜀𝑖𝑗 :=
1

2

[︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

]︂
; (𝑖, 𝑗 = 1, 2, 3)

Strain is dimensionless. The diagonal elements of this strain tensor 𝜀𝑖𝑖 represents the length changes per unit length
in 𝑥𝑖-direction as described in Figure 2.2.1.2.

Figure 2.2.1.2: Deformation of a dilatable string in an unstrained (top) and strained state (bottom). We can see the
diagonal element 𝜀𝑖𝑖 = 𝜕𝑢𝑖

𝜕𝑥𝑖
represents the length changes per unit length in 𝑥𝑖-direction.

The off-diagonal elements 𝜀𝑖𝑗(𝑖 ̸=𝑗) arise due to shear deformations of the crystal. Figure 2.2.1.3 shows the defor-
mation of an infinitesimal rectangle in 𝑥1𝑥2 plane. We can see 𝜕𝑢2

𝜕𝑥1
= 𝑢2(𝑥1+Δ𝑥1,𝑥2)−𝑢2(𝑥1,𝑥2)

Δ𝑥 = sin𝛼 ≃ 𝛼

and 𝜕𝑢1

𝜕𝑥2
= 𝑢1(𝑥1,𝑥2+Δ𝑥2)−𝑢1(𝑥1,𝑥2)

Δ𝑥2
= sin𝛽 ≃ 𝛽. In these angle changes, 𝛼−𝛽2 corresponds to a pure solid-body

rotation and 𝛼+𝛽
2 = 1

2

[︁
𝜕𝑢2

𝜕𝑥1
+ 𝜕𝑢1

𝜕𝑥2

]︁
= 𝜀12 measures the shear strain.

By definition strain tensor 𝜀 is symmetric (i.e. 𝜀𝑖𝑗 = 𝜀𝑗𝑖) so the number of components that must be specified is
actually 6. Voigt notation is the useful convention in which these 6 independent components are written in form
of a 6×1 matrix for short. This notation reads:

11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6

2.2. Introduction to strain calculation 7

nextnano++ Documentation, Release 1.25.13

Figure 2.2.1.3: Deformation of an infinitesimal rectangle in a strained state.

and ⎡⎢⎢⎢⎢⎢⎢⎣
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝜀11
𝜀22
𝜀33
2𝜀23
2𝜀13
2𝜀12

⎤⎥⎥⎥⎥⎥⎥⎦
2.2.2 Stress tensor 𝜎
A stress tensor component 𝜎𝑖𝑗 represents the force towards 𝑥𝑗-direction acting on infinitsimal area that is perpen-
dicular to 𝑥𝑖-direction. Its unit is the same with pressure ([Pa] = [N/m2]).

Figure 2.2.2.1: The components of stress tensor 𝜎.

In linear approximation, this stress tensor is related to the strain tensor 𝜀 by means of Hook’s law:

𝜎𝑖𝑗 =
∑︁
𝑘𝑙

𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙

where 𝐶𝑖𝑗𝑘𝑙 is the component of eleasticity stiffness tensor, which is the forth-order tensor comprising 34 = 81
components. It’s dimension is the same with stress tensor components and defined as [GPa] in nextnano++. In

8 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

Voigt notation, 𝐶 is the form of a 6×6 matrix by putting 𝐶𝑖𝑗𝑘𝑙 = 𝐶𝑚𝑛 (𝑖, 𝑗, 𝑘, 𝑙 = 1, 2, 3, 𝑚, 𝑛 = 1, ...6). Then
the Hook’s law reads ⎡⎢⎢⎢⎢⎢⎢⎣

𝜎1
𝜎2
𝜎3
𝜎4
𝜎5
𝜎6

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶13 𝐶14 𝐶15 𝐶16

𝐶21 𝐶22 𝐶23 𝐶24 𝐶25 𝐶26

𝐶31 𝐶32 𝐶33 𝐶34 𝐶35 𝐶36

𝐶41 𝐶42 𝐶43 𝐶44 𝐶45 𝐶46

𝐶51 𝐶52 𝐶53 𝐶54 𝐶55 𝐶56

𝐶61 𝐶62 𝐶63 𝐶64 𝐶65 𝐶66

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝜀1
𝜀2
𝜀3
𝜀4
𝜀5
𝜀6

⎤⎥⎥⎥⎥⎥⎥⎦
For many crystal structures with high symmetry, many of these coefficients are 0 and some are related to others.
The elasticity tensor of zincblende and wurtzite crystals are given by

𝐶𝑧𝑏 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

𝐶44

𝐶44

𝐶44

⎤⎥⎥⎥⎥⎥⎥⎦

𝐶𝑤𝑧 =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶13

𝐶12 𝐶11 𝐶13

𝐶13 𝐶13 𝐶33

𝐶44

𝐶44

𝐶66

⎤⎥⎥⎥⎥⎥⎥⎦
with 𝐶66 = 1

2 [𝐶11 − 𝐶22] in wurtzite.

These constants are defined in database_nnp.in. You can also overwrite these values in your input file.

• For zinc-blend materials, for example:

database{
binary_zb{

name = GaAs
valence = III_V

elastic_consts{
c11 = 122.1 # [GPa] elastic constants
c12 = 56.6 # 1 * 1011 dyn/cm2 = 10 GPa ->␣

→˓ 12.21 * 1011 dyn/cm2 = 122.1 GPa
c44 = 60.0 # The elastic constants are␣

→˓needed for the calculation of the strain in heterostructures.
}

}
}

• For wurtzite materials, for example:

database{
binary_zb{

name = GaN
valence = III_V

elastic_consts{
c11 = 390 # [GPa] elastic constants
c12 = 145 # 1 * 1011 dyn/cm2 = 10 GPa ->␣

→˓ 39.0 * 1011 dyn/cm2 = 390 GPa
c13 = 106 #

(continues on next page)

2.2. Introduction to strain calculation 9

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

c33 = 398 #
c44 = 105 # The elastic constants are␣

→˓needed for the calculation of the strain in heterostructures.
}

}
}

2.2.3 Strain and stress calculation
Next we will describe how the strain tensor 𝜀 and stress tensor 𝜎 are determined in general. Then the two types of
calculation implemented in nextnano++ are introduced briefly.

In general

The principle of conservation of linear momentum results in the following equations of stress tensor components
for 𝑖 = 1, 2, 3:

3∑︁
𝑗=1

𝜕𝜎𝑗𝑖
𝜕𝑥𝑗

+ 𝑓𝑖 = 0

where f is the body force such as gravity. When the boundary conditions are specified, the field of displacement
vector u, by which the stress tensor components 𝜎𝑖𝑗 are eventually written, is determined according to these si-
multaneous differential equations. Then the strain tensor 𝜀 and stress tensor 𝜎 are also determined from u.

ò Note

The principle of conservation of angular momentum, on the other hand, results in the symmetricity of stress
tensor: 𝜎𝑖𝑗 = 𝜎𝑗𝑖

The field of displacement vector which satisfies the above balance equations and boundary conditions also mini-
mizes the total potential energy𝑈+𝑉𝐸 where𝑈 is the elastic strain energy and 𝑉𝐸 is the potential energy associated
with the body force f . This is so called minimum total potential energy principle.

In the linear approximation regime, the elastic energy stored in the whole body is:

𝑈 =
1

2

∫︁
𝑉

𝐶𝑖𝑗𝑘𝑙𝜀𝑖𝑗𝜀𝑘𝑙 𝑑𝑉

When the body force f is assumed to be zero throughout the system, solving the above differential equations is
equivalent to find the strain tensor that minimizes this elastic energy 𝑈 .

In nextnano++

There are two kinds of calculation of strain, pseudomorphic_strain{ } and minimized_strain{ }, in
nextnano++. In both of implementations pseudomorphic layer is assumed as the boundary condition between
the substrate and the layer grown on this substrate. The substrate is assumed to be so thick that the in-plane lattice
constants of the layer is matched to that of substrate. Also, the body force f is assumed to be 0 throughout the
structure.

In this assumption, the analytic expressions for strain tensor that satisfies the aforementioned stress balance equa-
tions (i.e. that minimizes the elastic energy) can be found for 1D structures. This analytic solution is implemented
on pseudomorphic_strain{ }. This feature also works in 2D or 3D but the user must be sure that the model
makes sense from a physical point of view (i.e. the 2D/3D structure should consist of different layers along the
growth direction whereas the layers must be homogenous along the two perpendicular directions).

On the other hand, minimized_strain{ } calculates the strain tensor by minimizing the elastic energy mentioned
before. This can also be used for 1D simulations. In this case, the results will be equivalent to the analytical model
pseudomorphic_strain{ }.

10 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

The detailed explanation for the syntax in strain{ } is here: strain{ }. Please refer to [AndlauerPhD2009] for
more details about these topics.

Last update: nnnn/nn/nn

2.3 Piezoelectricity in wurtzite
The nextnano++ tool can simulate growth orientation dependence of the piezoelectric effect in heterostructures.
Following A.E. Romanov et al., Journal of Applied Physics 100, 023522 (2006), we consider InxGa1-xN and
AlxGa1-xN thin layers pseudomorphically grown on GaN substrates. The c-axis of the substrate GaN is inclined
by an angle 𝜃 with respect to the interface of the heterostructure.

The layer is assumed to be very thin compared to substrate so that the strain is approximately homogeneous in all
direction (pseudomorphic), and the ternary alloys mimic the orientation of crystallography direction. The layer
material deforms such that the lattice translation vector of each layer has a common projection onto the interface.

The strain in a crystal induces piezoelectric polarization, which contributes as an additional component to the total
charge density profile. The important consequence of their analysis is that the piezoelectric polarization normal to
the interface becomes zero at a nontrivial angle. The piezoelectric charge in a heterostructure in general results in
an additional offset between electron and hole spatial probability distribution, thereby reducing the overlap of their
wave functions in real space. The small overlap of electron and hole leads to an inefficient radiative recombination,
i.e. lower efficiency of optoelectronic devices. The work by Romanov et al. paved the way to device optimization
by the growth direction of the crystal.

An introduction for the strain calculation is described here: Introduction to strain calculation

Table of contents

• Specify crystal orientation

• Parameter sweep of the angle using Template: Sweep over the variable theta

• Strain

• Piezoelectric effect (first-order)

• Post-Processing for polarization

• Alloy content dependence

• AlGaN

• Piezoelectric effect (second-order)

References
• A.E. Romanov, T.J. Baker, S. Nakamura, and J.S. Speck, Journal of Applied Physics 100, 023522

(2006)

• S. Schulz and O. Marquardt, Phys. Rev. Appl. 3, 064020 (2015)

• S.K. Patra and S. Schulz, Phys. Rev. B 96, 155307 (2017)

The corresponding input files are located in the nextnano++ sample files folder:

• Romanov_InGaN_theta_nnp.in

• Romanov_AlGaN_theta_nnp.in

• Romanov_InGaN_theta_nnp_2nd.in

• Romanov_InGaN_theta_nn3.in

2.3. Piezoelectricity in wurtzite 11

nextnano++ Documentation, Release 1.25.13

• Romanov_InGaN_theta_nn3_2nd.in

2.3.1 Specify crystal orientation

Figure 2.3.1.1: Rotation of a wurtzite structure. The blue plane is parallel to the interface.

The nextnano software treats the rotation of crystal orientation by the Miller-Bravais indices in the input file. The
setup of our system is as follows: the x-axis of the simulation coordinate system (hereafter x’-axis) is taken to the
normal vector of the interface. The z-axis of the simulation system (z’) is normal to the (-1 2 -1 0) plane of the
crystal, i.e. it is along a2 direction in Figure 2.3.1.1. The rotation axis indicated with red line is along z’-axis, and
the interface is shown as the blue plane. The inclination angle 𝜃 is defined as the angle between the c-axis [0001]
and the normal vector of the blue plane, which is x’-axis.

Then the crystal orientation is specified in nextnano++ input file as

crystal_wz{
x_hkl = [1, 0, l(theta)] # x axis perpendicular to (hkl) plane = (hkil) plane
z_hkl = [-1, 2, 0] # z axis perpendicular to (hkl) plane = (hkil) plane

}

where 𝑙(𝜃) is an integer determined by the inclination angle. This statement means the x’-axis is normal to the (1
0 -1 𝑙(𝜃)) plane of the crystal, whereas z’-axis is normal to the (-1 2 -1 0) plane. (Note that nextnano++ does not
require the third entry, i.e. the letter i, in Miller-Bravais notation (hkil) because i=-(h+k).)

The index 𝑙(𝜃) is deduced from a simple geometry consideration. Figure 2.3.1.2 shows the cross-section of a
wurtzite lattice that is perpendicular to the rotation axis in Figure 2.3.1.1.

• When 𝜃 = 0, the interface is normal to the (0001) plane, i.e. x’-axis is normal to the (0001) plane.

• When 𝜃 = 90 degree, the x’-axis should be normal to the (1 0 -1 0) plane of the crystal.

• When 0 < 𝜃 < 90 degree, definition of the index is 𝑙(𝜃) := 𝑐
𝑑 and the following relation holds

𝑑 =

√
3

2
𝑎 tan 𝜃.

From these equations we find

𝑙(𝜃) =
2𝑐√

3𝑎 tan 𝜃
.

12 Chapter 2. Models

https://www.nextnano.com/products/overview.php

nextnano++ Documentation, Release 1.25.13

Figure 2.3.1.2: Cross-section of the wurtzite lattice. The dashed blue line indicates the x’-direction, which is
normal to the interface (solid blue line).

The plane to be determined can be then taken as

(ℎ𝑘𝑖𝑙) = (sin 𝜃 0 − sin 𝜃
2𝑐√
3𝑎

cos 𝜃)

We note that the expression in the third case includes the other two special cases. To approximate the direction
with integer entries, we multiply 100 and take the floor function:

$gamma = $c_InGaN / $a_InGaN # c/a ratio
ideal c/a ratio in wurtzite is SQRT(8/3)=1.63299
$h = floor(100*sin(theta))
$l = floor(100*2*gamma*cos(theta)/sqrt(3))
x_hkl = [$h, 0, $l] # x axis perpendicular to (hkl) plane = (hkil) plane

2.3.2 Parameter sweep of the angle using Template: Sweep over the variable
theta

• Input file: Romanov_InGaN_theta_nnp.in

One can make use of ‘Template’ feature of nextnanomat to sweep the angle 𝜃 and obtain crystal orientation de-
pendence of several physical quantities. Here, calculation is performed for every 5 degrees.

We obtain the angle dependence using ‘post-processing’ feature. Here, we collect the strain tensor components
𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧 , 𝜀𝑥𝑦 , 𝜀𝑥𝑧 and 𝜀𝑦𝑧 that are in columns 2, 3, 4, 5, 6, 7 of the file strain_simulation.dat.

• Select file containing values for the strain tensor components strain_simulation.dat by clicking on the
folder icon below post-processing.

2.3. Piezoelectricity in wurtzite 13

nextnano++ Documentation, Release 1.25.13

• Select 1 for the Maximum number of values lines.

• Select 2 for the Number of relevant column. (to do: Improve nextnanomat to include all columns.)

• Click on Create file with combined data to generate file theta_strain_simulation_Column2.dat.

• Select 3 for the Number of relevant column.

• Click on Create file with combined data to generate file theta_strain_simulation_Column3.dat.

• Select 4 for the Number of relevant column.

• Click on Create file with combined data to generate file theta_strain_simulation_Column4.dat.

• Select 5 for the Number of relevant column.

• Click on Create file with combined data to generate file theta_strain_simulation_Column5.dat.

• Select 6 for the Number of relevant column.

• Click on Create file with combined data to generate file theta_strain_simulation_Column6.dat.

• The post-processing results are contained in the folder <name_of_input_file>_postprocessing.

• Finally, the plotted results of the post-processing file can be exported to gnuplot. Add all columns to the
Overlay, and then click on: Create and Open Gnuplot (*.plt) from Items of Overlay

2.3.3 Strain
Figure 2.3.3.1 and Figure 2.3.3.2 are the strain tensor elements as a function of inclination angle 𝜃, with respect
to simulation and crystal coordinate systems, respectively. One can confirm that they reproduce correctly Figure
5 and 6 in [Romanov2006]. Please note that Romanov takes z’-axis as growth direction, while we take x’-axis.
Therefore x’- and z’-axes are interchanged from [Romanov2006].

Figure 2.3.3.1: Elastic strain tensor components as a function of c-axis inclination angle 𝜃 in simulation coordinate
system.

2.3.4 Piezoelectric effect (first-order)
The piezoelectric effect is at first instance described by a linear response against strain. In crystal coordinate system,

𝑃 (1)
𝜇 =

6∑︁
𝑗=1

𝑒𝜇𝑗𝜖𝑗 ,

14 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

Figure 2.3.3.2: Elastic strain tensor components as a function of c-axis inclination angle 𝜃 in crystal coordinate
system.

where 𝜇 = 1, 2, 3 and the strain tensor is expressed in six-dimensional Voigt notation⎛⎜⎜⎜⎜⎜⎜⎝
𝜖1
𝜖2
𝜖3
𝜖4
𝜖5
𝜖6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
2𝜖𝑦𝑧
2𝜖𝑥𝑧
2𝜖𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎠ .

Please note that the indices 𝑥, 𝑦, 𝑧 without prime refer to the axes of the crystal coordinate system. The superscript
(1) indicates first-order piezoeffect. For the symmetry of the wurtzite structure, only three parameters remain in
the piezoelectric coefficient tensor 𝑒𝑖𝑗

⎛⎜⎝𝑃
(1)
𝑥

𝑃
(1)
𝑦

𝑃
(1)
𝑧

⎞⎟⎠ =

⎛⎝ 0 0 0 0 𝑒15 0
0 0 0 𝑒15 0 0
𝑒31 𝑒31 𝑒33 0 0 0

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎝
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
2𝜖𝑦𝑧
2𝜖𝑥𝑧
2𝜖𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎝ 2𝑒15𝜖𝑥𝑧
2𝑒15𝜖𝑦𝑧

𝑒31(𝜖𝑥𝑥 + 𝜖𝑦𝑦) + 𝑒33𝜖𝑧𝑧

⎞⎠ ,

cf. Eq. (4) in [Schulz2015]. Note that Eq. (14) in [Romanov2006] misses the factor 2 for off-diagonal elements
of the strain tensor. These equations are implemented with corresponding material parameters in the database.
The following flags export the strain tensor components and piezoelectric polarization vector in crystal and simula-
tion coordinate systems (see nextnano++). The piezoelectric polarization vector with respect to the simulation co-
ordinate system can be found in the file Strain\piezoelectric_polarization_vector_simulation.dat.

strain{
output_strain_tensor{

crystal_system = yes
simulation_system = yes

}

output_polarization_vector{
crystal_system = yes
simulation_system = yes

}

(continues on next page)

2.3. Piezoelectricity in wurtzite 15

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

output_polarization_vector_components{
crystal_system = yes
simulation_system = yes

}
}

For consistency, we have used the same material parameters as [Romanov2006], i.e. we have overwritten our
default material parameters of the database with the values specified in the input file.

Analytical expression is derived as follows [Schulz2015]. Since we are interested in the polarization normal to the
interface, it is useful to switch to the simulation coordinate system (𝑥′, 𝑦′, 𝑧′). This can be done by transforming
the polarization vector and the strain tensor to the simulation system,

𝑃
(1)
𝜇′ =

(︁
𝑅𝑃 (1)

)︁
𝜇′

=

3∑︁
𝜇=1

𝑅𝜇′𝜇𝑃
(1)
𝜇 , 𝜖𝜇′𝜈′ =

(︀
𝑅𝜖𝑅−1

)︀
𝜇′𝜈′ =

3∑︁
𝜇,𝜈=1

𝑅𝜇′𝜇𝑅𝜈′𝜈𝜖𝜇𝜈 ,

where the 3× 3 rotation matrix 𝑅 accounts for a rotation of angle 𝜃
and we have used the fact that the rotation matrix is orthogonal: (𝑅−1)𝜇𝜈 = 𝑅𝜈𝜇. Prime denotes the axes
in simulation coordinate system. These equations can be expressed in vector form as

⎛⎜⎝𝑃
(1)
𝑥

𝑃
(1)
𝑦

𝑃
(1)
𝑧

⎞⎟⎠ = 𝑅−1(𝜃)

⎛⎜⎝𝑃
(1)
𝑥′

𝑃
(1)
𝑦′

𝑃
(1)
𝑧′

⎞⎟⎠ ,

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖𝑥𝑥
𝜖𝑦𝑦
𝜖𝑧𝑧
2𝜖𝑦𝑧
2𝜖𝑥𝑧
2𝜖𝑥𝑦

⎞⎟⎟⎟⎟⎟⎟⎠ = 𝑆−1(𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖𝑥′𝑥′

𝜖𝑦′𝑦′

𝜖𝑧′𝑧′

2𝜖𝑦′𝑧′

2𝜖𝑥′𝑧′

2𝜖𝑥′𝑦′

⎞⎟⎟⎟⎟⎟⎟⎠
where 𝑆(𝜃) is a 6× 6 matrix. The second transformation is given in Eq. (13) in [Romanov2006]. From equations
above, we obtain the first-order piezoelectric effect in the simulation coordinate system

⎛⎜⎝𝑃
(1)
𝑥′

𝑃
(1)
𝑦′

𝑃
(1)
𝑧′

⎞⎟⎠ = 𝑅(𝜃)

⎛⎝ 0 0 0 0 𝑒15 0
0 0 0 𝑒15 0 0
𝑒31 𝑒31 𝑒33 0 0 0

⎞⎠𝑆−1(𝜃)

⎛⎜⎜⎜⎜⎜⎜⎝
𝜖𝑥′𝑥′

𝜖𝑦′𝑦′

𝜖𝑧′𝑧′

2𝜖𝑦′𝑧′

2𝜖𝑥′𝑧′

2𝜖𝑥′𝑦′

⎞⎟⎟⎟⎟⎟⎟⎠ .

The z’-component is explicitly

𝑃
(1)
𝑧′ =𝑒31 cos 𝜃𝜖𝑥′𝑥′

+

(︂
𝑒31 cos

3 𝜃 +
𝑒33 − 2𝑒15

2
sin 𝜃 sin 2𝜃

)︂
𝜖𝑦′𝑦′

+

(︂
𝑒31 + 2𝑒15

2
sin 𝜃 sin 2𝜃 + 𝑒33 cos

3 𝜃

)︂
𝜖𝑧′𝑧′

+ [(𝑒31 − 𝑒33) cos 𝜃 sin 2𝜃 + 2𝑒15 sin 𝜃 cos 2𝜃] 𝜖𝑦′𝑧′ .

Note that the corresponding analytical expression Eq. (18) in [Romanov2006] misses the factor 2 in front of
𝑒15 in the 2nd, 3rd and 4th line, and contains a typo in the 3rd line, i.e. 𝑒33 has to be 𝑒31 in the first term. Our
expression is consistent to eq. (5) in [Schulz2015]. Figure 2.3.4.1 compares the results of the nextnano software
with the results of [Romanov2006] and [Schulz2015], respectively. The analytical results in Figure 2.3.4.1 are the
plot of the equation above, with an interchange of x’- and z’-axes.

From the results in Figure 2.3.4.1 we can see that the piezoelectric polarization vanishes at an intermediate angle
around 38 degree and that it is maximized when the inclination angle is zero.

2.3.5 Post-Processing for polarization
We obtain the angle dependence using ‘post-processing’ feature. Here, we collect the polarization components
𝑃𝑥 that is in column 1 of the file polarization_vector_piezoelectric_simulation.dat.

16 Chapter 2. Models

https://www.nextnano.com/products/overview.php

nextnano++ Documentation, Release 1.25.13

Figure 2.3.4.1: Piezoelectric polarization as a function of inclination angle. The gray dotted curve contains a typo
𝑒33 ↔ 𝑒31 and misses the factor 2. When the first typo is fixed, the gray solid curve is obtained and looks to be
consistent with Figure 7(a) in [Romanov2006]. With the factor 2 the result becomes the black curve, consistent to
[Schulz2015].

• Select file containing values for the piezoelectric components polarization_vector_piezoelectric_simulation.
dat by clicking on the folder icon below post-processing.

• Select 2 for the Number of relevant column.

• Select 1 for the Maximum number of values lines.

• Click on Create file with combined data to generate file theta_polarization_vector_piezoelectric_simulation_Column2.
dat.

• The post-processing results are contained in the folder <name_of_input_file>_postprocessing.

• Finally, the plotted results of the post-processing file can be exported to gnuplot. Add all columns to the
Overlay, and then click on: Create and Open Gnuplot (*.plt) from Items of Overlay

2.3.6 Alloy content dependence
One can also sweep the alloy content 𝑥. The following results correspond to Figure 7(a) in [Romanov2006].
One can see that the zero point is universal for different alloy contents. The zero point is different compared to
[Romanov2006] as he misses the factor of 2 for the strain tensor component. As can be seen in Figure 2.3.4.1
shown above, this mistake is not relevant for 0 and 90 degrees.

2.3.7 AlGaN
• Input file: Romanov_AlGaN_theta_nnp.in

Similarly, piezoelectric polarization of AlxGa1-xN/GaN structure is calculated and shown in Figure 2.3.7.1. This
result corresponds to Figure 8(a) in [Romanov2006]. The piezoelectric effect vanishes at around 38 degree in this
case as well. Again, the zero point is different compared to [Romanov2006] as he misses the factor of 2 for the
strain tensor component. As can be seen in Figure 2.3.4.1 shown above, this mistake is not relevant for 0 and 90
degrees.

The sign of the piezoelectric polarization in Figure 2.3.7.1 is opposite to the case of InGaN/GaN composition
(Figure 2.3.6.1). This is due to the fact that the lattice constants of InN, GaN and AlN obey the following relation

𝑎InN > 𝑎GaN > 𝑎AlN

(also for 𝑐). Since we take GaN as a substitute, InxGa1-xN layer is subject to compressive strain, whereas AlxGa1-xN
is under tensile strain [Romanov2006].

2.3. Piezoelectricity in wurtzite 17

nextnano++ Documentation, Release 1.25.13

Figure 2.3.6.1: Alloy content dependence of the piezoelectric polarization for InxGa1-xN/GaN structure. InxGa1-xN
is under biaxial compressive strain with respect to GaN.

Figure 2.3.7.1: Alloy content dependence of the piezoelectric polarization for AlxGa1-xN/GaN structure.
AlxGa1-xN is under biaxial tensile strain with respect to GaN.

18 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

2.3.8 Piezoelectric effect (second-order)
• Input file: Romanov_InGaN_theta_nnp_2nd.in

Optimization of optoelectronic device design requires an accurate and detailed knowledge of the growth-direction
dependence of the built-in electric field. Recently, the second order piezoelectric effect has been reported to be
relevant for wurtzite III-N materials, namely GaN, AlN and InN. This potentially affects the electronic and optical
properties of the devices. The piezoelectric polarization is generalized in crystal coordinate as [Patra2017]

𝑃 pz
𝜇 =

6∑︁
𝑗=1

𝑒𝜇𝑗𝜖𝑗 +
1

2

6∑︁
𝑗,𝑘=1

𝐵𝜇𝑗𝑘𝜖𝑗𝜖𝑘 + · · · ,

where 𝑒𝜇𝑗 and 𝐵𝜇𝑗𝑘 are first- and second-order piezoelectric coefficients, respectively. For binary wurtzite struc-
ture, one can show that𝐵𝜇𝑗𝑘 has 8 independent components𝐵311, 𝐵312, 𝐵313, 𝐵333, 𝐵115, 𝐵125, 𝐵135, 𝐵344. The
explicit expression of the second-order term is given in Eq. (3) in [Patra2017].

One can turn on the second-order contribution in nextnano++ as

nextnano++
strain{

...
second_order_piezo = yes # default: no

}

Figure 2.3.8.1 shows the results of the nextnano software. While the second-order contribution becomes negligible
between the orientation (101̄3) and (101̄2), and also between 85 and 95 degrees, it enhances the piezo effect up to
14% in other directions. This figure can be qualitatively compared to Figure 1(c) in [Patra2017], but note that they
consider binary InN/GaN structure there while we are using In0.2Ga0.8N/GaN. The pink curve is different from the
one in Figure 2.3.4.1 because we employed the material parameters used in [Patra2017].

Figure 2.3.8.1: Second-order piezoelectricity. The second-order term enhances the piezoelectric polarization.
The nextnano3 result (yellow) is consistent to the nextnano++ result (blue). Interface planes are indicated at
corresponding angles.

Last update: nnnn/nn/nn

2.3. Piezoelectricity in wurtzite 19

https://www.nextnano.com/products/overview.php

nextnano++ Documentation, Release 1.25.13

2.4 Electrostatic potential

2.4.1 Poisson Equation
This equation governs the relation between the electrostatic potential 𝜑(x) and total charge density distribution
𝜌(x, 𝜑) as follows:

−∇ · [𝜀0𝜀𝑟(x)∇ · 𝜑(x)] = 𝜌(x, 𝜑) (2.4.1.1)

where 𝜀0 is the vacuum permittivity, 𝜀𝑟 is the material dependent static dielectric constant. And the total charge
density distribution consists of the densities of ionized donors 𝑁+

𝐷 , ionized acceptors 𝑁−
𝐷 , piezoelectric and

pyroelectric charge 𝜌𝑝𝑧 and 𝜌𝑝𝑦 , besides the carrier densities 𝑛(x, 𝜑) and 𝑝(x, 𝜑), which are calculated either
classically or quantum mechanically:

𝜌(x, 𝜑) = 𝑒[−𝑛(x, 𝜑) + 𝑝(x, 𝜑) +𝑁+
𝐷 (𝑥)−𝑁−

𝐴 (x) + 𝜌pz(x) + 𝜌py(x)] (2.4.1.2)

When the Schrödinger-Poisson equation is solved, i.e. quantum_poisson{ } is specified in run{ } section, the
carrier densities defined in either multi-band model or single-band model are substituted into this 𝜌(x, 𝜑) and the
Poisson equation is solved accordingly. Then the resulting 𝜑(x) is returned into the Schrödinger equation and the
carrier densities are calculated once again.

This cycle is continued until the carrier densities satisfies the convergence criteria, which can be tuned by the users
from run{ poisson{ } }. The final result of 𝑛(x, 𝜑), 𝑝(x, 𝜑) and 𝜑(x) must satisfy both Schrödinger and Poisson
equations, or we can say that the Schrödinger equation and Poisson equation are self-consistent with respect
to the resulting carrier densities and electrostatic potential.
On the other hand, when only the Poisson equation is solved, i.e. only poisson{ } is specified run{ } section,
the carrier densities are calculated according to (2.5.1.1) and (2.5.1.2) instead. We can say in other words that
the carrier density calculation in the context of Thomas-Fermi approximation and the Poisson equation are
self-consistent with respect to the resulting carrier densities and electrostatic potential.

Last update: 04/12/2024

2.5 Charge densities

2.5.1 Classical
Things are much more simpler.

When any kind of Schrödinger equation is not solved, the charge carrier densities are estimated from the position-
dependent conduction and valence band edges𝐸𝑖c(x) and𝐸𝑖v(x), quasi-Fermi levels, and the electrostatic potential
𝜑(x) in the context of Thomas-Fermi approximation.

These classical charge carrier densities are calculated as

𝑛(x) =
∑︁
𝑖∈CB

𝑁 𝑖
c (𝑇) ℱ1/2

(︂
[−𝐸𝑖c(x) + 𝑒𝜑(x) + 𝐸F,𝑛(x)]/𝑘𝑇

)︂
(2.5.1.1)

𝑝(x) =
∑︁
𝑖∈VB

𝑁 𝑖
v(𝑇) ℱ1/2

(︂
[𝐸𝑖v(x)− 𝑒𝜑(x)− 𝐸F,𝑝(x)]/𝑘𝑇

)︂
. (2.5.1.2)

Here 𝑁 𝑖
v(𝑇) and 𝑁 𝑖

v(𝑇) are the equivalent density of states at the conduction and valence band edges, which are
given by

𝑁 𝑖
𝑙 (𝑇) = 𝑔𝑖𝑙

(︂
𝑚𝑖

dos,𝜆𝑘𝑇

2𝜋ℏ

)︂2/3

(𝑙, 𝜆) = (v,h), or (c,e). (2.5.1.3)

Here 𝑚𝑖
dos,𝜆 is the density-of-mass for 𝑑 = 3 defined in (2.5.2.10).

20 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

This calculation of carrier densities is much faster than the quantm mechanical calculation, but the quantum effect
such as energy quantization, carrier leackage into the barrier, etc. cannot be taken into account.

Also in this case, the carrier densities can be written as 𝑛(x, 𝜑) and 𝑝(x, 𝜑), which enters into the non-linear
Poisson equation introduced next.

Moreover, when the current equation is included in the calculation scheme, seeing the carrier densities as
𝑛(x, 𝜑, 𝐸F,𝑛) and 𝑝(x, 𝜑, 𝐸F,𝑝) makes it easy to understand what the self-consistent calculation is actually doing.

2.5.2 Quantum mechanical
Multi-band model (k · p model)

Once the 𝜇-th component envelope function of the 𝑗-th eigenstate of electron (𝑙 = c) or hole (𝑙 = v) in the 𝑖-th
band is obtained as (𝐹𝜇)

𝑖
𝑙,𝑗(x) from the multi-band Schrödinger equation, the probability distribution of this

𝑗-th eigenstate reads

𝑝𝑖𝑙,𝑗(x) =
∑︁
𝜇

⃒⃒⃒⃒
(𝐹𝜇)

𝑖
𝑙,𝑗(x)

⃒⃒⃒⃒2
. (2.5.2.1)

where we are assuming 3D structure so far.

Then the quantum mechanical carrier densities for 3D structure are defined from these probability densities,
energy eigenvalues 𝐸c,𝑗 and 𝐸v,𝑗 , position-dependent quasi-Fermi levels 𝐸F,𝑛(x) and 𝐸F,𝑝(x) as

𝑛(x) =
∑︁
𝑖∈CB

𝑔𝑖c
∑︁
𝑗

𝑝𝑖c,𝑗(x) 𝑓

(︂
[𝐸𝑖c,𝑗 − 𝐸F,𝑛(x)]/𝑘𝑇

)︂
(2.5.2.2)

𝑝(x) =
∑︁
𝑖∈VB

𝑔𝑖v
∑︁
𝑗

𝑝𝑖v,𝑗(x) 𝑓

(︂
[−𝐸𝑖v,𝑗 + 𝐸F,𝑛(x)]/𝑘𝑇

)︂
(2.5.2.3)

where 𝑓(𝐸) is the Fermi-Dirac distribution at temperature 𝑇 , 𝑔𝑖c and 𝑔𝑖v represent the possible spin and valley
degeneracies.

When the simulation is over 1D structure, the wave function can be separated into the plane wave specified with
the lattice wave vector k‖ in the lateral 2D direction and the quantized wave function in the growth direction, which
has the k‖-dependency. Then the charge carrier densitiy is obtained by the following integral over k‖:

𝑛(𝑥) =
∑︁
𝑖∈CB

𝑔𝑖c
∑︁
𝑗

1

(2𝜋)2

∫︁
Ω𝐵𝑍

𝑑2k‖ 𝑝
𝑖
c,𝑗(𝑥,k‖) 𝑓

(︂
[𝐸𝑖c,𝑗(k‖)− 𝐸F,𝑛(𝑥)]/𝑘𝑇

)︂
(2.5.2.4)

𝑝(𝑥) =
∑︁
𝑖∈VB

𝑔𝑖v
∑︁
𝑗

1

(2𝜋)2

∫︁
Ω𝐵𝑍

𝑑2k‖ 𝑝
𝑖
v,𝑗(𝑥,k‖) 𝑓

(︂
[−𝐸𝑖v,𝑗(k‖) + 𝐸F,𝑛(𝑥)]/𝑘𝑇

)︂
(2.5.2.5)

Here the integration is over the two-dimensional Brillouin zone Ω𝐵𝑍 .

Similarly, the charge carrier densities for 2D structure is calculated by the integral over the 1-dimensional Brillouin
zone as

𝑛(x) =
∑︁
𝑖∈CB

𝑔𝑖c
∑︁
𝑗

1

2𝜋

∫︁
Ω𝐵𝑍

𝑑k 𝑝𝑖c,𝑗(x, k) 𝑓
(︂
[𝐸𝑖c,𝑗(𝑘)− 𝐸F,𝑛(x)]/𝑘𝑇

)︂
(2.5.2.6)

𝑝(x) =
∑︁
𝑖∈VB

𝑔𝑖v
∑︁
𝑗

1

2𝜋

∫︁
Ω𝐵𝑍

𝑑k 𝑝𝑖v,𝑗(x, k) 𝑓
(︂
[−𝐸𝑖v,𝑗(𝑘) + 𝐸F,𝑝(x)]/𝑘𝑇

)︂
(2.5.2.7)

Single-band model

Things are simpler.

When the single-band Schrödinger equation is set to be solved, the envelope function of the 𝑗-th eigenstate has
only one component 𝐹 𝑖𝑙,𝑗(x). Also, the k-integration in (2.5.2.4) to (2.5.2.7) can be done analytically due to the
parabolic dispersion according to the effective mass tensor 𝑚*𝑖

𝑒 and 𝑚*𝑖
ℎ .

2.5. Charge densities 21

nextnano++ Documentation, Release 1.25.13

Thanks to this simpicity the quantum mechanical charge carrier densities for 𝑑-dimensional simulation can be
written up by the following expression:

𝑛(x) =
∑︁
𝑖∈CB

𝑔𝑖c

(︂
𝑚dos,e𝑘𝑇

2𝜋ℏ2

)︂(3−𝑑)/2 ∑︁
𝑗

𝑝𝑖c,𝑗(x) ℱ(1−𝑑)/2

(︂
[𝐸𝑖c,𝑗 − 𝐸F,𝑛(x)]/𝑘𝑇

)︂
(2.5.2.8)

𝑝(x) =
∑︁
𝑖∈VB

𝑔𝑖v

(︂
𝑚dos,h𝑘𝑇

2𝜋ℏ2

)︂(3−𝑑)/2 ∑︁
𝑗

𝑝𝑖v,𝑗(x) ℱ(1−𝑑)/2

(︂
[−𝐸𝑖v,𝑗 + 𝐸F,𝑝(x)]/𝑘𝑇

)︂
(2.5.2.9)

TODO: The sign in the fermi-dirac integral might be opposite. check the source code.

Here ℱ𝑛(𝐸) denotes the Fermi-Dirac integral of order 𝑛 and 𝑚𝑖
dos,𝜆 is so-called density-of-states mass defined as

𝑚𝑖
dos,𝜆 =

(︀
det �̄�*𝑖

𝜆

)︀
𝜆 = e,h (2.5.2.10)

where �̄�*𝑖
𝜆 describes the 2× 2 or 1× 1 submatrix of the effective mass tensor 𝑚*𝑖

𝜆 in the direction of k‖.

In any cases, the carrier densities are dependent on the electrostatic potential 𝜑(x) through the wave function,
which is obtained from the 𝜑-dependent Hamiltonian 𝐻(𝜑). Thus we can also write them as 𝑛(x, 𝜑) and 𝑝(x, 𝜑),
which enters into the non-linear Poisson equation introduced later.

Moreover, when the current equation is included in the calculation scheme, seeing the carrier densities as
𝑛(x, 𝜑, 𝐸F,𝑛) and 𝑝(x, 𝜑, 𝐸F,𝑝) makes it easy to understand what the self-consistent calculation is actually doing.

Last update: 04/12/2024

2.6 Doping

2.6.1 Activation Energies

Table 2.6.1.1: Donor levels (n-type) in units of 𝑒𝑉 relative to conduction
band edge

Donor Name En-
ergy

Source

n-As-in-Si 0.054
n-As-in-Si 0.049 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
n-P-in-Si 0.045 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
n-Sb-in-Si 0.039
n-N-in-Si 0.045
n-As-in-Ge 0.013 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
n-P-in-Ge 0.012 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
n-N-in-SiC 0.10
n-Si-in-GaAs 0.0058
n-Si-in-AlAs 0.007 300 K, Landolt-Boernstein
n-Si-in-
Al0.27Ga0.73As

0.006 Landolt-Boernstein

More parameters can be found here

22 Chapter 2. Models

http://www.ioffe.ru/SVA/NSM/Semicond/

nextnano++ Documentation, Release 1.25.13

Table 2.6.1.2: Acceptor levels (p-type) in units of 𝑒𝑉 relative to valence
band edge

Acceptor
Name

En-
ergy

Source

p-In-in-Si 0.16
p-B-in-Si 0.045 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
p-Al-in-Si 0.057 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
p-B-in-Ge 0.010 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
p-Al-in-Ge 0.010 American Institute of Physics Handbook, 3rd ed., McGraw-Hill, New York

(1972)
p-Al-in-SiC 0.20
p-C-in-GaAs 0.027 Landolt-Boernstein 1982

More parameters can be found here

2.7 Incomplete ionization
The densities of ionized impurities are calculated in the context of Thomas-Fermi approximation with these for-
mulas:

𝑁+
D (x) =

∑︁
𝑖∈Donors

𝑁D,𝑖(x)

1 + 𝑔D,𝑖 exp((𝐸F,𝑛(x)− 𝐸D,𝑖(x))/𝑘B𝑇)
(2.7.1)

𝑁−
A (x) =

∑︁
𝑖∈Acceptors

𝑁A,𝑖(x)

1 + 𝑔A,𝑖 exp((𝐸A,𝑖(x)− 𝐸F,𝑝(x))/𝑘B𝑇)
(2.7.2)

where the summation is over all different donor or acceptors,𝑁D, 𝑁A are the doping concentrations, 𝑔D, 𝑔A are the
degeneracy factors (𝑔D = 2 and 𝑔A = 4 for shallow impurities), and 𝐸𝐷, 𝐸𝐴 are the energies of the neutral donor
and acceptor impurities, respectively.

These energies of neutral impurities 𝐸D,𝑖, 𝐸A,𝑖 are determined by the ionization energies 𝐸ion
D,𝑖, 𝐸

ion
A,𝑖 , the bulk

conduction and valence band edges (including shifts due to strain) and the electrostatic potential.

𝐸D,𝑖(x) = 𝐸c(x)− 𝑒𝜑(x)− 𝐸ion
D,𝑖(x) (2.7.3)

𝐸A,𝑖(x) = 𝐸v(x)− 𝑒𝜑(x) + 𝐸ion
A (x) (2.7.4)

Last update: 04/12/2024

2.8 Carrier transport

2.8.1 Drift-Diffusion Model
The continuity equations in the presence of generation 𝐺 recombination 𝑅 of electron-hole pairs read

−𝑒𝜕𝑛
𝜕𝑡

+∇ ·
(︀
− 𝑒j𝑛(x)

)︀
= −𝑒

(︀
𝐺(x)−𝑅(x)

)︀
,

𝑒
𝜕𝑝

𝜕𝑡
+∇ · 𝑒j𝑝(x) = 𝑒

(︀
𝐺(x)−𝑅(x)

)︀
,

(2.8.1.1)

2.7. Incomplete ionization 23

http://www.ioffe.ru/SVA/NSM/Semicond/

nextnano++ Documentation, Release 1.25.13

where the current is proportional to the gradient of quasi Fermi levels 𝐸F,𝑛/𝑝(x)

j𝑛(x) = −𝜇𝑛(x)𝑛(x)∇𝐸F,𝑛(x),

j𝑝(x) = 𝜇𝑝(x)𝑝(x)∇𝐸F,𝑝(x).
(2.8.1.2)

Here the charge current has the unit of (area)−1(time)−1. 𝜇𝑛/𝑝 are the mobilities of each carrier. In nextnano++,
𝜇𝑛/𝑝 are determined using the mobility model specified in the input file under currents{ }.

Hereafter we consider stationary solutions and set �̇� = �̇� = 0. The governing equations then reduce to

∇ · 𝜇𝑛(x)𝑛(x)∇𝐸F,𝑛(x) = −(𝐺(x)−𝑅(x)),

∇ · 𝜇𝑝(x)𝑝(x)∇𝐸F,𝑝(x) = 𝐺(x)−𝑅(x),
(2.8.1.3)

which we call current equation.

We can also say that the current equation governs the relationship between the carrier densities 𝑛(x), 𝑝(x) and
quasi Fermi levels 𝐸F,𝑛/𝑝(x).

The nextnano++ tool solves this equation and Poisson equation (and also Schrödinger equation) self-consistently.

In their solution, the corresponding calculation of the carrier densities
(︀
𝑛(x, 𝜑, 𝐸F,𝑛), 𝑝(x, 𝜑, 𝐸F,𝑝)

)︀
and Poisson

equation are firstly iterated for a given quasi-Fermi levels until the carreir densities converge. Then the resulting
carrier densities are substituted into the current equation and the quasi-Fermi levels are updated. This whole cycle
is iterated until the quasi-Fermi levels satisfies the convergence criteria, which can be tuned by the users from run{
current_poisson{ } } or run{ quantum_current_poisson{ } }.

Last update: 04/12/2024

2.9 Generation and recombination rates
The recombination mechanisms that nextnano++ takes into account for the right-hand-side of (2.8.1.1) are

• Shockley-Read-Hall (SRH) recombination

• Auger recombination

• Radiative recombination

• “fixed (applied)”

The equations and parameters used for the three recombination mechanisms on the top are explained here: recom-
bination_model{ }.

The last one “fixed (applied)” is the contribution defined from structure{region{generation{}}} and optics{ photo-
generation{ } }. These typically represent generation instead of recombination and used for the simulation of the
devices under irradiation such as solar cells or CCDs. (For example, see nextnano++ tutorial GaAs solar cell.)

According to the specification in the section classical{ }, nextnano++ can calculate optoelectronic characteristics
of the arbitrary structure by means of the so-called semi-classical model.

In this model, various quantities are calculated from the spontaneous emission rate, which is calculated at each
position x for the photons with each energy 𝐸 based on the energy-resolved carrier densities 𝑛(x, 𝐸) and 𝑝(x, 𝐸)
obtained in the forgoing simulation.

2.9.1 Spontaneous emission rate

𝑅𝑠𝑝𝑜𝑛rad (x, 𝐸) = 𝐶(x)

∫︁
𝑑𝐸h

∫︁
𝑑𝐸e 𝑛(x, 𝐸e)𝑝(x, 𝐸h)𝛿(𝐸e − 𝐸h − 𝐸). (2.9.1.1)

Here 𝐶(𝑥) [cm3s−1] is the (material-dependent) radiative recombination parameter which is proportional to the
one specified in the database (Radiative recombination)

Then the other optical characteristics like stimulated emission rate, absorption/gain spectrum, and the imaginary
part of the dielectric constant are calculated according to this 𝑅𝑠𝑝𝑜𝑛rad (x, 𝐸).

24 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

2.9.2 Generation by the irradiation (fixed(applied))
There is another radiative recombination rate output on recombination.dat called “fixed(applied)”, which should
be always negative. This is the contribution of the generation specified from structure{region{generation{}}} and
optics{ photogeneration{ } }. When we do not specify either of them, this recombination rate is always 0.

𝑅fixed(x) =−
(︀
𝐺(x) specified from structure

)︀
−
(︀ ∫︁

𝑑𝐸 𝐺(𝐸,x) calculated according to the configuration in classical
)︀
. (2.9.2.1)

This is mostly used for the analysis of the absorbing devices such as solar cells or CCDs.

Last update: 04/12/2024

2.10 Mobility
This section describes all mobility models implemented in the nextnano software. Related syntax can be found
here.

• Low-field mobility models

– Constant

– Masetti

– Arora

– MINIMOS 6

• High-Field Mobility Models

– Hänsch

– Extended Canali

– Transferred-Electron

– Eastman-Tiwari-Shur

ò Note

If you need more mobility models implemented in nextnano++, contact us

2.10.1 Low-field mobility models
Four low-field following mobility models are supported in nextnano++.

Constant

The constant mobility model is due to lattice scattering (phonon scattering) and leads to a constant mobility that
depends only on the temperature T. The lattice atoms oscillate about their equilibrium sites at finite temperature
leading to a scattering of carriers which results in a temperature dependent mobility 𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡. 𝜇𝑛,𝑝𝑚𝑎𝑥 is the mobil-
ity due to bulk phonon (lattice) scattering. For all semiconductors the temperature dependent lattice mobility is
modeled by a power law:

𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡(𝑇) = 𝜇𝑛,𝑝𝑚𝑎𝑥 ·
(︂
𝑇

𝑇0

)︂−𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡

, (2.10.1.1)

2.10. Mobility 25

https://www.nextnano.com/products/overview.php
https://nextnano.atlassian.net/servicedesk/customer/portals

nextnano++ Documentation, Release 1.25.13

with temperature 𝑇 and reference temperature 𝑇0 = 300𝐾.

The parameter values used in this model for electrons and holes, respectively, are taken from the PhD thesis of
V. Palankovski Simulation of Heterojunction Bipolar Transistors (TU Vienna). (Note: The exponent has opposite
sign in his PhD thesis.)

Masetti

The Masetti bulk mobility model is used to simulate the doping dependent mobility in Si and takes into account
the scattering of the carriers by charged impurity ions which leads to a degradation of the carrier mobility (ion-
ized impurity scattering). It is a model that combines lattice and impurity scattering. This model is temperature
independent and the parameters are given for 300 K. Thus it is only valid for 300 K.

Following [Masetti1983], the equation for mobility is :

𝜇𝑛,𝑝 = 𝜇𝑛,𝑝𝑚𝑖𝑛1 · 𝑒
− 𝑃

𝑛,𝑝
𝑐

𝑁𝐷+𝑁𝐴 +
𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡 − 𝜇𝑛,𝑝𝑚𝑖𝑛2

1 +
(︁
𝑁𝐷+𝑁𝐴

𝐶𝑛,𝑝
𝑟

)︁𝛼𝑛,𝑝 − 𝜇𝑛,𝑝1

1 +
(︁

𝐶𝑛,𝑝
𝑠

𝑁𝐷+𝑁𝐴

)︁𝛽𝑛,𝑝 (2.10.1.2)

with the reference mobility parameters 𝜇𝑛,𝑝𝑚𝑖𝑛1, 𝜇𝑛,𝑝𝑚𝑖𝑛2 and 𝜇𝑛,𝑝1 , the reference doping concentration parameters
𝑃𝑛,𝑝𝑐 , 𝐶𝑛,𝑝𝑟 , 𝐶𝑛,𝑝𝑠 , 𝛼𝑛,𝑝 and 𝛽𝑛,𝑝, and the concentration of ionized donors 𝑁𝐷 and acceptors 𝑁𝐴. The total con-
centration of ionized impurities is given by𝑁𝐷+𝑁𝐴. The low-doping reference mobility 𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡 is determined by
equation (2.10.1.1) (constant mobility-model), i.e. the values in the database under keyword mobility_constant{}
are the same as under this keyword.

Arora

The Arora mobility model is used to simulate the doping dependent mobility in Si and takes into account the
scattering of the carriers by charged impurity ions which leads to a degradation of the carrier mobility (ionized
impurity scattering). This model is temperature dependent.

Following [Arora1982], the equation for mobility is:

𝜇𝑛,𝑝 = 𝜇𝑛,𝑝𝑚𝑖𝑛 ·
(︂
𝑇

𝑇0

)︂𝛼𝑛,𝑝
𝑚

+
𝜇𝑛,𝑝𝑑 ·

(︁
𝑇
𝑇0

)︁𝛼𝑛,𝑝
𝑑

1 +

(︃
𝑁𝐷+𝑁𝐴

𝑁𝑛,𝑝
0 ·

(︁
𝑇
𝑇0

)︁𝛼
𝑛,𝑝
𝑁

)︃𝐴𝑛,𝑝
𝑎 ·

(︁
𝑇
𝑇0

)︁𝛼
𝑛,𝑝
𝑎

,
(2.10.1.3)

with the reference mobility parameter 𝜇𝑛,𝑝𝑚𝑖𝑛(𝑇0), reference mobility parameter 𝜇𝑛,𝑝𝑑 , lattice temperature 𝑇 , refer-
ence temperature 𝑇0 = 300𝐾, reference exponent parameter 𝐴𝑛,𝑝𝑎 , exponents 𝛼𝑛,𝑝𝑁 and 𝛼𝑛,𝑝𝑎 ,reference impurity
parameter 𝑁𝑛,𝑝

0 , and concentration of ionized donors 𝑁𝐷 and acceptors 𝑁𝐴. The total concentration of ionized
impurities is given by 𝑁𝐴 +𝑁𝐷.

MINIMOS 6

The mobility model used in MINIMOS 6 is used to simulate the doping dependent mobility in Si and takes into
account the scattering of the carriers by charged impurity ions which leads to a degradation of the carrier mobility
(ionized impurity scattering). This model is temperature dependent and takes into account the reduced mobility
due to lattice scattering (i.e. the values in the database under keyword mobility_constant{} are the same as under
this keyword apart from the sign of the exponent). The formula of Caughey and Thomas [CaugheyThomas1967] is
used together with temperature dependent coefficients. This model is well suited for Si. The equation for mobility
is:

𝜇𝑛,𝑝 = 𝜇𝑛,𝑝𝑚𝑖𝑛 +
𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡 − 𝜇𝑛,𝑝𝑚𝑖𝑛

1 +

(︃
𝑁𝐷+𝑁𝐴

𝑁𝑛,𝑝
0 ·

(︁
𝑇
𝑇0

)︁𝛼
𝑛,𝑝
𝑁

)︃𝐴𝑛,𝑝
𝑎 ·

(︁
𝑇
𝑇0

)︁𝛼
𝑛,𝑝
𝑎

,

(2.10.1.4)

with lattice temperature 𝑇 , reference temperature 𝑇0 = 300𝐾, reference exponent parameter 𝐴𝑛,𝑝𝑎 , exponents
𝛼𝑛,𝑝𝑁 and 𝛼𝑛,𝑝𝑎 , reference impurity parameter 𝑁𝑛,𝑝

0 , and concentration of ionized donors 𝑁𝐷 and acceptors 𝑁𝐴.

26 Chapter 2. Models

https://www.iue.tuwien.ac.at/phd/palankovski/
http://www.iue.tuwien.ac.at/software/

nextnano++ Documentation, Release 1.25.13

The total concentration of ionized impurities is given by 𝑁𝐷 + 𝑁𝐴. The 𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡 is determined by the constant
mobility-model: equation (2.10.1.1). The formulas for the reference mobility parameter 𝜇𝑛,𝑝𝑐𝑜𝑛𝑠𝑡 are

𝜇𝑛,𝑝𝑚𝑖𝑛(𝑇) = 𝜇𝑛,𝑝𝑚𝑖𝑛(𝑇0)

(︂
𝑇

𝑇0

)︂𝛼𝑛,𝑝
𝑚

(2.10.1.5)

𝜇𝑛,𝑝𝑚𝑖𝑛(𝑇) = 𝜇𝑛,𝑝𝑚𝑖𝑛(𝑇0) ·
(︂
2

3

)︂𝛼𝑛,𝑝
𝑚
(︂

𝑇

200𝐾

)︂𝛼𝑛,𝑝
𝑚2

, (2.10.1.6)

where (2.10.1.5) applies to temperatures 𝑇 ≥ 200𝐾 and (2.10.1.6) to temperatures 𝑇 < 200𝐾. The value
𝑇 = 200𝐾 can be changed by 𝑇𝑆𝑤𝑖𝑡𝑐ℎ. By setting 𝛼𝑛,𝑝𝑚 = 𝛼𝑛,𝑝𝑚2 and 𝛼𝑛,𝑝𝑎 = 0, (2.10.1.6) reduces to (2.10.1.5) and
this model can also be applied to other basic materials.

It is a model that combines lattice and impurity scattering.

The parameter values used in this model for electrons and holes, respectively, are taken from the PhD thesis of
V. Palankovski Simulation of Heterojunction Bipolar Transistors (TU Vienna). (Note: The exponent has opposite
sign in his PhD thesis.)

2.10.2 High-Field Mobility Models
Four high-field mobility models are currently implemented in nextnano++. In our implementation, each of them
uses results obtained from selected low-field model passed via 𝜇low.

Hänsch

As mentioned above, this model is a special case of the Extended Canali model in the limit of strong surface
scattering defined by W. Hänch and M. Miura-Mattausch

𝜇(𝐹) =
2𝜇low

1 +

(︂
1 +

(︁
2𝜇low𝐹

𝑣sat

)︁2)︂1/2

where 𝜇low is low-field mobility, 𝑣sat is saturation velocity, and 𝐹 is the driving force.

Extended Canali

The Extended Canali model is an extended version of Jacoboni-Canali model, originally applied to electron and
hole drift-velocity measurements in silicon by Canali, et al..

𝜇(𝐹) =
(𝛼+ 1)𝜇low

𝛼+

(︂
1 +

(︁
(𝛼+ 1)𝜇low𝐹

𝑣sat

)︁𝛽)︂1/𝛽

where 𝜇low is low-field mobility, 𝑣sat is saturation velocity, and 𝐹 is the driving force. Parameters 𝛼, 𝛽 and 𝑣sat
are defined independently for holes and electrons . The driving force 𝐹 of the respective carriers is evaluated as
the gradient of the respective quasi-Fermi level. The 𝛼 parameter should be set to zero, if one aims at using the
Extended Canali model. One can transform it into Hänch model by setting 𝛼 = 1 and 𝛽 = 2.

Transferred-Electron

The transferred electron model below bases on Monte Carlo simulation of transport in the III-nitride wurtzite
materials done by M. Farahmand, et al..

𝜇(𝐹) =
𝜇low + 𝑣sat

𝐹

(︁
𝐹
𝐸0

)︁𝛽
1 + 𝛾

(︁
𝐹
𝐸0

)︁𝛼
+
(︁
𝐹
𝐸0

)︁𝛽
2.10. Mobility 27

https://www.iue.tuwien.ac.at/phd/palankovski/

nextnano++ Documentation, Release 1.25.13

where 𝜇low is low-field mobility, 𝑣sat is saturation velocity, 𝐹 is the driving force, and𝐸0 is critical field. Parameters
𝛼, 𝛽, 𝛾 and 𝑣sat are defined independently for holes and electrons.

Eastman-Tiwari-Shur

A model based on a modified theory of the high-field domains which takes into account the field dependent diffusion
by L. F. Eastman, et al. for GaAs MESFETs. Where 𝐸𝑠 ≡ 𝑣𝑠𝑎𝑡

𝜇𝑙𝑜𝑤
after work of J. Chillieri, et al..

𝜇 (𝐹) =
𝜇low + 𝑣sat

𝐹 𝛼
(︁
𝜇low𝐹
𝑣sat

)︁𝛽
1 + 𝛼

(︁
𝜇low𝐹
𝑣sat

)︁𝛽
where 𝜇low is low-field mobility, 𝑣sat is saturation velocity, and 𝐹 is the driving force. Parameters 𝛼, 𝛽 and 𝑣sat are
defined independently for holes and electrons. The driving force 𝐹 of the respective carriers is evaluated as the
gradient of the respective quasi-Fermi level.

Parameters 𝛼 and 𝛽 can be replaced introducing four other parameters 𝐸peak, 𝐸mid, 𝑣peak, and 𝑣mid, all related to
the shape of the drift velocity function of the driving force. See J. Chillieri, et al. for reference.

𝛽 =
𝑙𝑜𝑔
(︁
𝐸mid𝜇low−𝑣mid
𝐸peak𝜇low−𝑣peak

· 𝑣peak−𝑣sat
𝑣mid−𝑣sat

)︁
𝑙𝑜𝑔
(︁
𝐸mid
𝐸peak

)︁
𝛼 =

𝐸peak𝜇low − 𝑣peak

𝑣peak − 𝑣sat

(︂
𝑣sat

𝐸peak𝜇low

)︂𝛽

Last update: nnnn/nn/nn

2.11 Hamiltonian: 8-band model for zincblende

• The Model

• Offsets

• Deformation potentials

• k.p parameters

– Default settings

– Luttinger parameters and electron effective mass

– Rescaling S

• Zeeman Term

2.11.1 The Model

� Hint

This model can be triggered for any point of the simulation using classical{ bulk_dispersion{KP8{}}}.
See the bulk_dispersion{ } section for reference on syntax.

28 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

Our implementation of the 8-band k · p model for bulk crystals is a simplified version of the matrix Hamiltonian
described in a PhD thesis [AndlauerPhD2009] obtained from the one-particle Hamiltonian

�̂� =
p̂2

2𝑚
+ 𝑉0 (r) +

ℏ
4𝑚2𝑐2

[�̂� ×∇𝑉0 (r)] ∘ p̂ (2.11.1.1)

The description below contains also definitions and relations that can be found in [BirnerPhD2011] and [Bahder-
PRB1990].

. Warning

The Hamiltonian below does not contain terms related to the presence of the magnetic field. Therefore, proper
operator ordering is neglected to keep formulas as simple as possible. Also, parameters 𝑁+, 𝑁−, 𝜅, and 𝑔
are not included here. Comprehensive documentation will be published elsewhere.

Our model is expressed in a basis of class 𝒜 functions:

{|𝑠 ↑⟩ , |𝑠 ↓⟩ , |𝑥1 ↑⟩ , |𝑥2 ↑⟩ , |𝑥3 ↑⟩ , |𝑥1 ↓⟩ , |𝑥2 ↓⟩ , |𝑥3 ↓⟩ }

The Hamiltonian can be concisely written in a block form as follows.

ℋ̂k·p =

⎡⎢⎢⎣
ℋ̂cc (k, 𝜖) 0 ℋ̂cv (k) 0

0 ℋ̂cc (k, 𝜖) 0 ℋ̂cv (k)

ℋ̂vc (k) 0 ℋ̂vv (k) + ℋ̂vv (𝜖) + ℋ̂so↑↑ ℋ̂so↑↓
0 ℋ̂vc (k) ℋ̂so↓↑ ℋ̂vv (k) + ℋ̂vv (𝜖) + ℋ̂so↓↓

⎤⎥⎥⎦
where k is a wave vector and 𝜖 is a strain tensor.

Diagonal elements for the conduction band are defined as

ℋ̂cc (k, 𝜖) = 𝐸c +𝐴𝑐𝑘
2 + 𝑎cTr{𝜖},

where 𝑘 is length of the wave vector, 𝐸c is conduction-band edge, 𝑎𝑐 is absolute hydrostatic deformation potential
for the conduction band, Tr{𝜖} is trace of the strain tensor, 𝐴c is defined as

𝐴c = 𝐴′ +
ℏ2

2𝑚0
.

𝐴′ is one of Kane parameters. It contains interactions between the conduction band and the remote bands ℬ with
Γ5 symmetry

𝐴′ =
ℏ2

𝑚2
0

ℬ∑︁
𝑛𝑗

|⟨𝑠| 𝑝1 |𝑛Γ5𝑗⟩|2

𝐸c − 𝐸𝑛,Γ5

.

Blocks introducing interaction between conduction and valence bands are given by

ℋ̂cv (k) =
[︀
𝚤𝑃0𝑘1 +𝐵𝑘2𝑘3 𝚤𝑃0𝑘2 +𝐵𝑘1𝑘3 𝚤𝑃0𝑘3 +𝐵𝑘1𝑘2

]︀
and

ℋ̂vc (k) =

⎡⎣−𝚤𝑃0𝑘1 +𝐵𝑘2𝑘3
−𝚤𝑃0𝑘2 +𝐵𝑘1𝑘3
−𝚤𝑃0𝑘3 +𝐵𝑘1𝑘2

⎤⎦ ,
where 𝑘1, 𝑘2, 𝑘3 are three components of the wave vector of interest,𝑃0 is a Kane parameter describing interactions
between conduction band and valence bands within the 𝒜 basis

𝑃0 = −𝚤 ℏ
𝑚0

⟨𝑠| 𝑝1 |𝑥1⟩ ,

2.11. Hamiltonian: 8-band model for zincblende 29

nextnano++ Documentation, Release 1.25.13

and 𝐵 is a Kane parameter including interaction between the all the bands in class 𝒜 and remote bands ℬ of Γ5

symmetry

𝐵 = 2
ℏ2

𝑚2
0

ℬ∑︁
𝑛𝑗

⟨𝑠| 𝑝1 |𝑛Γ5𝑗⟩ ⟨𝑛Γ5𝑗| 𝑝1 |𝑥3⟩
[𝐸c + 𝐸v] /2− 𝐸𝑛,Γ5

.

with top valence band energy 𝐸v = 𝐸v,av +∆0.

Blocks for the valence bands without the strain included are defined as

ℋ̂vv (k) =

⎡⎢⎣𝐸v,av +
ℏ2

2𝑚0
𝑘2 0 0

0 𝐸v,av +
ℏ2

2𝑚0
𝑘2 0

0 0 𝐸v,av +
ℏ2

2𝑚0
𝑘2

⎤⎥⎦
+

⎡⎣𝐿′𝑘21 +𝑀𝑘22 +𝑀𝑘23 𝑁 ′𝑘1𝑘2 𝑁 ′𝑘1𝑘3
𝑁 ′𝑘1𝑘2 𝑀𝑘21 + 𝐿′𝑘22 +𝑀𝑘23 𝑁 ′𝑘2𝑘3
𝑁 ′𝑘1𝑘3 𝑁 ′𝑘2𝑘3 𝑀𝑘21 +𝑀𝑘22 + 𝐿′𝑘23

⎤⎦ ,
where 𝐸v,av is average energy of valence bands at Γ point, 𝑀 , 𝑁 ′, and 𝐿′ are Kane parameters introducing
interactions between the valence bands in 𝒜 and remote bands ℬ of Γ1, Γ3, Γ4, Γ5 symmetries

𝑀 = 𝐻1 +𝐻2

𝑁 ′ = 𝐹 ′ −𝐺+𝐻1 −𝐻2

𝐿′ = 𝐹 ′ + 2𝐺

where

𝐺 =
ℏ2

2𝑚2
0

ℬ∑︁
𝑛𝑗

|⟨𝑥1| 𝑝1 |𝑛Γ3𝑗⟩|2

𝐸v − 𝐸𝑛,Γ3

𝐹 ′ =
ℏ2

2𝑚2
0

ℬ∑︁
𝑛𝑗

|⟨𝑥1| 𝑝1 |𝑛Γ1𝑗⟩|2

𝐸v − 𝐸𝑛,Γ1

𝐻1 =
ℏ2

2𝑚2
0

ℬ∑︁
𝑛𝑗

|⟨𝑥1| 𝑝1 |𝑛Γ5𝑗⟩|2

𝐸v − 𝐸𝑛,Γ5

𝐻2 =
ℏ2

2𝑚2
0

ℬ∑︁
𝑛𝑗

|⟨𝑥1| 𝑝1 |𝑛Γ4𝑗⟩|2

𝐸v − 𝐸𝑛,Γ4

Spin-orbit interaction within the valence bands is introduced by

ℋ̂so↑↑ =
∆0

3

⎡⎣0 −𝚤 0
𝚤 0 0
0 0 0

⎤⎦ =
[︁
ℋ̂so↓↓

]︁†
and ℋ̂so↑↓ =

∆0

3

⎡⎣ 0 0 1
0 0 −𝚤
−1 𝚤 0

⎤⎦ =
[︁
ℋ̂so↓↑

]︁†
,

where spin-orbit interaction energy ∆0 is defined by

∆0

3
= −𝚤 ℏ

4𝑚2
0𝑐

2
⟨𝑥1| [∇𝑉0 (r)× p̂]2 |𝑥3⟩ .

The strain is introduced to the valence bands by

ℋ̂vv (𝜖) =

⎡⎣𝑙𝜖11 +𝑚𝜖22 +𝑚𝜖33 𝑛𝜖21 𝑛𝜖31
𝑛𝜖21 𝑚𝜖11 + 𝑙𝜖22 +𝑚𝜖33 𝑛𝜖32
𝑛𝜖31 𝑛𝜖32 𝑚𝜖11 +𝑚𝜖22 + 𝑙𝜖33

⎤⎦
where 𝜖𝑖𝑗 are elements of the strain tensor 𝜖 and 𝑚, 𝑛, 𝑙 are matrix elements of a strain-dependent interaction
operator, further defining deformation potentails for the valence bands.

30 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

ò Note

All sections below may be moved elswhere in near future

2.11.2 Offsets

𝐸c = 𝐸(db)
g + 𝐸(db)

v,av +
1

3
∆

(db)
0 , 𝐸v,av = 𝐸(db)

v,av , ∆0 = ∆
(db)
0

Where the following mapping to our database is applied.

Table 2.11.2.1: Mapping of offsets to the database

parameter value in the database

𝐸
(db)
g database{ ..._zb{ conduction_bands{ Gamma{ bandgap } } } }

𝐸
(db)
v,av database{ ..._zb{ valence_bands{ bandoffset } } }

∆
(db)
0 database{ ..._zb{ valence_bands{ delta_SO } } }

. Attention

If temperature dependence is triggered then the Varshni formula is applied to the energy gap such that 𝐸c →
𝐸c(𝑇) and 𝐸v,av → 𝐸v,av(𝑇).

2.11.3 Deformation potentials
𝑎c = 𝑎(db)c ,

𝑚 = 𝑎(db)v − 𝑏(db),

𝑛 =
√
3 𝑑(db),

𝑙 = 𝑎(db)v + 2𝑏(db),

Where the following mapping to our database is applied.

Table 2.11.3.1: Mapping of deformation potentials to the database

parameter value in the database

𝑎
(db)
c database{ ..._zb{ Gamma{ defpot_absolute } } }

𝑎
(db)
v database{ ..._zb{ valence_bands{ defpot_absolute } }
𝑏(db) database{ ..._zb{ valence_bands{ defpot_uniaxial_b } }
𝑑(db) database{ ..._zb{ valence_bands{ defpot_uniaxial_d } }

2.11.4 k.p parameters

. Attention

In this section we assume that rescale_S_to is not defined in the input file at all, like in the examples below.
The topic of rescaling S parameter and it’s influence on the Hamiltonian will be discussed elsewhere.

As the k · p models have been derived in the literature on numerous ways, there are couple of parameterisation
standards available of which preference is not clear. Also, depending on the method applied to obtaining param-
eters some of them are easier accessible that the others. Therefore, depending on the source and the material of
interest different schemes of parametrisation may be preffered by the user. For this purpose multiple possibilities
of connecting our database to this model are available.

2.11. Hamiltonian: 8-band model for zincblende 31

nextnano++ Documentation, Release 1.25.13

Default settings

The default settings are equivalent to setting all the attrubutes use_Luttinger_parameters,
from_6band_parameters, approximate_kappa, evaluate_S to no.

Examples
1. Controlling parameters of the Hamiltonian for computation of electronic energy dispersion

for a bulk crystal

classical{
bulk_dispersion{

KP8{
from_6band_parameters = no
use_Luttinger_parameters = no
approximate_kappa = no
evaluate_S = no

}
}

}

2. Controlling parameters of the Hamiltonian for which h Schrödinger equation is solved

quantum {
region{

kp_8band{
kp_parameters{

from_6band_parameters = no
use_Luttinger_parameters = no
approximate_kappa = no
evaluate_S = no

}
}

}
}

Then the Kane parameters are defined by

𝑀 =
ℏ2

2𝑚0
𝑀 (db) , 𝑁 ′ =

ℏ2

2𝑚0
𝑁 ′(db) , 𝐿′ =

ℏ2

2𝑚0
𝐿′(db)

𝐴c =
ℏ2

2𝑚0
𝑆(db) , 𝐵 =

ℏ2

2𝑚0
𝐵(db) , 𝑃 =

√︃
ℏ2
2𝑚0

𝐸
(db)
p

where the following mapping to our database is applied.

Table 2.11.4.1: Mapping of Kane parameters to the database

parameter value in the database
𝑀 (db) database{ ..._zb{ kp_8_bands{ M } } }
𝐿′(db) database{ ..._zb{ kp_8_bands{ L } } }
𝑁 ′(db) database{ ..._zb{ kp_8_bands{ N } } }
𝑆(db) database{ ..._zb{ kp_8_bands{ S } } }
𝐵(db) database{ ..._zb{ kp_8_bands{ B } } }

𝐸
(db)
p database{ ..._zb{ kp_8_bands{ E_P } } }

32 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

Luttinger parameters and electron effective mass

One needs to set all three parameters from_6band_parameters, use_Luttinger_parameters, evaluate_S
to yes to use the Luttinger parameters (as defined for 6-band k · p model) and the effective mass of electrons.

Examples
1. Controlling parameters of the Hamiltonian for computation of electronic energy dispersion

for a bulk crystal

classical{
bulk_dispersion{

KP8{
from_6band_parameters = yes
use_Luttinger_parameters = yes
approximate_kappa = no
evaluate_S = yes

}
}

}

2. Controlling parameters of the Hamiltonian for which h Schrödinger equation is solved

quantum {
region{

kp_8band{
kp_parameters{

from_6band_parameters = yes
use_Luttinger_parameters = yes
approximate_kappa = no
evaluate_S = yes

}
}

}
}

Then the Kane parameters are defined by

𝑀 =
ℏ2

2𝑚0

[︁
−𝛾(db)1 + 2𝛾

(db)
2 − 1

]︁
𝑁 ′ =

ℏ2

2𝑚0

[︁
−6𝛾

(db)
3

]︁
+
𝐸

(db)
p

𝐸g

𝐿′ =
ℏ2

2𝑚0

[︁
−𝛾(db)1 − 4𝛾

(db)
2 − 1

]︁
+
𝐸

(db)
p

𝐸g

𝐴𝑐 =
ℏ2

2𝑚0

⎡⎣ 1

𝑚
(db)
e

− 2𝐸
(db)
p

3𝐸g
− 𝐸

(db)
p

3
[︁
𝐸g +∆

(db)
0

]︁
⎤⎦

𝐵 =
ℏ2

2𝑚0
𝐵(db)

𝑃 =

√︃
ℏ2
2𝑚0

𝐸
(db)
p ,

where the following mapping to our database is applied.

2.11. Hamiltonian: 8-band model for zincblende 33

nextnano++ Documentation, Release 1.25.13

Table 2.11.4.2: Mapping to the database

parameter value in the database

𝛾
(db)
1 database{ ..._zb{ kp_6_bands{ gamma_1 } } }

𝛾
(db)
2 database{ ..._zb{ kp_6_bands{ gamma_2 } } }

𝛾
(db)
3 database{ ..._zb{ kp_6_bands{ gamma_3 } } }

𝑚
(db)
𝑒 database{ ..._zb{ conduction_bands{ Gamma{ mass } } } }

∆
(db)
0 database{ ..._zb{ valence_bands{ delta_SO } } }

𝐸
(db)
p database{ ..._zb{ kp_8_bands{ E_P } } }

𝐵(db) database{ ..._zb{ kp_8_bands{ B } } }

Rescaling S

One of ways to get rid of spurious solutions in quantum structures is to rescale 𝑆 parameter to 0 or 1. The 𝑆 defines
𝐴𝑐 as

𝐴𝑐 =
ℏ2

2𝑚0
𝑆

Examples
1. Rescaling 𝑆 in the Hamiltonian for computation of electronic energy dispersion for a bulk

crystal

classical{
bulk_dispersion{

KP8{
rescale_S_to = 1

}
}

}

2. Rescaling 𝑆 in the Hamiltonian for which the Schrödinger equation is solved

quantum {
region{

kp_8band{
kp_parameters{

rescale_S_to = 1
}

}
}

}

The initial value of 𝑆 is determined according to choices described before. If one chose evaluate_S = no then

𝑆 = 𝑆(𝑑𝑏),

otherwise, if one chose evaluate_S = yes then

𝑆 =
1

𝑚
(db)
e

− 2𝐸
(db)
p

3𝐸g
− 𝐸

(db)
p

3
[︁
𝐸g +∆

(db)
0

]︁ .

34 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

In the input file, one can request consistent rescaling the model such that 𝑆 → 𝑆(new) resulting in

𝐴𝑐 =
ℏ2

2𝑚0
𝑆(new).

A rescaled Kane energy 𝐸(new)
p is evaluated to ensure that the model gives the same electronic band structure

(ideally) as before the rescaling, but without spurious solutions. It is done directly from the assumption the 𝑆 =
𝑆(new).

𝐸(new)
p = 𝐸(db)

p +
[︁
𝑆 − 𝑆(new)

]︁ 𝐸g

[︁
𝐸g +∆

(db)
0

]︁
𝐸g +

2
3∆

(db)
0

After the rescaled Kane energy is evaluated, it is used to update or redefine other relevant Kane parameters entering
the model.

𝐿′ → 𝐿′ +
𝐸

(new)
p − 𝐸

(db)
p

𝐸g
,

𝑁 ′ → 𝑁 ′ +
𝐸

(new)
p − 𝐸

(db)
p

𝐸g
,

𝑃 =

√︃
ℏ2
2𝑚0

𝐸
(new)
p .

Where 𝐿′ and 𝑁 ′ are initially evaluated according to the choices in the kp_parameters{ } group as described
in previous sections.

2.11.5 Zeeman Term
Magnetic effects are included via the Zeeman term

�̂�𝑛 =
𝜇𝐵
2

· �̂� · 𝑔𝑛 ·B

for both electrons and holes. The 𝑔𝑛 for electrons is diagonal and can be replaced with a scalar

𝑔𝑐 =

(︀
𝐸↑
𝑐 − 𝐸↓

𝑐

)︀
𝜇𝐵𝐵

Free electron has the g factor equal 2, while in the crystal, due to spin-orbit splitting is different and can be approx-
imated by so-called Roth’s formula.

𝑔𝑐 = 2− 2𝐸𝑝∆0

3𝐸𝑔 (𝐸𝑔 +∆0)

Parameter KP8{ correct_electron_gfactor } controls evaluation of the 𝑔𝑐 for the bulk model as follows.

If correct_electron_gfactor is negative, then

𝑔𝑐 = 2

and

�̂�𝑛 =
𝜇𝐵
2

· �̂� · 2 ·B.

If correct_electron_gfactor = 0, then

𝑚𝑒𝑓𝑓 = 𝑆 + 𝑃 2 *
𝐸𝑔 +

2
3∆0

𝐸𝑔 (𝐸𝑔 +∆0)

where, 𝑆, 𝑃,𝐸𝑔 , and ∆0 are taken from the database or estimated as defined in kp_parameters{ } group. A ne
parameter 𝑃𝑛𝑒𝑤 is defined

𝑃𝑛𝑒𝑤 =

√︃(︂
𝑚𝑒𝑓𝑓 −

ℏ2
2𝑚0

)︂
𝐸𝑔 (𝐸𝑔 +∆0)

𝐸𝑔 +
2
3∆0

2.11. Hamiltonian: 8-band model for zincblende 35

nextnano++ Documentation, Release 1.25.13

and used to compute corrected g-factor as

𝑔𝑠 =
(︀
𝑃 2
𝑛𝑒𝑤 − 𝑃 2

)︀ 2𝑚0

ℏ2
2∆0

3𝐸𝑔 (𝐸𝑔 +∆0)
.

This g-factor is then used in the Zeeman term.

�̂�𝑛 =
𝜇𝐵
2

· �̂� · (2 + 𝑔𝑠) ·B

If KP8{ rescale_kp_everywhere } is set to yes, then the Kane parameters 𝐿 and 𝑁+ are rescaled

𝐿→ 𝐿+
𝑃 2
𝑛𝑒𝑤 − 𝑃 2

𝐸𝑔

𝑁+ → 𝑁+ +
𝑃 2
𝑛𝑒𝑤 − 𝑃 2

𝐸𝑔

which results in replacing the 𝑃 with a new one

𝑃 → 𝑃 = 𝑃𝑛𝑒𝑤

to be used in the remaining part of the Hamiltonian.

If correct_electron_gfactor is positive, then the algorithm is the same as in the case of having it zero, with
a change that the band gap has assigned teh value of correct_electron_gfactor.

𝐸𝑔 → 𝐸𝑔 = 𝐺

at the very beginning. This assignment influences only the band gap used within this algorithm. The band gap in
other parts of the model is included normally, based on the parameters from the database.

Last update: 27/05/2025

2.12 Interface Hamiltonian 8-band Zinc-Blende

• The Model

• Implementation and usage

2.12.1 The Model
The interface Hamiltonian is used to model the heterostructures with atomic sharp interfaces. This is an extension
of the standard 8-band k · p model (described here). The model, originally derived in [Kilpstein2010], includes
𝑙 = 2 perturbation terms, which have been omitted in our implementaion, consistent with the approach in [Livneh-
PRB2012].

The interface Hamiltonian in the block form is given by:

ℋ̂𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑒 = 𝛿(𝑧 − 𝑧𝑖)

⎡⎢⎢⎣
𝐷𝑆 0 0 𝜋𝛽
0 𝐷𝑋 𝜋𝛼 0
0 𝜋𝛼 𝐷𝑋 0
𝜋𝛽 0 0 𝐷𝑍

⎤⎥⎥⎦
where 𝛿 is the Dirac delta function, 𝑧𝑖 is the position of the interface, 𝐷𝑆 , 𝐷𝑋 , 𝐷𝑍 , 𝛼, and 𝛽 are the interface
Hamiltonian parameters, 𝜋 is the parameter that can take values of ±1. Parameter 𝜋 is used to distinguish different
ordering of materials at the interface, for example InaAs/GaSb and GaSb/InAs interfaces would have same interface
paramters, but opposite 𝜋 values.

36 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

2.12.2 Implementation and usage
The interface Hamiltonian is available only for 1D simulations. For the best results, ensure that there is a grid point
at the interface position, for example like so:

grid{
xgrid{

...
line{ pos = $x_1 spacing = $x_interface } # material1
line{ pos = $x_interface spacing = $x_2 } # material2
...

}
}

To add the interface Hamiltonian to the simulation, use the interface keyword in quantum{ region{
kp8_band{} } } section of input file.

Example:

quantum{
region{

kp_8band{
...
interface{

position = $x_interface
D_S = 1.0
D_X = 2.0
D_Z = 1.5
alpha = 0.1
beta = 0.1
reverse = no

}
...

}
}

}

reverse=no corresponds to 𝜋 = 1, and reverse=yes corresponds to 𝜋 = −1. Other interface parameters are
expressed in 𝑒𝑉 · 𝑛𝑚.

One can add multiple interfaces to the simulation by adding multiple interface blocks to the input file. Example
below has 2 interfaces with the same paramters, but different order of materials (common case for modelling of
quantum well).

quantum{
region{

kp_8band{
...
interface{

position = $x_interface1
D_S = 1.0
D_X = 2.0
D_Z = 1.5
alpha = 0.1
beta = 0.1
reverse = no

}
interface{

position = $x_interface2
(continues on next page)

2.12. Interface Hamiltonian 8-band Zinc-Blende 37

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

D_S = 1.0
D_X = 2.0
D_Z = 1.5
alpha = 0.1
beta = 0.1
reverse = yes

}
}

}
}

To set up repeating interfaces, one can use the array_x keyword in the interface block.

quantum{
region{

kp_8band{
...
interface{

position = 10.0
... # parameters here
array_x{

shift = 2.0
min = -2
max = 3

{
}

}
}

}

The above example will create 6 interfaces with the same parameters, at positions 6.0, 8.0, 10.0, 12.0, 14.0 and
16.0 nm.

Last update: 23/01/2025

2.13 Excitons
The exciton states are computed using the approach from [ChuangOpto1995]. The explanation below only covers
the most important aspects of the model, for detailed derivation please refer to the [ChuangOpto1995] book. The
exciton computation is only available for 1D systems.

2.13.1 Model
Assuming the effective mass approximation for the electron and hole, the Schrödinger equation for the exciton can
be written as:

(𝐻𝑒(𝑟𝑒) +𝐻ℎ(𝑟ℎ)−
𝑒2

4𝜋𝜀|𝑟𝑒 − 𝑟ℎ|
)Φ(𝑟𝑒, 𝑟ℎ) = 𝐸Φ(𝑟𝑒, 𝑟ℎ) (2.13.1.1)

where 𝐻𝑒 and 𝐻𝑒 are the Hamiltonians for the electron and hole, respectively, 𝑟𝑒 and 𝑟ℎ are the coordinates of the
electron and hole, respectively, 𝜀 is the dielectric constant, and 𝐸 is the energy of the exciton.

The wave function of the exciton, formed by electron 𝑛 and hole 𝑚, will be calculated in the form:

Φ(𝑟𝑒, 𝑟ℎ) = 𝑒𝑥𝑝(𝑖𝐾𝑡𝑅𝑡)𝐹 (𝜌, 𝑧𝑒, 𝑧ℎ) = 𝑒𝑥𝑝(𝑖𝐾𝑡𝑅𝑡)𝜑𝑛𝑚(𝜌)𝑓𝑛(𝑧𝑒)𝑔𝑚(𝑧ℎ) (2.13.1.2)

38 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

where𝐾𝑡 is the in-plane wave vector of the exciton,𝑅𝑡 is the in-plane coordinate of the exciton, 𝐹 (𝜌, 𝑧𝑒, 𝑧ℎ) is the
exciton envelope function, 𝑓𝑛(𝑧𝑒) and 𝑔𝑚(𝑧ℎ) are the single particle envelope wave functions of electron and hole
in the growth direction. Then, the equation for the unknown 𝜑𝑛𝑚(𝜌) is given by:(︂

− ℏ2

2𝑚𝑟
∇2
𝜌 − 𝑉𝑛𝑚(𝜌)

)︂
𝜑𝑛𝑚(𝜌) = 𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔𝜑𝑛𝑚(𝜌) (2.13.1.3)

where𝑚𝑟 is the reduced mass of the exciton,𝐸𝑏𝑖𝑛𝑑𝑖𝑛𝑔 is the binding energy of the exciton, and 𝑉𝑛𝑚(𝜌) is expressed
as:

𝑉𝑛𝑚 =

∫︁
𝑑𝑧𝑒|𝑓𝑛(𝑧𝑒)|2

∫︁
𝑑𝑧ℎ|𝑔𝑚(𝑧ℎ)|2

𝑒2

4𝜋𝜀𝑠(𝜌2 + |𝑧𝑒 − 𝑧ℎ|2)
(2.13.1.4)

The solution of the equation for 𝜑𝑛𝑚(𝜌) can be found variationally by minimizing the binding energy of the exciton.
The form of the solution is assumed to be similar to 1S state of 2D hydrogen atom:

𝜑(𝜌) =

√︂
2

𝜋

1

𝜆
𝑒𝑥𝑝(−𝜌/𝜆) (2.13.1.5)

where 𝜆 is the variational parameter, which has an interpretation of exciton inplane Bohr radius. The variational
parameter 𝜆 is determined by minimizing the binding energy of the exciton from equation (2.13.1.3).

2.13.2 Averaging model parameters
The model depends on dielectric constant 𝜀, effective masses of the electron and hole 𝑚𝑒 and 𝑚ℎ, which are not
constant in heterostructures. If not given in the input file, the volume averaged values of these parameters are used.
For effective masses, density weighted average is also possible.

2.13.3 Excitons in multiband Hamiltonians
The computation of the exciton in the case of 8-band k ·p Hamiltonian is complicated by the fact, that the electron
and hole Hamltonians are no longer separable. In that case the equations derived from effective mass Hamiltoni-
ans are used, using wave functions computed with the 8-band Hamiltonian. As the effective masses are not longer
parameters of the Hamiltonian, the effective masses used are computed from the parameters for the 8-band Hamil-
tonian: 𝐿,𝑀,𝑁,𝐸𝑃 , 𝑆, 𝐸𝑔𝑎𝑝. The same approach is used for 6-band k·pHamiltonian, where the effective masses
are computed from the parameters 𝐿,𝑀,𝑁 .

2.14 Optical spectra

2.14.1 Fermi’s golden rule
The nextnano++ tool has another important calculation scheme of optical properties, which is specified in the
section optics{ quantum_spectra{ } }. Here nextnano++ calculates them using the Fermi’s golden rule (time-
dependent perturbation theory) with 8-band k.p model.

• Optical absorption coefficient

• Real/imaginary part of the dielectric constant

• Refractive index

• Optical gain as a negative part of optical absorption coefficient

• Spontaneous emission rate

• Transition intensity (optical matrix element)

For further detail about this section, please see Optical absorption for interband and intersubband transitions.

This page will summarize theory, that is currently distributed on the following pages:

• Intersubband transitions in InGaAs/AlInAs multiple quantum well systems

• Optical intraband transitions in a quantum well - Momentum matrix elements and selection rules

• Optical absorption for interband and intersubband transitions

2.14. Optical spectra 39

nextnano++ Documentation, Release 1.25.13

2.15 Optoelectronic characterization

• Current and Power

– ^Photocurrent

– Power

– Absorbed-power

– Emitted-power

• Efficiencies

– IQE - internal quantum efficiency

– RQE - volume quantum efficiency

2.15.1 Current and Power
^Photocurrent

Then the photocurrent 𝐼photo is calculated as the summation of the integration of these “radiative” and “fixed”:

𝐼photo = 𝑒 ·
(︂∫︁

𝑑x 𝑅𝑠𝑡𝑖𝑚rad,net(x) +

∫︁
𝑑x 𝑅fixed(x)

)︂
(2.15.1.1)

Power

∑︁
𝑖

𝑉i-th contact · 𝐼i-th contact (2.15.1.2)

Absorbed-power

∫︁
𝑑𝐸𝑑x 𝐸 ·𝐺(𝐸,x) (2.15.1.3)

where 𝐺(𝐸, 𝑥) is the generation rate calculated according to the configuration in classical{ }.

Emitted-power

∫︁
𝑑𝐸𝑑𝑥 𝐸 ·𝑅𝑠𝑝𝑜𝑛rad (𝐸, 𝑥) (2.15.1.4)

2.15.2 Efficiencies
IQE - internal quantum efficiency

is calculated as

𝜂𝐼𝑄𝐸 =
𝐼photo

𝐼total
(2.15.2.1)

where 𝐼total is the total injected current consisted of both electron and hole currents.

The electrical power and optical power are calculated and output in power.dat:

40 Chapter 2. Models

nextnano++ Documentation, Release 1.25.13

RQE - volume quantum efficiency

, which is also called as radiative quantum efficiency, is calculated as

𝜂𝑉 𝑄𝐸 =
𝑅𝑠𝑡𝑖𝑚rad,net +𝑅fixed

𝑅total
(2.15.2.2)

where 𝑅total = 𝑅𝑠𝑡𝑖𝑚rad,net + 𝑅fixed + 𝑅Auger + 𝑅SRH is the total recombination rate including both radiative and non-
radiative recombination.

Both 𝜂𝐼𝑄𝐸 and 𝜂𝑉 𝑄𝐸 agree if the electrons and holes injected into the active region are fully consumed up by the
recombination there. However, if they are not consumed up, 𝑒 ·𝑅total < 𝐼charge and this results in 𝜂IQE1 > 𝜂IQE2

Last update: 09/12/2024

2.15. Optoelectronic characterization 41

nextnano++ Documentation, Release 1.25.13

42 Chapter 2. Models

CHAPTER

THREE

COURSES

This site will soon contain sets of tutorials targeting selected semiconductor devices.

43

nextnano++ Documentation, Release 1.25.13

44 Chapter 3. Courses

CHAPTER

FOUR

TUTORIALS

• Introduction

• Basics

– Defining Structures

– Contacts and Boundary Conditions

– Electrostatics and Strain

– Currents

– Other

• p-n Junctions & Solar Cells

• Light-Emitting Diodes

• Quantum Mechanics

• Quantum Wells

• Quantum Wires

• Quantum Dots

• Electronic Band Structures

• Superlattices

• Cascade Structures

• Optical Spectra and Transitions

– Single Particle

– Excitons

• 2-Dimensional Electron Gases (2DEGs)

• Transmission and Conductance (CBR method)

• Transistors

• Magnetic Effects

• Numerics

– General

– Big 3D systems

• Tricks and Hacks

45

nextnano++ Documentation, Release 1.25.13

4.1 Introduction
This page lists all tutorials for nextnano++. The following labels are used to distinguish selected tutorials.

— DEV — Tutorials under development. The input files are not present in any release yet, and it is not clear when
they will be added.

— SOON — Tutorials that are finished or almost finished. Their input files are not present in any release yet. They
will be added to the next release.

— NEW — Tutorials for which input files are available since the last release (most likely alpha).

— EDU — Tutorials written aiming at teaching.

— FREE — Tutorials that can be run using free distributions of nextnano++

. Attention

Links to the tutorials and names of exemplary input files may change.

4.2 Basics
Below you can find basic tutorials introducing the most important elements of nextnano++ syntax as well as
fundamental concepts hidden behind them. We are continuously working on including new tutorials here sou you
can learn nextnano++ easier.

4.2.1 Defining Structures
The set of tutorials below is the most basic one aiming at teaching you how to define structures for your simulations.
The most relevant elements of nextnano++ syntax is presented here.

— FREE — Hello World

• Header

• Introduction

• Global Settings of the Simulation

• Numerical Grid

• Defining the Structure

• Bondary conditions

• Choice of Bands

• Running the Simulation and Viewing the Results

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_hello_world.in

Scope of the tutorial:
• The general structure of the input files

• Running the input file with nextnanomat

• Basic content of the simulation output

46 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• Defining 1D structures

• Computing basic band profiles

Introduced Keywords:
• global{ temperature simulate1D{} substrate{ name } crystal_zb{ x_hkl y_hkl }
}

• grid{ xgrid{ line{ pos spacing } }

• structure{ region{ binary{ name } contact{ name } everywhere{} line{ x } } }

• contacts{ fermi{ name bias } }

• classical{ Gamma{} HH{} LH{} output_bandedges{ averaged } }

Relevant output Files:
• bias_00000\bandedges.dat

Introduction

The input file basics_1D_hello_world.in is prepared to compute a band profile of a simple 1D structure consisting
of an InAs layer sandwiched between two GaAs layers without strain, see Figure 4.2.1.1.

Figure 4.2.1.1: A schematic of a GaAs/InAs/GaAs heterostructure

Global Settings of the Simulation

The group global{ } is required to define multiple general aspects of whole simulation. The temperature of the
crystal and carriers is set to 300 K by setting temperature = 300. The band gap is temperature dependent by
default. Choosing that the simulation is held in 1D space is done by calling simulate1D{}. The substrate is chosen
by a nested group substrate{ name = "GaAs"}, where name is an attribute to which you can assign any of the
available material names. In this case the choice of substrate material is arbitrary, because strain calculations are not
triggered. Crystal orientation in the simulation coordinate system is defined inside a nested group crystal_zb{}
setting values of two attributes: x_hkl = [100] and y_hkl = [010], which assigns [100] direction to the x-axis
of the simulation (the axis of the 1D simulation) and [010] direction to the y-axis of the simulation (still existing).

5 global{ # this group is required in every input file
6 temperature = 300 # set temperature (required)
7 simulate1D{} # choose between 1D, 2D or 3D simulation
8 substrate{ name = "GaAs" } # substrate material (required)
9 crystal_zb{ # crystal orientation

10 x_hkl = [1, 0, 0] # x-axis is perp. to lattice plane (100)
11 y_hkl = [0, 1, 0] # y-axis is perp. to lattice plane (010)
12 # z-axis is determined from x-axis and y-axis
13 }
14 }

Numerical Grid

The group grid{ } is used to define the numerical grid of the simulation. As there is only x-axis in the 1D simula-
tions, only xgrid{ } group is used to define the grid. Each group line{} defines a “line” (a point in 1D, a line

4.2. Basics 47

nextnano++ Documentation, Release 1.25.13

in 2D, and a plane in 3D) at a position pos forcing a grid spacing spacing in its vicinity and assuring that there
is a grid point at the specified coordinate pos.

16 grid{ # this group is required in every input file
17 xgrid{ # grid in x direction
18 line{
19 pos = 0.0 # start of device at x=0.0 nm
20 spacing = 4.0 # grid spacing 4.0 nm
21 }
22 # from x=0.0 nm to x=20.0 nm further grid points
23 # are created according to the interpolated spacing (4.0 -

→˓> 0.5)
24 # (no equidistant grid spacing)
25 line{
26 pos = 20.0 # grid point at GaAs/InAs interface
27 spacing = 0.5 # grid spacing 0.5 nm
28 }
29 # from x=20.0 nm to x=30.0 nm further grid points
30 # are created according to the interpolated spacing (0.5 -

→˓> 0.5)
31 # (equidistant grid spacing)
32 line{
33 pos = 30.0 # grid point at InAs/GaAs interface
34 spacing = 0.5 # grid spacing 0.5 nm
35 }
36 # from x=30.0 nm to x=50.0 nm further grid points
37 # are created according to the interpolated spacing (0.5 -

→˓> 4.0)
38 # (no equidistant grid spacing)
39 line{
40 pos = 50.0 # end of device at x=50.0 nm
41 spacing = 4.0 # grid spacing 4.0 nm
42 }
43 }
44 }

There are 4 “lines” specified in the input file. The two of them with pos = 0.0 and pos = 50.0, as the most
outer ones, define the span of the entire grid. The remaining two, with pos = 20.0 and pos = 30.0, are defined
at the positions of material interfaces defined in the next group, to assure stable representation of the design in the
discrete grid space. The figure Figure 4.2.1.2 shows schematically the process of defining the grid.

Figure 4.2.1.2: Schematics of the simulation grid with four “lines” defined (red circles). Interpolated grid points
between lines are depicted with black circles.

One can also view the grid spacing using nextnanomat, see Figure 4.2.1.3.

Figure 4.2.1.3: The numerical grid in the simulation.

48 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Defining the Structure

The definition of specific structure is kept in the group structure{ }. Here groups region{} are used to assign bi-
nary materials (using binary{}) and boundary conditions for Poisson and current equations (using contact{})
to specific regions within the earlier defined space. First, material GaAs and boundary condition named “what-
ever” are assigned to entire space by specifying binary{ name = GaAs }, contact{ name = whatever },
and everywhere{} inside one region{}. Next, material InAs is assigned to a region spanning from 𝑥 = 20.0 to
𝑥 = 50.0, by defining another region{} group, containing binary{ name = InAs } ` and :code:`line{
x = [20.0, 30.0] }. In that case, InAs is overwriting GaAs in the selected region, while the boundary
conditions specified by contact{} remain.

46 structure{ # this group is required in every input file
47 region{
48 binary{ name = GaAs } # material GaAs
49 contact{ name = hello_world } # contact definition
50 everywhere{} # ranging over the complete device, from␣

→˓x=0.0 nm to x=50.0 nm
51 }
52 region{
53 binary{ name = InAs } # material InAs
54 line{ x = [20.0, 30.0] } # overwriting previously defined GaAs in␣

→˓the interval x=20.0 nm to x=30.0 nm
55 }

Bondary conditions

The boundary conditions for Poisson and current equations are specified in the group contacts{ }. They have to be
specified even if the equations are not solved. Here, the boundary condition for quasi-Fermi levels only is chosen
by calling fermi{}. The contact is named “hello_world” by setting name = hello_world. This name is used
for referencing to this specific contact in the definition of the structure. The energy of Fermi level is set to 0 eV by
setting bias = 0.0.

58 contacts{ # this group is required in every input file
59 fermi{ # type of contact
60 name = hello_world # refer to regions with contact name

→˓'hello_world'
61 bias = 0.0 # region with contact name 'hello_world'␣

→˓is set to 0 V
62 }
63 }

Choice of Bands

The classical{ } group is called to choose which bands should be taken into account in the semiclassical simulations,
here only computing the profile. The first conduction band at Γ point, heavy-, and light-hole valence bands are
selected by calling groups: Gamma{}, HH{}, and LH{}, respectively. The group output_bandedges{} allows to
output the band profile, while its attribute averaged = no ensures that the profile is not going to be averaged over
neighboring grid points in the output file.

65 classical{ # this group is required in every input file
66 Gamma{} # include conduction band at gamma point␣

→˓in the calculation
67 HH{} # include heavy hole band in the␣

→˓calculation
68 LH{} # include light hole band in the␣

→˓calculation
69 output_bandedges{ averaged = no } # necessary to see a energy profile
70 }

4.2. Basics 49

nextnano++ Documentation, Release 1.25.13

Running the Simulation and Viewing the Results

The simulation can be started in nextnanomat by pressing F8 on the keyboard or by clicking the icon . A folder
with simulation results is created in the output directory.

The output of the simulation can be viewed under the “Output” tab at the top of nextnanomat. Within the tab,
navigate to the folder bias_00000 and click on bandedges.dat. A plot of the Gamma, LH and HH energy
profiles should be visible.

The grid used in the simulation can be shown by checking the box “Show grid” in the menu on the left of

nextnanomat. To export the figure as a .plt file, click on the icon in the top right corner.

Then click on bandedges.dat. Hold down shift on the keyboard and click the plots of your interest. In this
tutorial, Gamma[eV], HH[eV] and LH[eV] are chosen from the bottom right panel. Press shift + a on the

keyboard or the icon in the top right corner of nextnanomat.

Next, select icon at the top and choose the option “Create and Open Gnuplot File (*.plt) from Items of

Overlay”. A Gnuplot window should pop up. Click the icon and name the file, and save it.

Figure 4.2.1.4: Energy profile of GaAs/InAs/GaAs heterostructure without considering strain.

Last update: 16/07/2024

— FREE — Finite Periodic Structures

• Header

50 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• Introduction

• Main

– Input file 1: Repeated regions

– Input file 2: Repeated structres

• Important things to remember

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_finite_periodic_simple.in

• basics_1D_finite_periodic_double.in

Introduction

We will now concentrate on two particular features inside the structure{ } group which enable you to create
periodic structures conveniently. We will discuss their application at the example of a finite superlattice structure.
After completing this tutorial, you will know more about

• creating periodic structures with array_x{}

• duplicating periodic structures with array2{}

Keywords: array_x{}, array2{}

Main

In the first part, we want to show how to create the structure in Figure 4.2.1.5.

Figure 4.2.1.5: shows multiple GaAs/InAs quantum wells, which forms a finite superlattice

In the second part, we extend the input file of part one, and create the structure shown in Figure 4.2.1.6.

Figure 4.2.1.6: shows a sequence of three GaAs/InAs superlattices

Based on what we learned in tutorial 1, we should have the basic knowledge to create these structure without using
arrays. It would be quite an effort to create layer by layer. arrays offer a convenient alternative to that approach.
The idea is to duplicate an existing sample structure multiple times in a specific direction. This takes just a few
lines of code and gives in addition much more flexibility for your simulations. The sample structure in our case
will be the GaAs/InAs/GaAs heterostructure from tutorial 1.

4.2. Basics 51

nextnano++ Documentation, Release 1.25.13

Input file 1: Repeated regions

Specifying the structure of the device

19 structure{ # this group is required in every input file
20 region{
21 binary{ name = GaAs } # material: GaAs
22 contact{ name = whatever } # contact definition
23 everywhere{} # ranging over the complete device
24 }
25 region{
26 binary{ name = InAs } # material: InAs
27 line{ x = [20.0, 30.0] } # ranging from x=20.0 nm to x=30.0 nm,␣

→˓overwrites the previously defined GaAs
28

29 array_x{ # line{ x = [20.0, 30.0] } is duplicated in␣
→˓the x direction

30 shift = 20.0 # the interval x = [20.0, 30.0] inside line
→˓{} is shifted by an integer multiple of 20.0 nm

31 max = 2 # 2 duplicates in +x direction
32 min = -2 # 2 duplicates in -x direction
33 }
34

35 # In short, we are creating 5 InAs regions (overwriting GaAs) in the␣
→˓intervals:

36 # line{ x = [20.0+i*shift, 30.0 nm+i*shift]} (min<=i<=max)
37 }
38 }

As in tutorial 1, we create an InAs layer, which ranges from 𝑥 = 20nm to 𝑥 = 30nm. By introducing array_x{}
this layer is duplicated along x. The position of the duplicates is determined by the shift value. The shift direction
(+𝑥 or −𝑥) and the number of duplicates in each direction is set by max and min.

Here, max=2 creates two duplicates in the +𝑥 direction every 20nm. The first “copy” ranges from 𝑥 = 20nm+ 1 ·
20nm = 40nm to 𝑥 = 30nm + 1 · 20nm = 50nm and the second ranges from 𝑥 = 20nm + 2 · 20nm = 60nm to
𝑥 = 30nm+2 · 20nm = 70nm. Analogous, min=-2 creates two duplicates in the −𝑥 direction every 20nm. Mind
the negative sign!

After defining the structures, we have to adapt the grid to our newly constructed device.

Specifying the grid

40 grid{ # this group is required in every input file
41 xgrid{ # grid in x direction
42 line{
43 pos = -40.0 # start device at x=-40.0 nm
44 spacing = 4.0 # grid spacing 4.0 nm
45 }
46 # from x=0.0 nm to x=20.0 nm further grid points
47 # are created according to the interpolated spacing (4.0 -

→˓> 0.5)
48 # (no equidistant grid spacing)
49 line{
50 pos = -20.0 # bottom GaAs/InAs interface at x=-20.0 nm
51 spacing = 0.5 # grid spacing 0.5 nm
52 }
53 # from x=-20.0 nm to x=70.0 nm further grid points
54 # are created according to the interpolated spacing (0.5 -

→˓> 0.5)
(continues on next page)

52 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

55 # (equidistant grid spacing)
56 line{
57 pos = 70.0 # top InAs/GaAs interface at x=70.0 nm
58 spacing = 0.5 # grid spacing 0.5 nm
59 }
60 # from x=70.0 nm to x=90.0 nm further grid points
61 # are created according to the interpolated spacing (0.5 -

→˓> 4.0)
62 # (no equidistant grid spacing)
63 line{
64 pos = 90.0 # start device at x=90.0 nm
65 spacing = 4.0 # grid spacing 4.0 nm
66 }
67 }
68 }

We first extend the device, since we created new material regions: the bottom of the lowest InAs layer is located
at 𝑥𝑚𝑖𝑛 = −2 · 20nm + 20nm = −20.0nm and the top of the highest InAs layer is located at 𝑥𝑚𝑖𝑛 = 30nm +
2 · 20nm = 70nm. We have chosen 𝑥 = −40nm and 𝑥 = 70nm as our start and end points, in order to include all
new material layers. In tutorial 1 we have learned that we also have to take care about interfaces. To keep things
simple, we use an equidistant grid spacing inside the superlattice.

Output
We simulate the device by clicking F8 on the keyboard. In the related output file (⇒ bias_00000⇒ bandedges.
dat) you should find a plot of band edges as shown in Figure 4.2.1.7.

Figure 4.2.1.7: shows energy profile of multiple quantum well structure

4.2. Basics 53

nextnano++ Documentation, Release 1.25.13

Input file 2: Repeated structres

Specifying the structure of the device

19 structure{ # this group is required in every input file
20 region{
21 binary{ name = GaAs } # material: GaAs
22 contact{ name = whatever } # contact definition
23 everywhere{} # ranging over the complete device
24 }
25 region{
26 binary{ name = InAs } # material: InAs
27 line{ x = [20.0, 30.0] } # ranging from x=20.0 nm to x=30.0 nm,␣

→˓overwrites the previously defined GaAs
28

29 array_x{ # line{x=[20.0,30.0]} is duplicated in the x␣
→˓direction

30 shift = 20.0 # the interval x = [20.0, 30.0] inside line
→˓{} is shifted by an integer multiple of 20.0 nm

31 max = 2 # 2 duplicates in +x direction
32 min = -2 # 2 duplicates in -x direction
33 }
34 # In short, we are creating 5 InAs regions at positons:
35 # line{ x = [20.0+i*shift, 30.0 nm+i*shift]} (min<=i<=max)
36

37 array2_x{
38 shift = 120.0 # the structure previously defined inside␣

→˓this region
39 max = 2 # is duplicated and shifted by i*120 nm (1<=i

→˓<=max) in +x.
40 }
41 }
42 }

We add the group array2_x{} which is used to duplicate the structure defined by array_x{} within the same
region{}. We get a sequence of periodic structures. The usage is analogous to array_x{}, thus it follows the
same logic with shift, max and min.

Specifying the grid

45 grid{ # this group is required in every input file
46 xgrid{ # grid in x direction
47 line{
48 pos = -50.0 # start device at x=-50.0 nm
49 spacing = 4.0 # grid spacing 4.0 nm
50 }
51 # from x=-50.0 nm to x=-20.0 nm further grid␣

→˓points
52 # are created according to the interpolated␣

→˓spacing (4.0 -> 0.5)
53 # (no equidistant grid spacing)
54

55 line{ # fixed grid points are created at the bottom␣
→˓GaAs/InAs interfaces of every multiple QW structure

56 pos = -20.0 # bottom GaAs/InAs interface at x=-20.0 nm
57 spacing = 0.5 # grid spacing 0.5 nm
58

59 array{ # fixed grid point at x=-20 nm is duplicated␣
(continues on next page)

54 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓(including spacing)
60 shift = 120.0 # shifted by 120.0 nm
61 max = 2 # two copies are created at x=-20.0 nm+i*shift (1

→˓<=i<=max)
62 }
63 }
64

65 line{ # fixed grid points are created in the middle of␣
→˓two multiple QW structures to change grid spacing

66 pos = 85.0 # position: x=85.0 nm
67 spacing = 4.0 # grid spacing 4.0 nm
68

69 array{ # fixed grid point at x=85.0 nm is duplicated␣
→˓(including spacing)

70 shift = 120.0 # shifted by 150.0 nm
71 max = 1 # one copy is created at x=85.0 nm+max*shift
72 }
73 }
74

75 line{ # fixed grid points are created at the top GaAs/
→˓InAs interfaces of every multiple QW structure

76 pos = 70.0 # top InAs/GaAs interface at x=70.0 nm
77 spacing = 0.5 # grid spacing 0.5 nm
78

79 array{ # fixed grid point at x=70.0 nm is duplicated␣
→˓(including spacing)

80 shift = 120.0 # shifted by 120.0 nm
81 max = 2 # two copies are created at x=70.0 nm+i*shift (1

→˓<=i<=max)
82 }
83 }
84 # from x=310.0 nm to x=340.0 nm further grid␣

→˓points
85 # are created according to the spacings (0.5 -> 4.

→˓0),
86 # which is interpolated (no equidistant spacing)
87 line{
88 pos = 340.0 # end device at x=340.0 nm
89 spacing = 4.0 # grid spacing 4.0 nm
90 }
91 }
92 }

In this example, we show that method of arrays also exist for the grid{ }. Here, they are called array{}, but
used equivalently to array_x{}. They create copies of one fixed grid point, including the related spacing value.

Output
We simulate the device by clicking F8 on the keyboard. In the related output file you should find a plot of band
edges (⇒ bias_00000⇒ bandedges.dat) similar to Figure 4.2.1.8.

Just for demonstration, Figure 4.2.1.9 shows a screenshot of the employed grid.

Important things to remember

• Creating periodic structures works as follows: A special array of one template regions (here: one layer) is
constructed

• Position and number of new regions are determined by shift, max and min

4.2. Basics 55

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.8: shows the band edges of conduction band at gamma point (Gamma), heavy hole (HH) and light
hole (LH) of the complete structure

Figure 4.2.1.9: Numerical grid (gray).

56 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• Creating a sequence of periodic structures with array2{} works equivalently to array{}

• Do not forget to adapt the grid to the complete structure. It is also possible to create an array of grid points.

Last update: 16/07/2024

— FREE — Constant Doping

• Header

• Introduction

• Overview

– The Basics I: Adding doping to bulk material

– The Basics II: Adding different doping to bulk material (p-n junction)

• Important things to remember

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_doping_constant_p.in

• basics_1D_doping_constant_np.in

Introduction

This tutorial is the third in our introductory series. We want to show the general framework of adding doping to
material regions in nextnano++. After completing this tutorial, you will know more about

• adding doping to material regions

• specify the species (donor/ acceptor)

Keywords: doping{}, impurities{ }, donor{}, acceptor{}

Overview

As an overview, Figure 4.2.1.10 shows the two structures that will be created in this tutorial.

Figure 4.2.1.10: shows p-doped GaAs (left) and p-doped/ n-doped GaAs (right).

The Basics I: Adding doping to bulk material

As an introductory example to doping, we want to n-dope a single GaAs layer as shown on the left of Figure
4.2.1.10. You can use the template input file basics_1D_doping_constant_p.in.

Specifying regions with dopants

4.2. Basics 57

nextnano++ Documentation, Release 1.25.13

38 structure{ # this group is required in every input file
39 output_impurities{ boxes = yes} # output doping concentration [10^18␣

→˓cm-3]
40

41 region{
42 binary{ name = GaAs } # material: GaAs
43 contact{ name = whatever } # contact definition
44 everywhere{} # rangeing over the complete device,␣

→˓from x=0.0 nm to x=50.0 nm
45

46 doping{ # add doping to the region
47 constant{ # constant doping concentration␣

→˓profile
48 name = "Custom_impurity_name" # name of impurity
49 conc = 1.0e18 # doping concentration [cm-3]
50 }
51 }
52 }
53 }

First of all, we create just one thick GaAs layer. Then we add doping to the exact same region by the specifier
doping{}. Inside doping{}, we have to set the doping profile. Here we choose to have constant doping con-
centration over the whole region. Inside constant{} we specify name and doping concentration (conc) for this
region. The name is arbitrary, and you can choose whatever name you like. By giving the doping a reference name,
we can select the species and electronic properties for this doping later inside the group impurities{ }.

Since we want to inspect the doping concentration distribution for every grid point in the output, the flag boxes =
yes inside output_impurities{ } is active.

Specify impurity species

54 impurities{ # if doped regions exist, this group is required
55 acceptor{ # select the species of dopants
56 name = "Custom_impurity_name" # select doping regions with name = "Custom_

→˓impurity_name"
57 energy = 0.045 # ionization energy of dopants [eV]
58 degeneracy = 4 # degeneracy of dopants
59 }
60 }

If dopants are added to any region, the group impurity{} has to be included in the input file. acceptor{} sets
the species for regions with name “Custom_impurity_name”. We further refine the properties by setting ionization
energy (energy) and degeneracy level (degeneracy).

Output
We simulate the device by clicking F8 on the keyboard. In the related output folder you should find a plot of the
concentration profile (⇒ Structure⇒ density_acceptor.dat) as shown in Figure 4.2.1.11.

The Basics II: Adding different doping to bulk material (p-n junction)

As another introductory example, we n-dope the first half and p-dope the second half of the single GaAs layer as
in Figure 4.2.1.10 (right). Now, the doping regions do not coincide with the material regions. We have to define
material and doping regions separately. You can use the template input file basics_1D_doping_constant_np.in.

Specifying regions with dopants

42 structure{ # this group is required in every input file
43 output_impurities{ boxes = yes} # output doping concentration [10^18 cm-3]
44

(continues on next page)

58 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.11: shows the doping concentration of acceptors along the x direction.

(continued from previous page)

45 region{
46 binary{ name = GaAs } # material: GaAs
47 contact{ name = whatever } # contact definition
48 everywhere{} # ranging over the complete device, from x=0.

→˓0 nm to x=50.0 nm
49 }
50

51 region{ # separate region for adding doping only (no␣
→˓material is specified)

52 line{ x = [0.0, 25.0] } # position: x=0.0 nm to x=25.0 nm
53 doping{ # add doping to the region
54 constant{ # constant doping concentration profile
55 name = "p-type" # name of impurity
56 conc = 1.0e18 # doping concentration [cm-3]
57 }
58 }
59 }
60

61 region{ # separate region for adding doping only (no␣
→˓material is specified)

62 line{ x = [25.0, 50.0] } # position: x=25.0 nm to x=50.0 nm
63 doping{ # add doping to the region
64 constant{ # constant doping concentration profile
65 name = "n-type" # name of impurity
66 conc = 1.0e18 # doping concentration [cm-3]
67 }
68 }
69 }
70 }

In the code above, we first create a bulk GaAs layer and then add two doping regions for n-type and p-type dopants.
The doping regions do not include a material specification. Inside these regions, the position (line{}) and the
doping (doping{}) is specified. The dopants are added to the previously defined material region. In fact, this
example illustrates that, as far as the initialization is concerned, nextnano++ treats doping and materials separately.

Specify impurity species

4.2. Basics 59

nextnano++ Documentation, Release 1.25.13

73 impurities{ # if doped regions exist, this group is required
74 donor{ # select the species of dopants
75 name = "n-type" # select doping regions with name = "n-type"
76 energy = 0.045 # ionization energy of dopants
77 degeneracy = 2 # degeneracy of dopants
78 }
79 acceptor{ # select the species of dopants
80 name = "p-type" # select doping regions with name = "p-type"
81 energy = 0.045 # ionization energy of dopants [eV]
82 degeneracy = 4 # degeneracy of dopants
83 }
84 }

As we already know if dopants are added, the group impurity{} has to be included in the input file. Apart from
acceptor{}, we introduce donor{} as another doping species. For both species we refine the properties here.

Output
We simulate the device by clicking F8 on the keyboard. In the related output folder you should find a plot of the
concentration profiles (⇒ Structure ⇒ density_acceptor.dat / density_donor.dat) as shown in Figure
4.2.1.12 and Figure 4.2.1.13.

Figure 4.2.1.12: shows the doping concentration of acceptors along the x direction (p-doped region).

Important things to remember

• dopants are part of a region, i.e. structure{. . . region{. . . doping{}. . . }. . . }. Here you determine the concen-
tration of one impurity type for each grid point.

• The impurity type (species and properties) are defined inside the group impurity{}

Last update: 16/07/2024

— FREE — Adding and Replacing Doping

• Header

60 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.13: shows the doping concentration of donors along the x direction (n-doped region).

• Introduction

• Overview

– 1. Replace and remove doping

– 2. Add different dopants

• Important things to remember

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_doping_adding.in

• basics_1D_doping_replacing.in

Introduction

This tutorial continues our discussion about doping, and extend our basic knowledge gained from previous tutorial.
After completing this tutorial, you will know more about

• replacing impurities by impurities of the same type

• removing doping

• adding different impurity species to the same region

Overview

The device structures for this tutorial are shown in Figure 4.2.1.14.

Figure 4.2.1.14: GaAs/InAs/GaAs heterostructure with p-type doping (left) and with different doping (right)

4.2. Basics 61

nextnano++ Documentation, Release 1.25.13

1. Replace and remove doping

We will now consider the structure in Figure 4.2.1.14 (left). You can use the template input file ba-
sics_1D_doping_replacing.in.

Specifying regions with dopants

58 structure{ # this group is required in every input file
59 output_impurities{ boxes = yes} # output doping concentration [10^18 cm-3]
60

61 region{
62 binary{ name = GaAs } # material: GaAs
63 contact{ name = whatever } # contact definition
64 everywhere{} # ranging over the complete device, from x=0.

→˓0 nm to x=80.0 nm
65

66 doping{ # add doping to the region
67 constant{ # constant doping concentration profile
68 name = "p-type" # name of impurity
69 conc = 2.0e17 # doping concentration [cm-3]
70 }
71 }
72 }
73

74 region{
75 binary{ name = InAs } # region InAs
76 line{ x = [20.0, 30.0] } # overwriting GaAs at position: x=20.0 nm to␣

→˓x=30.0 nm
77

78 doping{ # add doping to the region
79 constant{ # constant doping concentration profile
80 name = "p-type" # name of impurity
81 conc = 1.0e18 # doping concentration [cm-3]
82 add = no # overwrites previously defined doping with␣

→˓label "p-type"
83 # Note: the default value is add=yes, which␣

→˓adds
84 # dopants to existing dopants
85 }
86 }
87 }
88

89 region{ # region for deleting dopants
90 line{ x = [60.0, 80.0] } # position: x=60.0 nm to 80.0 nm
91 doping{
92 remove{} # removing all dopants from this region
93 }
94 }
95 }
96 }

In this example, we apply the idea of overwriting previous regions to doping. We first define an p-doped GaAs
region with impurity concentration 1.0𝑒18𝑐𝑚−3 ranging over the whole device. Then, we want to overwrite GaAs
in the interval between 𝑥 = 20𝑛𝑚 and 𝑥 = 30𝑛𝑚 with p-doped InAs, with different impurity concentration.
However, we have to be careful when applying the idea of overwriting previous regions to doping. By default, the
doping is added and not overwritten. To replace the existing doping, it is necessary to use the specifier add = no.

If we want to remove all dopants from an interval, as it is the case in the region ranging from 𝑥 = 60𝑛𝑚 to
𝑥 = 80𝑛𝑚, we have to use remove{}.

62 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Specify impurity species

97 impurities{ # required if doping exists
98 donor{ # select the species of dopants
99 name = "p-type" # select doping regions with name = "p-type"

100 energy = 0.045 # ionization energy of dopants
101 degeneracy = 2 # degeneracy of dopants
102 }

Here, we specify to have only p-type impurities in our device.

Output
We simulate the device by clicking F8 on the keyboard. In the related output folder you should find a plot of the
concentration profiles (⇒ Structure⇒ density_donor.dat) as shown in Figure 4.2.1.15

Figure 4.2.1.15: Doping concentration of donors along the x direction.

2. Add different dopants

We will now consider the structure in Figure 4.2.1.14 (right). You can use the template input file ba-
sics_1D_doping_adding.in.

Specifying regions with dopants

structure{ # this group is required in every input file
output_impurities{ boxes = yes} # output doping concentration [10^18 cm-3]

region{
binary{ name = GaAs } # material: GaAs
contact{ name = whatever } # contact definition
everywhere{} # ranging over the complete device, from x=0.

→˓0 nm to x=80.0 nm

doping{ # add doping to the region
constant{ # constant doping concentration profile

name = "p-type-I" # name of impurity
conc = 2.0e17 # doping concentration [cm-3]

}
}

}

(continues on next page)

4.2. Basics 63

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

region{
binary{ name = InAs } # region InAs
line{ x = [20.0, 30.0] } # overwriting GaAs at position: x=20.0 nm to␣

→˓x=30.0 nm

doping{ # add p-doping to the region: the existing "p-
→˓type-I" doping is not overwritten

constant{ # constant doping concentration profile
name = "p-type-II" # name of impurity
conc = 1.0e18 # doping concentration [cm-3]

}
}

}

region{ # region for adding doping
line{ x = [60.0, 80.0] } # position: x=60.0 nm to 80.0 nm

doping{ # add n-doping to the region: the existing "p-
→˓type-II" doping is not overwritten

constant{ # constant doping concentration profile
name = "n-type" # name of impurity
conc = 4.0e17 # doping concentration [cm-3]

}
}

}
}

Here, we crete GaAs and InAs each with specific doping. Note that InAs replaces GaAs on the interval x = [20.0,
30.0], while the doping definitions do not influence each other. Also, on the interval x = [60.0, 80.0], n-type
doping is simlpy added.

It should be emphasized that the option doping{...add=no..} is only applicable to dopants of the same dopant
type. Remember: a doping type, i.e. chemical element, is associated with one particular name. If we wish to
replace dopants by a different dopant type, we would need to remove the existing dopants first and then add the
new ones.

Specify impurity species

97 impurities{ # required if doping exists
98 acceptor{ # select the species of dopants
99 name = "p-type-I" # select doping regions with name = "p-type-I"

100 energy = 0.045 # ionization energy of dopants
101 degeneracy = 4 # degeneracy of dopants
102 }
103

104 acceptor{ # select the species of dopants
105 name = "p-type-II" # select doping regions with name = "p-type-II"
106 energy = 0.045 # ionization energy of dopants
107 degeneracy = 4 # degeneracy of dopants
108 }
109

110 donor{ # select the species of dopants
111 name = "n-type" # select doping regions with name = "n-type"
112 energy = 0.045 # ionization energy of dopants
113 degeneracy = 2 # degeneracy of dopants
114 }
115 }

64 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

For every impurity type, we have to add a new accceptor{}/ donor{} group.

Output
We simulate the device by clicking F8 on the keyboard. In the related output folder you should find a plot of the
concentration profiles (⇒ Structure⇒ density_donor.dat) as shown in Figure 4.2.1.16

Figure 4.2.1.16: Doping concentration of donors/ acceptors along the x direction.

Important things to remember

• The nextnano++ tool treats each doping type associated with a particular name separately, thus they do not
overwrite each other.

• only doping associated with the same name can overwrite each other (add = no)

Last update: 16/07/2024

— FREE — Doping Functions

• Header

• Introduction

• Overview

• Using pre-defined doping profiles

• 2. Using custom doping profiles

• Important things to remember

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_doping_predefined.in

• basics_1D_doping_analytic.in (not compatible with the free version)

4.2. Basics 65

nextnano++ Documentation, Release 1.25.13

Introduction

This tutorial is the fifth in our introductory series. In the previous tutorials, we’ve already encountered one pre-
defined doping profile - the constant one. In the following, we will see more possibilities to create doping profiles.
After completing this tutorial, you will know more about:

• different doping profiles, namely linear and Gaussian

• crating custom doping profiles

Keywords: Gaussian1D{}, linear{}, import{ }

Overview

As an overview, Figure 4.2.1.17 shows all the structures that will be created in this tutorial.

Figure 4.2.1.17: shows doping profiles including linear and Gaussian functions (left) and user defined functions
(right).

Using pre-defined doping profiles

In this example we demonstrate two pre-defined doping profiles, namely Gaussian and linear profiles. For that we
consider the setup in Figure 4.2.1.17 (left). The associated input file is basics_1D_doping_predefined.in.

Specifying regions with dopants

37 structure{ # this group is required in every input file
38 output_impurities{ boxes = yes} # output doping concentration [10^18 cm-3]
39

40 #---------
41 # material
42 #---------
43

44 region{
45 binary{ name = GaAs } # material: GaAs
46 contact{ name = whatever } # contact definition
47 everywhere{} # region spreads over the complete device
48 }
49

50 region{
51 binary{ name = InAs } # region: InAs
52 line{ x = [20.0, 30.0] } # position: x=20.0 nm to x=30.0 nm
53 }
54

55 #-------
56 # doping
57 #-------
58

59 region{
60 line{ x = [30.0, 40.0] } # position: x = 30.0 nm to 40.0 nm
61 doping{ # add doping to the region
62 gaussian1D{ # Gaussian doping concentration profile
63 name = "p-type" # name of impurity
64 conc = 1.0E18 # maximum of doping concentration [cm-3]
65 x = 35 # x coordinate of Gauss center

(continues on next page)

66 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

66 sigma_x = 1.0 # standard deviation in x direction
67 }
68 }
69 }
70

71 region{
72 line{ x = [0.0, 20.0] } # position: x = 0.0 nm to 20.0 nm
73 doping{ # add doping to the region
74 linear{ # linear doping concentration profile
75 name = "p-type" # impurity name
76 conc = [0, 6.0e17] # start and end value of doping concentration␣

→˓[cm-3]
77 x = [0.0, 20.0] # position: x=0.0 nm to x=20.0 nm
78 }
79 }
80 }
81 }

We separated the structural set up in two sections: 1) material and 2) doping. In the doping section we use
linear{} and gaussian1D{} to specify the doping profiles. For defining the Gaussian profile

𝐶𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝑥) = 𝐶𝑐𝑜𝑛𝑐
1

𝜎
√
2𝜋

· 𝑒− 1
2 (

𝑥−𝑥0
𝜎)2

with the total doping concentration 𝐶𝑐𝑜𝑛𝑐, coordinate of the maximum 𝑥0 and standard deviation 𝜎, three param-
eters has to be specified. For defining the linear profile

𝐶𝑙𝑖𝑛𝑒𝑎𝑟(𝑥) =
𝐶𝑒𝑛𝑑 − 𝐶𝑠𝑡𝑎𝑟𝑡
𝑥𝑒𝑛𝑑 − 𝑥𝑠𝑡𝑎𝑟𝑡

· 𝑥+ 𝐶𝑠𝑡𝑎𝑟𝑡,

we specify start and end value of doping concentration [𝑦𝑠𝑡𝑎𝑟𝑡, 𝑦𝑒𝑛𝑑] with the corresponding x coordinates
[𝑥𝑠𝑡𝑎𝑟𝑡, 𝑥𝑒𝑛𝑑], both as vectors.

Specify impurity species

84 impurities{ # required if doping exists
85 acceptor{ # select the species of dopants
86 name = "p-type" # select doping regions with name = "p-type"
87 energy = 0.045 # ionization energy of dopants
88 degeneracy = 4 # degeneracy of dopants
89 }
90 }

Output
We simulate the device by clicking F8 on the keyboard. In the related output folder you should find a plot of the
concentration profile (⇒ Structure⇒ density_acceptor.dat) as shown in Figure 4.2.1.18.

2. Using custom doping profiles

In this example we introduce custom defined doping profiles. For that we consider the set up in Figure 4.2.1.17
(right). The associated input file is basics_1D_doping_analytic.in

Defining custom functions

20 import{ # this group is optional
21 analytic_function{ # definition of analytic function
22 name = "custom_exp_fun_I" # name of function
23 function = "1e18 *(1-exp(-x+20))" # define the function

(continues on next page)

4.2. Basics 67

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.18: shows the doping concentration of donors along x.

(continued from previous page)

24 }
25 analytic_function{ # definition of analytic function
26 name = "custom_exp_fun_II" # name of fucntion
27 function = "1e18*exp(-x+30)" # define the function
28 }
29 }

In order to create custom doping profiles, we have to define analytical functions in the group import{ } first. The
analytical expression is given by a string. Later, we can incorporate these functions for adding doping by referring
to the corresponding name.

Specifying regions with dopants

63 structure{ # this group is required in every input file
64 output_impurities{ boxes = yes} # output doping concentration [10^

→˓18 cm-3]
65

66 #---------
67 # material
68 #---------
69

70 region{
71 binary{ name = GaAs } # material: GaAs
72 contact{ name = whatever } # contact definition
73 everywhere{} # region spreads over the␣

→˓complete device
74 }
75

76 region{
77 binary{ name = InAs } # region: InAs
78 line{ x = [20.0, 30.0] } # position: x=20.0 nm to x=30.0 nm
79 # overwrites the previously␣

→˓defined GaAs region
80 }
81

82 #-------
83 # doping

(continues on next page)

68 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

84 #-------
85

86 region{ # region: adds doping
87 line{ x = [20.0, 30.0] } # position: x=20.0 nm to x=30.0 nm
88 doping{
89 import{ # reference to import{ } group,␣

→˓where custom functions are defined
90 name = "n-type" # name of impurity
91 import_from = "custom_exp_fun_I" # import doping profile: custom_

→˓exp_fun_I
92 }
93 }
94 }
95

96 region{ # region: adds doping
97 line{ x = [30.0, 50.0] } # position: x=30.0 nm to x=50.0 nm
98 doping{
99 import{ # reference to import{ } group,␣

→˓where custom functions are defined
100 name = "n-type" # name of impurity
101 import_from = "custom_exp_fun_II" # import doping profile: custom_

→˓exp_fun_II
102 }
103 }
104 }
105 }

Inside doping{}, the previously defined functions are used to create custom doping profiles. We import each
function (import_from) from the group import{ } by referring to the name that we had assigned. The function
is then evaluated on the interval specified inside line{} yielding the final doping profile.

Besides the shape of the doping profile we also specify the name, as usually.

Specify impurity species

108 impurities{ # required if doping exists
109 acceptor{ # select the species of dopants
110 name = "p-type" # select doping regions with name = "p-type"
111 energy = 0.045 # ionization energy of dopants
112 degeneracy = 4 # degeneracy of dopants
113 }
114 }

Output
We simulate the device by clicking F8 on the keyboard. In the related output folder you should find a plot of the
concentration profile (⇒ Structure⇒ density_donor.dat) as shown in Figure 4.2.1.19.

Important things to remember

• before importing and using our own functions, we first have to define them in the import{ } group

Last update: 16/07/2024

4.2. Basics 69

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.19: The doping concentration of donors along the x direction.

— FREE — Doping in Heterostructure

• Header

• Introduction

• Specifying the structure

• Specify impurity species

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_doping_heterostructure.in

Introduction

This tutorial is an example of defining a heterostructure with multiple doping regions (Figure 4.2.1.20). The device
structure is shown in Figure 4.2.1.20.

Figure 4.2.1.20: shows structure with doping profile

70 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Specifying the structure

Inside the group structure{ }, we’ve separated the code into two blocks. In the first we defined material regions,
and in the second we added doping.

42 # ---------
43 # materials
44 # ---------
45

46 region{
47 ternary_constant{ # constant alloy composition
48 name = "In(x)Ga(1-x)As" # material: InGaAs
49 alloy_x = 0.5 # alloy composition
50 }
51 contact{ name = whatever } # contact definition
52 everywhere{} # ranging over the complete device, from␣

→˓x=0.0 nm to x=1503.0 nm
53 }
54

55 region{
56 ternary_constant{ # constant alloy composition
57 name = "AlAs(x)Sb(1-x)" # material: AlAsSb
58 alloy_x = 0.85 # alloy composition
59 }
60 line{ x = [300.0, 488.0] } # overwriting InGaAs in the interval from␣

→˓x = 300.0 nm to x=488.0 nm
61 }
62

63 region{
64 ternary_constant{ # constant alloy composition
65 name = "Al(x)In(1-x)As" # material: AlInAs
66 alloy_x = 0.5 # alloy composition
67 }
68 line{ x = [488.0, 1493.0] } # overwriting InGaAs in the interval from␣

→˓x = 388.0 nm to x=1493.0 nm
69 }
70

71 region{
72 quaternary_constant{ # constant alloy composition
73 name = "Al(x)Ga(y)In(1-x-y)As" # material: AlGaInAs
74 alloy_x = 0.4 # alloy composition
75 alloy_y = 0.2 # alloy composition
76 }
77 line{ x = [593.0, 1193.0] } # overwriting AlInAs in the interval from␣

→˓x = 593.0 nm to x=1193.0 nm
78 }
79

80 region{
81 ternary_constant{ # constant alloy composition
82 name = "In(x)Ga(1-x)As" # material: InGaAs
83 alloy_x = 0.5 # alloy composition
84 }
85 line{ x = [643.0, 1143.0] } # overwriting AlInAs in the interval from␣

→˓x = 643.0 nm to x=1143.0 nm
86 }

There are often many ways to create a desired structure. However, utilizing the symmetry of a structure can some-
times simplify things. In the code above we for example, we try to omit defining each material layer separately.

4.2. Basics 71

nextnano++ Documentation, Release 1.25.13

Instead, we defined the outer material layers as one region and then overwriting it inside by the next inner layers.
Thus, we do not have to define the two InGaAs or InAlGaAs regions separately.

88 # ------
89 # doping
90 # ------
91

92 region{ # region for adding doping
93 line{ x = [0.0, 300.0]} # position: x=0.0 nm to 300.0 nm
94

95 doping{
96 constant{ # constant doping concentration profile
97 name = "n-type-doping" # name of impurity
98 conc = 1.0e19 # doping concentration [cm-3]
99 }

100 }
101 }
102

103 region{ # region for adding doping
104 line{ x = [300.0, 400.0]} # position: x=300.0 nm to 400.0 nm
105 doping{
106 constant{ # constant doping concentration profile
107 name = "n-type-doping" # name of impurity
108 conc = 5.0e18 # doping concentration [cm-3]
109 }
110 }
111 }
112

113 region{ # region for adding doping
114 line{ x = [440.0, 484.0]} # position: x=440.0 nm to 484.0 nm
115 doping{
116 constant{ # constant doping concentration profile
117 name = "p-type-doping" # name of impurity
118 conc = 1.0e18 # doping concentration [cm-3]
119 }
120 }
121 }
122

123 region{ # region for adding doping
124 line{ x = [534.0, 589.0]} # position: x=534.0 nm to 589.0 nm
125 doping{
126 constant{ # constant doping concentration profile
127 name = "p-type-doping" # name of impurity
128 conc = 5.0e18 # doping concentration [cm-3]
129 }
130 }
131 }
132

133 region{ # region for adding doping
134 line{ x = [1193.0, 1493.0]} # position: x=1193.0 nm to 1493.0 nm
135 doping{
136 constant{ # constant doping concentration profile
137 name = "p-type-doping" # name of impurity
138 conc = 5.0e18 # doping concentration [cm-3]
139 }
140 }
141 }
142

(continues on next page)

72 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

143 region{ # region for adding doping
144 line{ x = [1493.0, 1503.0]} # position: x=1493.0 nm to 1503.0 nm
145 doping{
146 constant{ # constant doping concentration profile
147 name = "p-type-doping" # name of impurity
148 conc = 1.0e19 # doping concentration [cm-3]
149 }
150 }
151 }

We define each doping region one at a time: first n-type regions and then p-type regions.

Specify impurity species

155 impurities{ # required if doping exists
156 donor{ # select the species of dopants
157 name = "n-type-doping" # select doping regions with name = "n-type-doping"
158 energy = 0.045 # ionization energy of dopants
159 degeneracy = 2 # degeneracy of dopants
160 }
161 acceptor{ # select the species of dopants
162 name = "p-type-doping" # select doping regions with name = "p-type-doping"
163 energy = 0.045 # ionization energy of dopants
164 degeneracy = 4 # degeneracy of dopants
165 }
166 }

Last update: 16/07/2024

— FREE — Variables

• Header

• Introduction

– Application: Performing a parameter sweep

• Important things to remember

Header

Files for the tutorial located in nextnano++\examples\basics

• basics_1D_variables.in

Introduction

This tutorial teaches how to use variables in the input file. Besides their advantages for the code, e.g. en-
hance flexibility, creating dependencies between parameters, etc., variables enable performing parameter sweeps
in nextnano++. After completing this tutorial, you will know more about:

• defining variables

• common usage of variables in nextnano++

4.2. Basics 73

nextnano++ Documentation, Release 1.25.13

In this tutorial we want to create a GaAs/InAs/GaAs single quantum from tutorial 1 well once again, this time using
variables.

Defining variables

7 # Independant variables
8 #----------------------
9

10 $device_start = 0.0 # device starts at x = 0.0 nm (DisplayUnit:nm)
11 $device_length = 50.0 # device ranges from $device_start to $device_start␣

→˓+ $device_length (DisplayUnit:nm)
12 $InAs_width = 20.0 # thickness of InAs layer (DisplayUnit:nm)␣

→˓(ListOfValues:5.0, 10.0, 20.0)
13

14 $grid_spacing_fine = 0.5 # fine grid spacing value (DisplayUnit:nm)
15 $grid_spacing_course = 2.0 # coarse grid spacing value (DisplayUnit:nm)
16

17 # Derived variables
18 #------------------
19

20 $InAs_start = $device_start + ($device_length - $InAs_width)/2 # calculating␣
→˓start position of InAs layer (InAs layer should be centered around the middle of␣
→˓the device) (DisplayUnit:nm) (DoNotShowInUserInterface)

21 $InAs_end = $device_start + ($device_length + $InAs_width)/2 # calculating␣
→˓end position of InAs layer (DisplayUnit:nm) (DoNotShowInUserInterface)

Variables start with the character “$” followed by their name. A good practice is place the variables at the beginning
of the input file. In the example we see one major application for variables in nextnano++, namely the structural
design. Since we are now able to define dependencies between parameters explicitly, three variables - $xmin,
$device_length and $InAs_width - set up the complete device structure.

The comments (DisplayUnit: . . .), (ListOfValues: . . .) and (DoNotShowInUserInterface) are important for
parameter sweeps which we will discuss later. The purpose of these three specifiers in particular are to display the
unit of the variable in the sweep interface, to give a list of sweep values and to exclude a variable from the sweep
interface.

Specifying the grid

37 grid{ # this group is required in every input file
38 xgrid{ # grid in x direction
39 line{
40 pos = $device_start # assign start position of device␣

→˓(x=0.0 nm)
41 spacing = $grid_spacing_fine # assign course grid spacing (4.0 nm)
42 }
43 line{
44 pos = $InAs_start # assign grid point at GaAs/InAs␣

→˓interface (20.0 nm)
45 spacing = $grid_spacing_course # assign fine grid spacing (0.5 nm)
46 }
47 line{
48 pos = $InAs_start # assign grid point at InAs/GaAs␣

→˓interface (30.0 nm)
49 spacing = $grid_spacing_course # assign fine grid spacing (0.5 nm)
50 }
51 line{
52 pos = $device_start+$device_length # assign end position of device (x=50.

→˓0 nm)
53 spacing = $grid_spacing_fine # assign course grid spacing (4.0 nm)

(continues on next page)

74 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

54 }
55 }
56 }

The grid is now completely derived from the variables. Now, if some variables are changed, we ensure that the
grid is adapted to the structure of the device.

Specifying the structure

59 structure{
60 region{
61 binary{ name = GaAs } # GaAs region
62 contact{ name = whatever } # contact definition
63 everywhere{} # region spreads over the complete␣

→˓device (from $device_start to $device_start+$device_length)
64 }
65 region{
66 binary{ name = InAs } # InAs region
67 line{ x = [$InAs_start , $InAs_end] } # derived position of InAs layer
68 # overwrites the previously defined␣

→˓GaAs region
69 }
70 }

We assign the previously derived variables for the position of the InAs layer to the corresponding region.

Application: Performing a parameter sweep

For performing a parameter sweep, it was necessary to introduce variables. Now, we want to show how to sweep
through the InAs layer thickness and then output the simulated energy profiles.

The first step is to initialize the sweep. Under the tab Template in nextnanomat we load the currently opened input
file by clicking ref: icon (Figure 4.2.1.21). Then we select list of values and the variable $InAs_width which
should be swept. Since we specified a list of values for $InAs_width in the input file, the list is automatically
inserted. Then we have to create the input files for each value in the list. By clicking create input file they
are added to the batch list. The second step is to run all files from the batch list by pressing F10.

After running the simulation you should find an output folder for every sweep value:
basics_1D_variables_InAs_width_<SweepValue>. Figure 4.2.1.22 shows the overlay of energy pro-
files from every sweep.

Important things to remember

• Variables are defined by “$” + “Name of variable”

Last update: 16/07/2024

Importing files

• Header

• Importing data

– Reading external files

4.2. Basics 75

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.21: Screenshot showing nextnanomat interface to initialize the sweep:
1. load input file,
2. select variable and list of values for the sweep,
3. create new input files (saved to temporary folder)

Figure 4.2.1.22: Overlay of energy profiles (conduction band at Γ and heavy hole valence band) corresponding to
different InAs layer widths

76 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

– Electric potential

– Strain tensor

– Alloy compositions

• Imported data in the simulation

– Electric potential

– Strain tensor

– Alloy compositions

– Resulting bandedges

• 2D and 3D simulations

Header

Files for the tutorial located in nextnano++\examples\basics

• import-dat_1D_nnp.in - importing *.dat files to 1D simulation

• import-dat_2D_nnp.in - importing *.dat files to 2D simulation

• import-dat_3D_nnp.in - importing *.dat files to 3D simulation

Scope of the tutorial:
This tutorial is presenting how to import various files to nextnano++ simulations. The examples cover
importing electric potential, alloy contents, and strain for 1D, 2D, and 3D simulations from *.dat files.

Relevant output Files:
• bias_00000\bandedges.dat

• Imports\Ternary_alloy.dat

• Imports\Strain_Tensor.dat

• Imports\Potential.dat

Introduced Keywords:
• import{ directory file{ filename format } }

• region{ ternary_import{ } }

• strain{ import_strain{ } }

• poisson{ import_potential{} }

Importing data

Reading external files

The pivotal group responsible for importing files for simulations with nextnano++ is the group import{ }. Its
purpose for this tutorial is to inform nextnano++ about:

• the location of a selected file,

• format of the file,

• name of the file,

• how to refer to the file,

• whether the data should be rescaled.

4.2. Basics 77

nextnano++ Documentation, Release 1.25.13

EXAMPLE 1. Importing a file from the location of the input file
Let us say that one has an input file C:\input_files\my_input_file.in. Having the fol-
lowing script in the file

import{
file{

name = "some_imported_data"
filename = "my_alloy_from_XRF"
format = DAT

}
}

results in nextnano++ trying to access and read a file C:\input_files\my_alloy_from_XRF.
dat. The file can be used in the input file under the name some_imported_data.

EXAMPLE 2. Importing a file from an arbitrary location
Giving that the data to import is stored elsewhere, one just needs to define import{ directory
} attribute to navigate nextnano++ to the location of the file to import. The script

import{
directory = "D:\\my_precious_measurements\\"
file{

name = "some_imported_data"
filename = "my_alloy_from_XRF"
format = DAT

}
}

instructs nextnano++ to access and read D:\my_precious_measurements\
my_alloy_from_XRF.dat.

� Hint

It is also allowed to write directory = "D:\my_precious_measurements\" instead of
directory = "D:\\my_precious_measurements\\"

ò Note

The input files prepared for this tutorial have import{ directory = "./"} specified
which is equivalent to not specifying directory attribute at all.

EXAMPLE 3. Importing a file and rescaling
Let us assume that somebody has prepared a file containing alloy content defined in the range
from 0 to 100. The nextnano++ tool requires the content to be imported as mole fraction, there-
fore, defined in the range from 0 to 1. To import data from such a file one can use a scaling factor
0.01 which will be used while reading the file. Running the following script

import{
directory = "D:\\my_precious_measurements\\"
file{

name = "some_imported_data"
filename = "my_alloy_from_XRF"
format = DAT
scale = 0.01

}
}

78 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

results in nextnano++ rescaling all the imported values (except the domain, coordinates) by
multiplying them by 0.01. Therefore, a data for 2D simulation

coord-x coord-y alloy-x
0 3 10
5 5 25
20 6 70

will be read as

coord-x coord-y alloy-x
0 3 0.1
5 5 0.25
20 6 0.7

To use imported file in the simulation, one needs to use the reference name specified by import{ file{ name }
} in other proper places in the input file.

Electric potential

For this tutorial we provide you with three files containing electric potential for importing import-
dat_1D_nnp_potential.dat, import-dat_2D_nnp_potential.dat*, and import-dat_3D_nnp_potential.dat for 1D, 2D,
and 3D simulations, respectively. Let us consider 1D simulation for simplicity; 2D and 3D cases are similar.

EXAMPLE 4. Importing electric potential from a *.dat file
The :import_1D_dat_nnp_potential.dat is imported in the input file :import-dat_1D_nnp.in as
follows.

import{
file{

name = "imported_potential"
filename = "import-dat_1D_nnp_potential.dat"
format = DAT

}
}

It allows nextnano++ to use the data through the name "imported_potential" elsewhere. As
the electric potential is related to the Poisson equation, one needs to use the name inside a nested
group poisson{ import{ } } in order to inform the tool that these data should be used as an
electric potential. The relevant piece of script in the :import_1D_dat_nnp.in is:

poisson{
import_potential{

import_from = "imported_potential"
}

}

Strain tensor

You can apply these manners to the other parameters, such as, strain and potential.

100 import{
101

102 file{
103 name = "imported_strain" # name for referencing the␣

→˓imported data in the input file
(continues on next page)

4.2. Basics 79

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

104 filename = "import-dat_1D_nnp_strain.dat" # name of file which is imported
105 format = DAT # format of the file to be␣

→˓imported. At the moment only AVS format and a simple .dat format is supported.
106 }
107 }

77 strain{
78 import_strain{
79 import_from = "imported_strain" # reference to imported data in␣

→˓import{ }. The file being imported must have exactly six data components
80 # expected order of tensor␣

→˓components is: e_11, e_22, e_33, e_12, e_13, e_23.
81 }
82 output_strain_tensor{
83 simulation_system = yes
84 crystal_system = yes
85 }
86 }

In the case, the import file has only one column (x) of a coordinate. Number of required columns of coordinate
depends on dimensionality of the simulation, 2 columns (x and y) are necessary for 2D simulation and 3 columns
(x, y, and z) for 3D simulation. Additionally, the file contains 6 tensor components, 𝜀11, 𝜀22, 𝜀33, 𝜀12, 𝜀13, and 𝜀23,
each in separate collumn.

Alloy compositions

24 structure{
25 output_alloy_composition{}
26 region{
27 line{
28 x = [0, 16]
29 }
30 ternary_import{
31 name = "Al(x)Ga(1-x)As" # ternary material name for this␣

→˓region which uses imported alloy profile
32 import_from = "imported_ternary" # reference to imported data in import

→˓{ }. The file being imported must have exactly one data component (x)
33 }
34 }
35 }

As ternary_import{ } is used to import alloy profile, imported_ternary file contains information about alloy
profile. The file has the following data.

x-coord alloy_parameter
4 15
12 30

The “alloy_parameter” should be ≤ 1, therefore, import{ file{ scale } } is necessary to be consistent with
that.

Once you import a file, you can use it multiple times.

100 import{
101

(continues on next page)

80 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

102 file{
103 name = "imported_quaternary" # name for referencing the␣

→˓imported data in the input file
104 filename = "import-dat_1D_nnp_quaternary.dat" # name of file which is␣

→˓imported
105 format = DAT # format of the file to be␣

→˓imported.
106 # At the moment only AVS␣

→˓format and a simple .dat format is supported.
107 }
108 }

24 structure{
25

26 region{
27 line{
28 x = [17, 33]
29 }
30 quaternary_import{
31 name = "Al(x)Ga(y)In(1-x-y)As" # quaternary material name for␣

→˓this region which uses imported alloy profile
32 import_from = "imported_quaternary" # reference to imported data in␣

→˓import{ }.
33 # sThe file being imported must␣

→˓have exactly two data components (x,y).
34 }
35 }
36 region{
37 line{
38 x = [34, 50]
39 }
40 quaternary_import{
41 name = "Al(x)Ga(1-x)As(y)Sb(1-y)" # quaternary material name for this␣

→˓region which uses imported alloy profile
42 import_from = "imported_quaternary" # reference to imported data in␣

→˓import{ }.
43 # The file being imported must have␣

→˓exactly two data components (x,y).
44 }
45 }
46 }

In the code, you are using import-dat_1D_nnp_quaternary.dat file twice to specify those alloy compositions.

Imported data in the simulation

import{ output_imports{} } outputs all imported data including scale factors. The filenames of the outputs
correspond to the ones defined import{ file{ name } }.

Electric potential

. Attention

Prepared input files are not solving the Poisson equation.

4.2. Basics 81

nextnano++ Documentation, Release 1.25.13

The Figure 4.2.1.23 shows the potential defined in the import files.

Figure 4.2.1.23: The potential introduced from the import file. The resulting potential in the entire structure.

Strain tensor

Figure 4.2.1.24: Imported strain tensor.

Alloy compositions

Figure 4.2.1.25 shows the alloy compositions in each region defined in the import files (a), (b) and the input file
(c).

Figure 4.2.1.25: The alloy composition of Al(x)Ga(1-x)As is shown in (a). The alloy composition of
Al(x)Ga(y)In(1-x-y)As is shown in (b) (The violet line: x, The purple line: y). (c) shows the alloy composi-
tions in the whole structure. Region I is Al(x)Ga(y)In(1-x-y)As, region II is Al(x)Ga(y)In(1-x-y)As, and region
III is Al(x)Ga(1-x)As(y)Sb(1-y), respectively.

The grid points in Figure 4.2.1.25 are originated from the import files.

There are some important points you can see from Figure 4.2.1.25 (c). First, you should be aware that the values
between grid points are interpolated linearly. Therefore, the composition between the region I and the region II
steeply drops. Second, the regions in which any date is not specified in import files are interpolated by constants.
As the composition of the region III is not specified in the import files, it has continuously taken over the value at
the boundary between the region II and the region III.

82 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Resulting bandedges

At last, we briefly check the band edges of the structure (Figure 4.2.1.26).

Figure 4.2.1.26: The band edges of the structure. The HH band and the LH band are degenerated in the region
where there is no strain.

HH, LH, and SO band mean heavy hole, light hole, and split off band, respectively. The Fermi level is set to 0 eV
You can refer to Definition of Band Offsets (zincblende) for further knowledge about band offsets.

2D and 3D simulations

In the 2D simulation, you can import files in the same manners as in the 1D simulation. Of course, the import files
have to be 2 dimensional.

Figure 4.2.1.27 shows the geometry of the materials used in this simulation.

Here, we look at the alloy compositions of the materials as an example of a 2D import file. 2D_ternary_alloy.dat,
2D_quaternary_alloy.dat are imported for specifying the alloy compositions for the materials above.

. Attention

In this tutorial we are assuming always that the imported data is defined on a domain or subspace of the simu-
lation domain. Therefore, the number of dimensions of the domain of the imported data is always assumed to
be the same as of the simulation, e.g., 2D simulation imports data with two first columns standing for x and y
coordinates. If you need a tutorial covering such case, let us know here.

Last update: 16/07/2024

4.2.2 Contacts and Boundary Conditions
This will be a set of tutorials teaching basics on how to define and choose boundary conditions for your simulations
to represent various physical scenarios at the boundaries of your simulation. Currently, you can find here only one
tutorial, for the Schottky contact, which will be later split and expanded into multiple more specific tutorials.

4.2. Basics 83

https://nextnano.atlassian.net/servicedesk/customer/portals

nextnano++ Documentation, Release 1.25.13

Figure 4.2.1.27: The geometry of the materials used in the 2D simulation. The dashed line is along x = 7.5 nm.

Figure 4.2.1.28: The alloy compositions of (a) x and (b) y of the materials used in the 2D simulation.

84 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

— FREE — Schottky Barrier

• Header

• Introduction

• Schottky Barrier

Header

Files for the tutorial located in nextnano++\examples\basics

• contacts_1D_ohmic_charge_neutral_GaAs_nnp.in

• contacts_1D_schottky_barrier_GaAs_nnp.in

• contacts_2D_schottky_barrier_GaAs_nnp.in (not compatible with the free version)

Scope:
The Schottky barrier at the boundary of simulation domain.

Introduction

When a metal is in contact with a semiconductor, a potential barrier is formed at the metal-semiconductor interface.
In 1938, Walter Schottky suggested that this potential barrier arises due to stable space charges in the semicon-
ductor. At thermal equilibrium, the Fermi levels of the metal and the semiconductor must coincide. There are two
limiting cases:

a) Ideal Schottky barrier:
• metal/n-type semiconductor: The barrier height 𝜑𝐵 is the difference of the metal

work function 𝜑𝑀 and the electron affinity (𝜒) in the semiconductor.

e𝜑𝐵 = e(𝜑𝑀 − 𝜒𝑠)

• metal/p-type semiconductor: The barrier height 𝜑𝐵,𝑝 is given by:

e𝜑𝐵,𝑝 = e(𝜑𝑀 − 𝜒𝑠)− 𝐸gap

b) Fermi level pinning:
If surface states on the semiconductor surface are present: The barrier height is deter-
mined by the property of the semiconductor surface and is independent of the metal
work function

. Attention

Note that this approach have physical sense only for structures that are not biased, in global equi-
librium.

Consequently, the Schottky barrier corresponds a (Dirichlet) boundary condition for the electrostatic potential, i.e.
the solution of the Poisson equation in the semiconductor, because the conduction and valence band edge energies
are in a definite energy relationship with the Fermi level of the metal.

contacts{
schottky{ # Schottky barrier

name = contact
bias = 0.0 # [V] apply voltage

(continues on next page)

4.2. Basics 85

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

barrier = 0.53 # [V] GaAs, S.M. Sze, "Physics of Semiconductor␣
→˓Devices", p. 275 (2nd ed.)

}
}

Schottky Barrier

All input files in this tutorial assume n-type donor concentration in 𝐺𝑎𝐴𝑠 has to be 1 · 1019 cm-3 with realistic
activation energies. With the temperature set to 300 K this effects in having the Fermi level in the conduction band
of the n-doped GaAs, see bandedges.dat output by contacts_1D_ohmic_charge_neutral_GaAs_nnp.in.

Running the contacts_1D_ohmic_charge_neutral_GaAs_nnp.in and contacts_1D_schottky_barrier_GaAs_nnp.in
with the $barrier=0.53 and $barrier=0.00 one can obtain a comparison of band profiles as presented in the
Figure 4.2.2.1, which shows the conduction band edge profile for n-type 𝐺𝑎𝐴𝑠 in equilibrium with

• the Schottky barrier of 0.53 V, i.e. the conduction band edge is pinned 0.53 eV above the Fermi level set at
0 eV

• the Schottky barrier of 0.00 V

• no barrier within “ohmic” contact

at position of 10 nm. The contact regions in these simulations are defined in the range from 0 nm to 10 nm but
no equations are solved inside this region as both Fermi levels and electric potential are already assumed there as
boundary conditions.

Note that in equilibrium the Fermi level is constant and equal to 0 eV in the whole device. If the semiconductor
is doped, the conduction and valence band edges are shifted with respect to this Fermi level, i.e. relative to 0 eV
and are thus dependent on doping. This is a bulk property and independent of surface effects, like ohmic contacts
or Schottky barrier height, see right end of the Figure 4.2.2.1. At the left boundary, however, the band profile is
affected by the type of contact.

ò Note

A Schottky barrier of 0 V is not equivalent to an ohmic contact.

Both contacts{ schottky{} } and contacts{ ohmic{} } used in the input files poses Dirichlet boundary
conditions for the Poisson and Current equations. Within the contacts{ ohmic{} }, the electrostatic potential
is set to the value satisfying requirement of charge neutrality in the region of this contact, 𝜑 = 0. The contacts{
schottky{} } in the input files sets this value by the Schottky barrier, 𝜑𝐵 , being the value of the conduction band
edge at the boundary with respect to the Fermi level:

𝐸𝑐 − 𝐸𝐹 = e𝜑𝐵

In this particular example, an artificial Schottky barrier of -0.0365 V would be an equivalent to results obtained
using an contacts{ ohmic{} }, (i.e. flat band condition), but only for the same temperature and the same doping
concentration.

The input file contacts_2D_schottky_barrier_GaAs_nnp.in shows how to obtain the same results within 2D simu-
lation.

Last update: 16/07/2024

86 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.2.1: Calculated conduction band profile

— FREE — Surface Charges

• Header

• Interface charges (surface states)

• Surface states - Acceptors

Header

Files for the tutorial located in nextnano++\examples\basics

• contacts_1D_zero_field_surface_charges_GaAs_nnp.in

• contacts_1D_zero_field_surface_acceptors_GaAs_nnp.in

Scope:
Surface charges on boundaries - comparison to the Schottky barrier

Interface charges (surface states)

Instead of specifying a Schottky barrier, the user can alternatively specify a fixed surface charge density as presented
in contacts_1D_zero_field_surface_charges_GaAs_nnp.in. The use of charges is similar as of dopants. One needs
to define them for a specific region

structure{
...

(continues on next page)

4.2. Basics 87

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

region{ # interface charges (surface states)
line{ x = [10 , 10 + $Width] }
doping{
constant{

name = "negative-interface-charge" # name of impurity
conc = $VolumeDensity # doping concentration [cm-3]

}
}

}

and define with some name and given sign.

impurities{
...
charge{

name = "negative-interface-charge" # refer to region with name␣
→˓negative-interface-charge

type = negative
}

}

Figure 4.2.2.2 shows that the red curve (= “ohmic” contact with interface charge density 𝜎 (surface states) of
-8.4796 · 1012 |𝑒| /cm2 = -1.3586 · 10-2 C/m2) is equivalent to the black curve (Schottky barrier of 0.53 eV).

A sheet charge density of -8.4796 · 1012 cm-2 corresponds to a volume charge of -8.4796 · 1020 cm-3 if one assumes
this charge to be distributed over a grid spacing of 0.1 nm. In this case, the interface charge density corresponds
to a Neumann boundary condition for the derivative of the electrostatic potential 𝜑:

𝑑𝜑

𝑑𝑥
= −𝐸𝑥 = const,

where 𝐸𝑥 is the electric field component along the x direction. 𝐸𝑥 is related to the interface charge as follows:

𝐸𝑥 =
𝜎

𝜖𝑟𝜖0

where 𝜖0 is the permittivity of vacuum and 𝜖𝑟 is the dielectric constant of the semiconductor. In this example:

• 𝜖𝑟 = 12.93 for GaAs

• 𝐸𝑥 = 1049.7 kV/cm

The output for the electric field (in units of [kV/cm]) can be found in this file: electric_field.dat

The output for the interface densities can be found in this file: material\density_fixed_charge.dat.

Surface states - Acceptors

Input file: 1DSchottky_barrier_GaAs_surface_states_acceptor_nnp.in

Instead of specifying a Schottky barrier, the user can alternatively specify a density of acceptor surface states (p-
type doping). Essentially, this can be done by specifying a p-type doping region that is very thin, i.e. the doping is
specified only on one grid point.

In this example, we use a doping area of 0.1 nm at the surface that we dope p-type with a volume density of 847.96
· 1018 cm-3. This corresponds to a sheet charge density of 8.4796 · 1012 cm-2 where we assume the states to have
realistic activation energies.

impurities{
...
acceptor{ # p-type

name = "impurity_p"
(continues on next page)

88 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.2.2: Calculated conduction band profile

(continued from previous page)

energy = 0.027 # p-C-in-GaAs (Landolt-Boernstein 1982)
degeneracy = 4 # degeneracy of energy levels, 2 for n-type, 4 for p-type

}
}

The results are the same as shown in Figure 4.2.2.2 for the interface charges.

Last update: 16/07/2024

4.2.3 Electrostatics and Strain
— DEV — Solution of the Poisson equation for different charge density profiles

Input Files:
• 1D_Poisson_dipole_nnpp.in

• 1DPoisson_linear_nnp.in

• 1D_Poisson_delta_nnpp.in

ò Note

If you want to obtain the input files that are used within this tutorial, please check if you
can find them in the installation directory. If you cannot find them, please submit a Support
Ticket.

4.2. Basics 89

nextnano++ Documentation, Release 1.25.13

Scope:
In this tutorial we show solution of Poisson equation for constant, linear and delta-function like
charge density profile of positive and negative charges.

Output files:
• bias_00000\density_electron.dat, bias_00000\density_hole.dat

• bias_00000\electric_field.dat

• bias_00000\potential.dat

1) Dipole: Constant charge density profile of positive and negative charge

Input file: 1D_Poisson_dipole_nnpp.in

The following figures (Figure 4.2.3.1 and Figure 4.2.3.2) show a dipole charge density distribution where

• the left region (from x = 0 nm to x = 10 nm) carries a constant positive charge density (resulting from ionized
donors 𝑁+

𝐷) and

• the right region (from x = 10 nm to x = 20 nm) carries a constant negative charge density (resulting from
ionized acceptors 𝑁−

𝐴).

Figure 4.2.3.1: Doping distribution

Figure 4.2.3.2: Charge density distribution

We have to solve the Poisson equation:

𝑑2𝜑

𝑑𝑥2
= − 𝜌

𝜖𝑟𝜖0

Figure 4.2.3.3 shows the corresponding electric field distribution and Figure 4.2.3.4 shows the electrostatic potential
profile

The electric field is given by

𝐸(𝑥) = −𝑑𝜑
𝑑𝑥

90 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.3.3: Electric field distribution

Figure 4.2.3.4: Electrostatic potential distribution

and has a linear dependence (~ -𝑥) because the electrostatic potential has a quadratic dependence (~ 𝑥2). The
maximum value of the electric field is given by:

𝐸max =
𝜌

𝜖𝑟𝜖0
· 𝑥0 =

𝑒 · 1 · 1018cm−3

12.93 · 8.8542 · 10−12As/Vm
· 10nm = 139.95kV/cm

where 𝑥0 is the width of the positive (or negative) charge density region, and 𝜖𝑟 = 12.93 is the static dielectric
constant of 𝐺𝑎𝐴𝑠.

The drop of the electrostatic potential between 0 nm and 20 nm is simply given by the area that is below the graph
of the electric field:

∆𝜑 =
1

2
𝐸max · 20nm = 139.95mV

2) Linear charge density profile of positive and negative charge

Input file: 1D_Poisson_linear_nnpp.in

The following figures (Figure 4.2.3.5 and Figure 4.2.3.6) show a linearly varying charge density distribution where

• the left region (from x = 0 nm to x = 10 nm) carries a linearly decreasing positive charge density (resulting
from ionized donors 𝑁+

𝐷) and

• the right region (from x = 10 nm to x = 20 nm) carries a linearly increasing negative charge density (resulting
from ionized acceptors 𝑁−

𝐴).

Figure 4.2.3.7 shows the corresponding electric field distribution and Figure 4.2.3.8 shows the electrostatic potential
profile

The electric field shows a quadratic dependence (~ −𝑥2) whereas the electrostatic potential shows a cubic depen-
dence (~ 𝑥3).

4.2. Basics 91

nextnano++ Documentation, Release 1.25.13

Figure 4.2.3.5: Doping profile

Figure 4.2.3.6: Charge density distribution

Figure 4.2.3.7: Electric field distribution

Figure 4.2.3.8: Electrostatic potential

92 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

3) Delta-function like charge density profile of positive and negative charges

Input file: 1D_Poisson_delta_nnpp.in

The following figures (Figure 4.2.3.9 and Figure 4.2.3.10) show a delta-function like charge density distribution
where

• in the middle of the structure (x = 0 nm) there is a constant positive charge density of width 1 nm (resulting
from ionized donors 𝑁+

𝐷) and

• at the boundaries of the structure there are constant negative charge densities of width 1 nm each (resulting
from ionized acceptors 𝑁−

𝐴).

Figure 4.2.3.9: Doping profile

Figure 4.2.3.10: Charge density distribution

Figure 4.2.3.11 shows the corresponding electric field distribution and Figure 4.2.3.12 shows the electrostatic po-
tential profile

Figure 4.2.3.11: Electric field distribution

4.2. Basics 93

nextnano++ Documentation, Release 1.25.13

Figure 4.2.3.12: Electrostatic potential

Last update: nnnn/nn/nn

Band gap of strained AlGaInP on GaAs substrate

Input Files:
• AlGaInP_on_GaAs_1D_nnp.in

Scope:
In this tutorial we study the band gaps of strained 𝐴𝑙𝑥𝐺𝑎𝑦𝐼𝑛1−𝑥−𝑦𝑃 on a𝐺𝑎𝐴𝑠 substrate. The
material parameters are taken from [VurgaftmanJAP2001].

Output Files:
• strain\strain_simualtion.dat

• strain\hydrostatic_strain.dat

• bias_00000\bandedges.dat

Strain

To understand the effect of strain on the band gap on the individual components of the quaternary
𝐴𝑙𝑥𝐺𝑎𝑦𝐼𝑛1−𝑥−𝑦𝑃 , we first examine the effects on

1) 𝐴𝑙𝑃 strained tensely with respect to 𝐺𝑎𝐴𝑠

2) 𝐺𝑎𝑃 strained tensely with respect to 𝐺𝑎𝐴𝑠

3) 𝐼𝑛𝑃 strained compressively with respect to 𝐺𝑎𝐴𝑠

4) 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑃 strained tensely with respect to 𝐺𝑎𝐴𝑠

5) 𝐺𝑎𝑥𝐼𝑛1−𝑥𝑃 strained with respect to 𝐺𝑎𝐴𝑠

6) 𝐴𝑙𝑥𝐼𝑛1−𝑥𝑃 strained with respect to 𝐺𝑎𝐴𝑠

7) 𝐴𝑙0.4𝐺𝑎0.6𝑃 strained tensely with respect to 𝐺𝑎𝐴𝑠

8) 𝐺𝑎0.4𝐼𝑛0.6𝑃 strained compressively with respect to 𝐺𝑎𝐴𝑠

9) 𝐴𝑙0.4𝐼𝑛0.6𝑃 strained compressively with respect to 𝐺𝑎𝐴𝑠

Each material layer has a length of 10 nm in the simulation. The material layers 4), 5) and 6) vary their alloy
contents linearly, i.e.

4) 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑃 : x = 0.0 to x = 1.0 (from 10 nm to 20 nm)

5) 𝐺𝑎𝑥𝐼𝑛1−𝑥𝑃 : x = 0.0 to x = 1.0 (from 30 nm to 40 nm)

94 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

6) 𝐴𝑙𝑥𝐼𝑛1−𝑥𝑃 : x = 1.0 to x = 0.0 (from 50 nm to 60 nm)

There is no external stress applied to the structure, so Poisson’s ratio holds. All layers are strained pseudomorphi-
cally with respect to a𝐺𝑎𝐴𝑠 substrate (i.e. the layers are biaxially strained in the plane perpendicular to the growth
direction to match the lattice constant of 𝐺𝑎𝐴𝑠).

The biaxial strain in the layers can be calculated with this formula:

𝑒𝑦𝑦 = 𝑒𝑧𝑧 =
𝑎substrate − 𝑎

𝑎

where 𝑎 is the lattice constant. The output of the strain tensor can be found in this file: strain\strain_simualtion.dat

The hydrostatic strain is the trace of the strain tensor and corresponds to the volume deformation:

𝑒hydro = 𝑇𝑟(𝑒𝑖𝑗) = 𝑒𝑥𝑥 + 𝑒𝑦𝑦 + 𝑒𝑧𝑧

Figure 4.2.3.13: Strain tensor components

band gaps

Figure 4.2.3.14 shows the conduction band edges at the Gamma, L and X points and the heavy hole, light hole and
split-off hole valence bands. The red line shows that band gap, i.e. the difference between the lowest conduction
band minimum and the valence band maximum. The band gap maximum occurs at 𝐴𝑙0.55𝐼𝑛0.45𝑃 (2.355 eV).

The conduction and valence band edges have been obtained taking into account the shifts and splittings of the
bands due to strain and deformation potentials.

Note that conduction and valence band offsets are not taken into account in this plot. The zero of energy was taken
to be the unstrained heavy hole / light hole band edge.

Due to strain, the degeneracy of the heavy and light hole is lifted. Also, the X band splits into two X bands (2-fold
and 4-fold degeneracy).

In the case of tensile (compressive) strain, the light (heavy) hole band is the valence band maximum.

Note that the material parameters include band gap bowing.

Figure 4.2.3.15 compares the overall band gap to the case where band gap bowing has been neglected.

The nextnano++ tool supports quaternaries:

quaternary_constant{
name = "Al(x)Ga(y)In(1-x-y)P"
alloy_x = 0.255
alloy_y = 0.255

}

4.2. Basics 95

nextnano++ Documentation, Release 1.25.13

Figure 4.2.3.14: Band edge and band gap profile

Figure 4.2.3.15: Ban dgap profile

96 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Appendix E of the PhD thesis of T. Zibold ([ZiboldPhD2007]) is related to the nextnano++ implementation of
quaternaries.

Last update: nnnn/nn/nn

— NEW/EDU — Piezo- and Pyroelectric charges in GaN/AlN/GaN wurtzite heterostructure

• Header

• Introduction

• Crystallographic orientation

• Strain-induced energy shift

– Energy profiles without the strain effects

– Including energy shift due to pseudomorphic strain

• Polarization Effects

– Pyroelectric polarization (spontaneous polarization)

– Piezoelectric polarization

– Electrostatic potential of piezo- and pyroelectric charges

– N-face polarity versus Ga-face polarity

• Exercises

Header

Files for the tutorial located in nextnano++\examples\education

• piezo-pyro-charges_wz_GaN-AlN_1D_nnp_offsets.in

• piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain.in

• piezo-pyro-charges_wz_GaN-AlN_1D_nnp_pyro.in

• piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain-pyro.in

• piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain-piezo.in

• piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain-piezo-pyro.in

• piezo-pyro-charges_wz_GaN-AlGaN-AlN_1D_nnp_strain-piezo-pyro.in - additional example with po-
larization doping

Scope of the tutorial:
• defining wurtzite heterostructure

• piezo- and pyroelectricity in wurtzite

Main adjustable parameters in the input file:
• parameter $Strain

• parameter $Polarity

Relevant output files:
• bias_00000\bandedges.dat

• bias_00000\potential.dat

4.2. Basics 97

nextnano++ Documentation, Release 1.25.13

Introduction

This tutorial presents how to define wurtzite heterostructure and explains how piezo- and pyroelectric polarization
constants influence respective charges on interfaces on a n example of GaN/AlAn/GaN heterostructure bringing in-
sight into piezoelectricity and pyroelectricity in wurtzite. More detailed explanation of piezoelectricity in wurtzite
can be also found in Piezoelectricity in wurtzite.

Crystallographic orientation

Input files for this tutorial simulate a GaN/AlN/GaN wurtzite structure grown pseudomorphically on GaN, i.e., the
AlN is tensely strained, whereas the GaN is unstrained. The growth direction [0001] is set along which corresponds
to the growth on Ga-polar GaN (0001) surface (Ga-face polarity).

As the wurtzite structure belongs to the hexagonal crystal system, one should take additional care about defining
Miller indices of the growth plane.

15 global{ }
16 simulate1D{}
17

18 ## This is along [0001] direction: Ga-face polarity
19 crystal_wz{
20 x_hkl = [0, 0, 1] # hkil = (0, 0, 0, 1) Miller-Bravais indices
21 y_hkl = [1, 0, 0] # hkil = (1, 0, -1, 0) Miller-Bravais indices
22

23 substrate{
24 name = "GaN"
25 }
26 }

Although the four-digit Miller-Bravais indices (ℎ𝑘𝑖𝑙) are usually used in a wurtzite structure, you have to omit 𝑖 in
nextnano++ because 𝑖 = ℎ− 𝑘 holds. x_hkl refers to a plane and perpendicular to the crystal growing direction.
See Crystal coordinate systems for more details. As the wurtzite structure lacks symmetry plane perpendicular to
the c-axis, the c-plane is polarized. The 0001 plane in GaN is the Ga-polar plane, while the opposite 0001 plane
is the N-polar plane. All the examples in this tutorials are prepared for the growth on the Ga-polar plane. The
N-polar polarity is discussed at the end.

Strain-induced energy shift

Energy profiles without the strain effects

Figure 4.2.3.16 shows the energy band offsets (conduction and valence band edges) of the heterostructure. It is
done by neglecting all polarization and strain effects. Poisson equation is solved to bring the offsets already near
the Fermi level set to zero. Clearly AlN forms the barrier for both electrons and holes.

Figure 4.2.3.16: Calculated conduction and valence band structures without strain effects. (a) Full energy profile.
(b) Valence band edges of AlN. (Run piezo-pyro-charges_wz_GaN-AlN_1D_nnp_offsets.in to reproduce.)

It is visible that without strain the CH (crystal hole) band lies above the HH (heavy hole) and LH (light hole)

98 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

bands in AlN while the situation is different for GaN, where HH band has the highest energy. This mechanism is
explained in [Chuang1996]. Note that heavy and light hole are not degenerate under no-strain condition, unlike in
zincblende crystals.

Including energy shift due to pseudomorphic strain

As the substrate in the simulation is set to GaN, the GaN remains unstrained also when the strain model is turned
on. Since AlN has the lattice constant, 𝑎AlN = 0.3112 nm, smaller than the one of GaN, 𝑎GaN = 0.3189 nm, it
becomes strained as follows.

The biaxial (in-plane) strain is tensile.

𝜀‖ = (𝑎substrate − 𝑎)/𝑎 = 0.0247429

The uniaxial (growth direction) strain is compressive.

𝜀⊥ = −2(𝑐13/𝑐33)𝜀‖ = −0.0143283

The hydrostatic strain is positive, which corresponds to an increase in volume for AlN.

𝜀hy = 𝑇𝑟(𝜀ij) = (2𝜀‖ + 𝜀⊥) = 0.0351575

Introduction of the strain leads to an energy shift of both conduction and valence band edges.

The crystal anisotropy leads to two distinct conduction band deformation potentials for the Γ point in wurtzite.
The one is parallel, defpot_absolute_l, and the other one is perpendicular, defpot_absolute_t, to the c axis.
These values are taken from the database_nnp.in.

7738 binary_wz{
7739 name = AlN
7740

7741 ...
7742

7743 conduction_bands{
7744 Gamma{
7745 defpot_absolute_l = -20.5 # Vurgaftman2 (a1) along c axis
7746 defpot_absolute_t = -3.9 # Vurgaftman2 (a2) perpendicular to c axis
7747 }
7748 }
7749 }

Denoting defpot_absolute_l as 𝑎c,caxis and defpot-absolute_t as 𝑎c,aaxis, the conduction band minimum
energy including the hydrostatic shift is given by

𝐸′
c = 𝐸c + 𝑎c,caxis𝜀⊥ + 2𝑎c,aaxis𝜀‖

= 4.712 + (−20.5× (−0.0143283)) + 2(−3.9)× 0.0247429

= 4.712 + 0.10073553

= 4.81274 eV

Therefore, the barrier for electrons is increased in this particular example.

ò Note

Data for uniaxial deformation potentials of other minima than Γ are not available yet. The uniaxial
deformation potential is zero for the conduction band at the Γ point.

There are six valence band deformation potentials (𝐷1,𝐷2,𝐷3,𝐷4,𝐷5, and𝐷6) which arise from a full treatment
of the effect of strain on the six-band Hamiltonian. These values are also specified in database_nnp.in.

4.2. Basics 99

nextnano++ Documentation, Release 1.25.13

7738 binary_wz{
7739 name = AlN
7740

7741 ...
7742

7743 valence_bands{
7744 defpotentials = [-17.1, 7.9, 8.8, -3.9, -3.4, -3.4] # D_1, D_2, D_3, D_4, D_

→˓5, D_6, respectively, Vurgaftman2
7745 }
7746 }

In contrast to zincblende, an absolute deformation potential for the valence band is not needed. The shifts of the
valence bands are obtained by diagonalizing the Bir-Pikus strain Hamiltonian, which is a general approach giving
correct shifts for arbitrary crystallographic orientations. Note that this holds only for the valence bands.

In our example, the tensile strain in AlN shifts all holes upwards, - the heavy hole by 0.32847 eV, - the light hole
by 0.32877 eV and - the crystal field split-off hole by 0.64726 eV, thus strongly reducing the barrier for holes.

Figure 4.2.3.17: Calculated conduction and valence band structures with strain effects. (a) Full energy profile. (b)
Valence band edges of AlN. (Run piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain.in to reproduce.)

Polarization Effects

Polarization charges are simply computed basic formula from classical electrodynamics once proper Polarization
fields are defined.

∇ ∘P = −𝜌

Note that polarization effects are addittive, i.e., if 𝑃 = 𝑃1 + 𝑃2 then

∇ ∘P = ∇ ∘ [P1 +P2] = ∇ ∘P1 +∇ ∘P2 = −𝜌1 − 𝜌2

Pyroelectric polarization (spontaneous polarization)

The wurtzite material GaN, AlN, and InN are pyroelectric materials and thus show the pyroelectric polariza-
tion. The pyroelectric polarization field Ppy (x) is antiparallel to the c-axis, [0001], of the hexagonal unit cell
(x-direction of exemplary simulations). Therefore, only non-zero component of the pyroelectric polarization vec-
tors is parallel to the x-axis of the exemplary simulation: -0.034 C/m2 for GaN and -0.090 C/m2 for AlN.

Once the pyroelectric polarization is defined, the pyroelectric charge density can be computed as.

𝜌py (x) = −∇ ∘Ppy (x)

If the c-axis is oriented along the x-axis as in our example, this equation reduces to

𝜌py (𝑥) = − 𝜕

𝜕𝑥
𝑃py (𝑥) .

As the derivative is non-zero only at the discontinuity of the polarization at the interfaces, all polarization charges
will be located at these interfaces for this example. The surface densities of the polarization charges can be deter-
mined based on the Polarizations of GaN, 𝑃py,x (GaN), and AlN, 𝑃py,x (AlN), as follows:

100 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The 1st interface (GaN/AlN) at 100 nm:

− [𝑃py,x (AlN)− 𝑃py,x (GaN)] = 𝑃py,x (GaN)− 𝑃py,x (AlN) = −0.034 + 0.090 = 0.056 C/m2

2nd interface (AlN/GaN) at 117 nm:

− [𝑃py,x (GaN)− 𝑃py,x (AlN)] = 𝑃py,x (AlN)− 𝑃py,x (GaN) = −0.090 + 0.034 = −0.056 C/m2

The interface charge of −0.056 C/m
2 corresponds to 34.952× 1012 electrons/cm

2.

Piezoelectric polarization

Piezoelectric polarization appears due to presence of strain. In the exemplary simulation the AlN layer is strained,
while GaN is not. Therefore, the piezoelectric polarization is non-zero only in the AlN layer.

𝑃pz,x (AlN) = 𝑒33 𝜀⊥ + 𝑒31
[︀
𝜀‖ + 𝜀‖

]︀
= 1.79× [−0.0143283]− 0.50× 2 · 0.0247429 = −0.050390 C/m

2

The piezoelectric constants are specified in database_nnp.in.

3376 binary_wz{
3377 name = AlN
3378

3379 piezoelectric_consts{
3380 e31 = -0.50 e33 = 1.79 # Vurgaftman1 (Vurgaftman2 lists d_ij (/= e_ij !)␣

→˓parameters.)
3381 e15 = -0.48 # [Tsubouchi1985] (experiment) and [Momida2016] and␣

→˓O. Ambacher
3382 }
3383 }

ò Note

The e15 is not relevant for [0001] growth direction.

Similarly as for the pyroelectric polarization the piezoelectric charge density can be computed as

𝜌pz (x) = −∇ ∘Ppz (x)

and

𝜌pz (𝑥) = − 𝜕

𝜕𝑥
𝑃pz (𝑥) ,

if the c-axis is oriented along the x-axis as in our example.

In this case as well, the derivative is non-zero only at the interfaces yielding the surface densities of the polarization
charges based on the Polarizations of GaN, 𝑃pz,x (GaN), and AlN, 𝑃pz,x (AlN).

The 1st interface (GaN/AlN) at 100 nm:

− [𝑃pz,x (AlN)− 𝑃pz,x (GaN)] = 𝑃pz,x (GaN)− 𝑃pz,x (AlN) = 0 + 0.050390 = 0.050390 C/m2

2nd interface (AlN/GaN) at 117 nm:

− [𝑃pz,x (GaN)− 𝑃pz,x (AlN)] = 𝑃pz,x (AlN)− 𝑃pz,x (GaN) = −0.050390− 0 = −0.050390 C/m2

The interface charge of −0.050390 C/m
2 corresponds to 31.451× 1012 electrons/cm

2.

4.2. Basics 101

nextnano++ Documentation, Release 1.25.13

Electrostatic potential of piezo- and pyroelectric charges

The electrostatic potential 𝜑 (r) is the solution of the nonlinear Poisson equation.

∇ ∘ [𝜖 (r)∇𝜑 (r)] = −𝜌 (r, 𝜑 (r))

The charge density 𝜌 contains the (static) piezo and pyroelectric charge densities as well as the electron and hole
charge densities and ionized donors and acceptors.
While the ionization of the impurities and free carriers depend on the electrostatic potential 𝜑, the piezo- and
pyroelectric charge densities do not.

The figure Figure 4.2.3.18 (a) shows electrostatic potential calculated for the heterostructure including:

1. both pyro- and piezoelectric charges (black)

2. only piezoelectric charges (turquoise)

3. only pyroelectric charges (purple)

Figure 4.2.3.18: Electrostatic potential and energy profiles for Ga-face polarity. (a) The electrostatic potential with
pyroelectric (py) and piezoelectric (pz) charges. (b) Conduction and valence band energy profiles under strain
with all polarization charges included. (Run piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain-pyro.in, piezo-
pyro-charges_wz_GaN-AlN_1D_nnp_strain-piezo.in, and piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain-
piezo-pyro.in to reproduce.)

The pyro and piezoelectric contributions are comparable in this example. The band structure including the elec-
trostatic potential is plotted in Figure 4.2.3.18 (b). Note that the conduction band is pulled below and the valence
band above the Fermi level near the interfaces.

N-face polarity versus Ga-face polarity

The exactly same simulation of the GaN/AlN/GaN wurtzite structure can be performed also for the N-face polarity.
The only difference from the previous simulations is implemented in the crystallographic orientation of the system.

Figure 4.2.3.19 shows again the electrostatic potential and the energy profiles, as before, but for both, Ga-face and
N-face polarities.

Figure 4.2.3.19: Electrostatic potential and energy profiles for Ga-face (dotted) and N-face polarities (solid). (a)
The electrostatic potential with pyroelectric (py) and piezoelectric (pz) charges. (b) Conduction and valence band
energy profiles under strain with all polarization charges included.

102 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Note that the positions of 2D electron gas (2DEG) and 2D hole gas (2DHG) are reversed.

Exercises

1. Repeat all simulations for N-face polarity-

2. Explain why the built-in electric field is comparable in all simulations: piezo-pyro-charges_wz_GaN-
AlN_1D_nnp_strain-pyro.in, piezo-pyro-charges_wz_GaN-AlN_1D_nnp_strain-piezo.in, and piezo-pyro-
charges_wz_GaN-AlN_1D_nnp_strain-piezo-pyro.in

Last update: 07/08/2024

4.2.4 Currents
— EDU — Electron transport in n-type Silicon

• Header

• Problem

• Input file

• Solutions

– Mean drift velocity

– Mean free path

– Resistance and conductivity

• Further Exercises

• Answers

Header

Files for the tutorial located in nextnano++\examples\education
1D_el_transport_Si_n_dop_nnp.in

Scope:
• mobility

• drift velocity

• mean free path

• scattering time

• resistance

• conductivity

Important output files:
• bias_xxxxx/IV_characteristics.dat

• bias_xxxxx/velocity_electron.dat

• bias_xxxxx/mobility_electron.dat

4.2. Basics 103

nextnano++ Documentation, Release 1.25.13

Problem

An n-type silicon layer of thickness 𝑑 = 1 𝜇m is grown on a 1 × 1 cm2 insulating substrate. It is doped with
phosphorous (P) donors with a doping concentration of 𝑁D = 1 · 1016 cm−3. Two ohmic contacts are located on
the opposite sides of the sample, therefore, distanced by 𝑙 = 1 cm from each other.

Calculate:

a. mean drift velocity of charge carriers in the sample,

b. mean free path for the charge carriers in the sample by considering the effective scattering time and the mean
drift velocity,

c. resistance and conductivity

at room temperature when 1 V of bias is applied to the contacts. Assume electron mobility 𝜇e = 1222.58 cm2/Vs
and hole mobility 𝜇h = 425.54 cm2/Vs.

Input file

The input file 1D_el_transport_Si_n_dop_nnp.in contains a 1D definition of 1 cm long n-doped Si at 300 K as
stated in the problem. Assumed mobilities of carriers in Si are overwritten in the group database{ }.

database{
binary_zb{

name = "Si"
mobility_constant{

electrons{ mumax = 1222.58 } # (cm2/Vs)
holes{ mumax = 425.54} # (cm2/Vs)

}
}

}

The complete structure is n-doped with an impurity concentration of 𝑁D = 1016 cm−3. Activation energy of the
dopants is taken from this table. Degeneracy is chosen 2 as typical for donors.

$doping_concentration = 1e16 # (cm^3)
$width = 1e7 # (nm)

structure{
region{ # Doping layer

line{ x = [-1.0, $width + 1.0] }
doping{

constant{
name = "Phosphorus"
conc = $doping_concentration

}
}

}
}

impurities{
donor{

name = "Phosphorus"
energy = 0.045 # (eV)
degeneracy = 2

}
}

The structure is biased with a voltage of 1 V and 0 V applied to the left and right contact, respectively.

104 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

contacts{ # this group is required in every input file
ohmic{

name = contact_right
bias = 0.0 # (V)

}
ohmic{

name = contact_left
bias = 1.0 # (V)

}
}

The simulation of current inside the material is done based on the Drift-Diffusion model solved self-consistently
with the Poisson equation. Therefore poisson{ }, currents{ }, and run{ current_poisson{ } } groups
are present in the input file. Constant mobility model is chosen for this simulation. Among multiple interesting
outputs, the ones useful for solving the problem are also added: electron velocity, mobility and currents.

$mobility_model = constant
currents{

mobility_model = $mobility_model
recombination_model{}

output_mobilities{}
output_currents{ }
output_velocities{}

}

These can be found in output files: IV_characteristics.dat, velocity_electron.dat, and mobility_electron.dat. Com-
puted values are used later in the tutorial to determine the scattering time, mean free path and resistance of the
material.

ò Note

Scattering time of bulk crystal, mean free path and resistance cannot be outputted by nextnano++.

Solutions

Mean drift velocity

The mean drift velocity 𝑣d,e of the electrons at an applied electric field 𝐸 = 𝑈
𝑑 = 1 V

1 cm = 1 V/cm is given as
follows:

𝑣d,e = 𝜇 · 𝐸 = 𝜇 · 𝑈
𝑑

= 1222.58 cm2/Vs · 1V

1 cm
= 1222.58 cm/s = 12.23 m/s

The drift velocities of electrons and holes at each grid point (in units of cm/s) can be found in
the files bias_XXXXX/velocity_electron and bias_XXXXX/velocity_hole, respectively. From the simulation
1D_el_transport_Si_n_dop_nnp.in one can read the drift velocity for electrons 𝑣d,e = 1222.5797 cm/s.

Mean free path

The mean free path can be calculated by the simple formula 𝑙mfp = 𝑣d,e · 𝑡eff,e. We already determined the drift
velocity 𝑣d,e. We only have to find the effective scattering time 𝑡eff,e. The effective scattering time of the electrons
𝑡eff,e can be calculated as follows:

𝑡eff,e = 𝜇 · 𝑚e,cond

𝑒
= 1222.58 cm2/Vs · 0.258𝑚0

𝑒
= 1.79 · 10−13 𝑠 = 0.18 ps

where the conduction electron mass is given by

𝑚e,cond =
1

1/0.916 + 2/0.19
𝑚0 = 0.258 𝑚0.

4.2. Basics 105

nextnano++ Documentation, Release 1.25.13

Therefore, the mean free path for bulk Si is given by

𝑙mfp = 𝑣d,𝑒 · 𝑡eff,𝑒 = 0.0022 nm.

Resistance and conductivity

The calculated current density 𝑗 (in units of [A/cm2] for a 1D simulation) can be found in the file:
bias_xxxxx/IV_characteristics.dat. For an applied voltage of 1 V the calculated value reads

𝑗 = 19507 A/m2 = 1.9507 A/cm2.

Taking into account the dimensions of the Si sample (𝐴 = 1 cm2), this corresponds to a total current 𝐼 of

𝐼 = 19507 A/m2 · 1 cm · 1 𝜇m = 1.9507 · 10−4 A = 0.2 mA.

The ohmic resistance is thus given by

𝑅 =
𝑈

𝐼
=

1 𝑉

1.9507 · 10−4 A
= 5105.2 Ω = 5.1 kΩ.

The conductivity 𝜎 is given by

𝜎 =
𝑗

𝐸
= 𝜇𝑒 𝑛 𝑒 =

19507 A/m2

1 V/cm
= 195 Ωm.

and is related to the resistance as follows:

𝜎 =
𝑗

𝐸
=
𝐼/𝐴

𝑈/𝑑
=

1

𝑤𝑅
,

where 𝑤 is the width of the sample. Here, 𝑤 = 1 𝜇m.

Further Exercises

1. Repeat the calculations for InSb assuming electron mobility 𝜇𝑒,InSb = 4 · 105 cm2/Vs and compare your
findings with the results you have obtained for Si.

2. Repeat the calculations for Two-dimensional electron gases (2DEGs) in AlGaAs/GaAs heterostructures as-
suming electron mobility 𝜇𝑒,2DEG = 107 cm2/Vs and compare your findings with the results you have
obtained for Si.

� Hint

You can change the material to, e.g., InSb by altering the variable $material. Custom mate-
rial parameters, which should not be taken from the default, should be specified in the group
database{ }.

Answers

Drift velocity
• Electrons in InSb in a field of 1 V/cm have mean drift velocities of 4 · 105 cm/s = 4 km/s.

• Two-dimensional electron gases (2DEGs) in a field of 1 V/cm in AlGaAs/GaAs heterostruc-
tures have mean drift velocities of the order ~100 km/s.

Scattering time
• An effective scattering time for electrons in InSb (𝑚𝑒 = 0.0135 ·𝑚0) is 3.1 ps.

• An effective scattering time for two-dimensional electron gases (2DEGs) in AlGaAs/GaAs
heterostructures (𝑚𝑒 = 0.2 𝑚0) is of the order 1.1 ns.

106 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Mean free path
• 𝑙mfp = 12.4 nm for InSb.

• 𝑙mfp = 110 𝜇m for AlGaAs/GaAs (2DEG).

Last update: nnnn/nn/nn

— DEV — I–V characteristics of n-doped Si structure

Input files:
• I-V_n-doped-Si_1D_nnp.in

• I-V_n-doped-Si_2D_nnp.in

• I-V_n-doped-Si_3D_nnp.in

• I-V_nin-doped-Si_1D_nnp.in

• I-V_nin-doped-Si_2D_nnp.in

• I-V_nin-doped-Si_3D_nnp.in

Scope:
This tutorial aims to simulate the I-V characteristics of n-doped and n-i-n doped Si structures.

Output files:
• IV_characteristics.dat

• bias_xxxxx/bandedges.dat

I-V characteristics of an n-doped Si structure

Structure

The structure we are dealing with consists of bulk Si that is sandwiched between two contacts. The whole structure
has the following dimensions (see also):

• along 𝑥-axis: 20 nm (1 nm contact, 18 nm Si, 1 nm contact)

• along 𝑦-axis: 5 nm

Figure 4.2.4.1: Simulated structure consisting of a left and right contact (blue) and n-doped Si layer (red).

The Si is n-type doped with a donor concentration of 𝑁D = 1 · 1020 cm−3. The energy level is 0.044 eV below
the conduction band edge. This leads to an electron density of 𝑛 = 13.48 · 1018 cm−3, which corresponds to the
concentration of the ionized donors. The Fermi level 𝐸F is taken to be at 0 eV in an equilibrium simulation, i.e.
𝑉 = 0V. The distance of the conduction band from the Fermi level can be calculated in the following way:

• For the effective electron mass at the ∆-point we have:

4.2. Basics 107

nextnano++ Documentation, Release 1.25.13

𝑚𝑒 = 𝑚*
𝑒,DOS = (𝑚l ·𝑚t ·𝑚t)

1
3 = (0.916 · 0.192) 1

3𝑚0 = 0.321𝑚0,

where 𝑚l is the longitudinal and 𝑚t is the transversal mass of the effective mass tensor.

• The effective density of states reads:

𝑁c = 12 ·
(︂
2𝜋𝑚𝑒𝑘B𝑇

ℎ2

)︂ 3
2

= 12 · (0.321 · 0.026 · 2.0886 · 1014) 3
2 = 12 · 2.282 · 1018 cm−3 = 2.738 · 1019 cm−3,

where the factor of 12 arises due to the six-fold degeneracy of Si at ∆ and the two-fold spin degeneracy. Similarly,
we obtain the effective density of states for holes:

𝑁v, hh = 9.875 · 1018 cm−3,

𝑁v, lh = 1.502 · 1018 cm−3.

Note that heavy and light holes are degenerate for 𝑘 = 0, i.e. 𝑁v = 𝑁v, hh +𝑁v, lh = 1.1377 · 1019 cm−3.

• The Semiconductor equation is given by

𝑛𝑝 = 𝑛2i = 𝑁c𝑁v exp

(︂
−𝐸gap

𝑘B𝑇

)︂
= 𝑁c · 1.138 · 1019 cm−3 exp

(︂
−1.095

0.026

)︂
= 1.238 · 1020 cm−6,

with 𝐸gap = 1.095 eV, 𝑛i = 1.113 · 1010cm−3 and 𝑝 = 𝑛2i /𝑛 = 9.185 cm−3.

• The occupation of the different energy states can either be described by Maxwell-Boltzmann statistics:

𝑛(𝑇) = 𝑁c(𝑇) exp

(︂
𝐸F − 𝐸c

𝑘B𝑇

)︂
,

𝑝(𝑇) = 𝑁v(𝑇) exp

(︂
𝐸v − 𝐸F

𝑘B𝑇

)︂
,

or Fermi-Dirac statistics:

𝑛(𝑇) = 𝑁c(𝑇)ℱ1/2

(︂
𝐸F − 𝐸c

𝑘B𝑇

)︂
,

𝑝(𝑇) = 𝑁v(𝑇)ℱ1/2

(︂
𝐸v − 𝐸F

𝑘B𝑇

)︂
,

where ℱ1/2 is the Fermi-Dirac integral of order 1/2 multiplied by the factor 2/
√
𝜋 (i.e. ℱ1/2 includes the Gamma

pre-factor)

When using the Maxwell-Boltzmann statistics as an approximation, we obtain:

𝐸c = 𝑘B𝑇 ln

(︂
𝑁c

𝑛

)︂
= 0.026 eV · ln

(︂
2.738 · 1019 cm−3

13.478 · 1018 cm−3

)︂
= 0.026 eV · ln(2.031) = 18.3meV,

𝐸v = −𝑘B𝑇 ln

(︂
𝑁v

𝑝

)︂
= −0.026 eV · 42.538 = −1.099 eV.

Note that nextnano++ uses the Fermi-Dirac integrals (Fermi-Dirac statistics), where the following results are ob-
tained: 𝐸c = 13.85meV and 𝐸v = −1.0815 eV.

Results

We sweep the voltage at the right contact from 0.0V to 0.2V in 10 steps. The input files used for the simulations
are I-V_n-doped-Si_1D_nnp.in, I-V_n-doped-Si_2D_nnp.in I-V_n-doped-Si_3D_nnp.in. The calculated current
density for each bias point can be found in IV_characteristics.dat. The resulting I-V characteristics is depicted in
Figure 4.2.4.2.

108 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.4.2: Simulated I-V characteristics of an n-doped Si structure using constant mobility model.

The units for the current in a 2D simulation are [A/m]. Dividing this two-dimensional current value by the width of
the device (in our case 5 nm) we obtain the current in units of [A/cm2], which is the usual unit of a 1D simulation.
As our simple 2D example structure is basically equivalent to a 1D structure we can easily compare our 2D results
with the 1D results to check for consistency. It is also possible to perform a 3D simulation. In this case, the units
for the three-dimensional current are [A]. Dividing by the area of the device of 25 nm2, we obtain the 1D units of
[A/cm2].

I-V characteristics of an n-i-n-doped Si structure

Structure

The second example is an n-i-n (n-doped, intrinsic, n-doped) Si structure, which is shown in Figure 4.2.4.3. The
width of the intrinsic region is 14 nm, and the n-doped regions are both 2 nm wide.

Figure 4.2.4.3: Simulated n-i-n structure consisting of a left contact (dark blue), n-doped Si (light blue), intrinsic
Si (green), n-doped Si (yellow) and right contact (red).

Results

In Figure 4.2.4.4 the current-voltage (I-V) characteristic is shown. The input files used for the simulations are I-
V_nin-doped-Si_1D_nnp.in, I-V_nin-doped-Si_2D_nnp.in I-V_nin-doped-Si_3D_nnp.in. The data of the I-V curve
can be found in the corresponding file IV_characteristics.dat.

In order to compare the results from 1D, 2D and 3D simulations, we have divided the 2D current by the width of
the device (in our case 5 nm) and the 3D current by the cross-section area of the device of (in our case 25 nm2), to
get the current density in units of [A/cm2]. The obtained results are in perfect agreement.

Figure 4.2.4.5 shows the conduction band profile (bias_xxxxx/bandedges.dat) for different voltages.

This tutorial also exists for nextnano3.

4.2. Basics 109

nextnano++ Documentation, Release 1.25.13

Figure 4.2.4.4: Simulated I-V characteristics of the n-i-n doped Si structure using constant mobility model.

Figure 4.2.4.5: Simulated conduction band profile of the n-i-n Si structure for different voltages.

110 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: 17/07/2024

— DEV — I–V characteristics of n-doped GaN single layer

• Header

• Introduction

• IV characteristics of an n-doped GaN single layer

• Results

– 1D

– 2D

– 3D

Header

Input Files:
• IV_GaN_n_doped_1D_nnp.in

• IV_GaN_n_doped_2D_nnp.in

• IV_GaN_n_doped_3D_nnp.in

Scope of the tutorial:
• currents

• wurtzite

Main adjustable parameters in the input file:
• parameter

Relevant output files:
• IV_characteristics.dat

Introduction

This tutorial shows the accuracy of drifft-diffusion model implemented in nextnano++ on a simple example: a
single layer of an n-doped GaN. We compare the I–V characteristics obtained by nextnano++ with analytical
solutions.

IV characteristics of an n-doped GaN single layer

The conductivity 𝜎 and the resistivity 𝜌 of an n-type doped GaN sample can be calculated analytically, following
formulas:

𝜎 = 𝑞𝜇𝑛𝑛,

𝜌 = 𝑑/𝜎,

where 𝑞 is electron charge, 𝑛 is concentration of electron carriers, 𝜇𝑛 is mobility of electrons, and 𝑑 is thickness
of the material.

This is a good check for the results obtained with nextnano++ simulations. The thickness of the GaN layer is
𝑑 = 100 nm.

4.2. Basics 111

nextnano++ Documentation, Release 1.25.13

The structure we are dealing with consists of bulk GaN that is sandwiched between two contacts. The whole
structure has the following dimensions:

material width (nm) doping
contact 10
n-GaN 100 1× 1018 cm−3

contact 10

As you see, the GaN is n-type doped with a donor concentration of 𝑁𝐷 = 1 × 1018 cm−3. The energy level is
chosen to be 0.01507 eV below the conduction band edge.

70 impurities{
71 donor{ name = "Si_donor" degeneracy = 2 energy = 0.01507 }
72 }

This leads to the electron density of 5.2846×1017 cm−3. This is also equivalent to the concentration of the ionized
donors. The result obtained by another commercial software is 5.355× 1017 cm−3.

61 contacts{
62 ohmic{ name = "left_contact" bias = 0.0 }
63 ohmic{
64 name = "right_contact"
65 !WHEN $biassweep bias = [$biasstart, $biasend]
66 !WHEN $biassweep steps = $biassteps
67 !WHEN $nosweep bias = $biasstart
68 }
69 }

If $biassweep = 1, sweeping bias takes place. Otherwise, if $biassweep = 0 and $nosweep (= 1 -
$biassweep) = 1, sweeping bias is not applied. Since the bias is swept from 0.00 V to 0.10 V, $biasstart is
set to 0.0 and $biasend is set to 0.1. In addition, $biassteps is equal to 10.

We take the GaN mobility to be constant: 𝜇𝑛 = 100 cm2/Vs. The mobility model that is applied is called
constant and described as below.

116 currents{
117 mobility_model = constant
118 recombination_model{
119 SRH = no
120 Auger = no
121 radiative = no
122 }
123 output_currents{ }
124 }

We sweep the voltage at the right contact and calculate the current density for 0.00 V, 0.01 V, 0.02 V, . . . , 0.10 V
(10 steps).

Results

1D

The current-voltage (IV) characteristic can be found in the following file: IV_characteristics.dat. Figure 4.2.4.6
shows the IV curve obtained by nextnano++.

The figure shows that the GaN layer is an ohmic resistor. From Figure 4.2.4.6, you can obtain a resistivity of the
n-GaN layer of 1.1819× 10−6 Ωcm2. Another commercial software results in 1.43× 10−6 Ωcm2.

112 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.4.6: IV curve of an n-doped GaN single layer.

A good check is the analytic formula given above. From this, you can obtain:

𝜎𝑛 = 𝑒𝜇𝑛𝑛 = 1.6022× 10−19 As× 100 cm2/Vs× 5.2846× 1017 cm−3 = 8.4670 A/Vcm

𝜌 = 𝑑/𝜎 = 100 nm/(8.46700 A/Vcm) = 1.1811× 10−6 Ωcm2

Another analytical result with the other commercial software is 1.168× 10−6 Ωcm2.

Thus, you can see that the nextnano++ result agrees better with the analytical result than the result by the other
commercial software.

2D

Now, we try the same structure in a 2D nextnano++ simulation to check if the 2D result agrees with the 1D one.
The input file IV_GaN_n_doped_2D_nnp.in is used for this section. The width of the sample along the y direction
is 200 nm. The x direction is the same as in 1D.

Note that the unit for the current in a 2D simulation is [A/cm]. Dividing this two-dimensional current value by the
width of the device (in our case 200 nm), we obtain the current density in units of [A/cm2] which is the usual unit
of a 1D simulation. As our simple 2D example structure is basically equivalent to a 1D structure, we can easily
compare our 2D results with the 1D results to check for consistency.

volt-
age

current (A/cm)
(nextnano++ 2D)

current density (A/cm2)
(nextnano++ 2D*)

current density (A/cm2)
(nextnano++ 1D)

0 0 0 0
0.02 0.33845 16922.4 16922.4
0.04 0.67689 33844.7 33844.7
0.06 1.0153 50767.0 50767.0
0.08 1.3538 67689.2 67689.2
0.10 1.6922 84611.2 84611.3

* Here, the current density of the 2D simulation is obtained by dividing the current [A/cm] by the width 200 nm.

From the IV characteristics obtained from the 2D simulation, you can obtain a resistivity of the n-GaN layer of
1.1819× 10−6 Ωcm2 which agrees very well with the 1D result (1D: 1.1819× 10−6 Ωcm2).

4.2. Basics 113

nextnano++ Documentation, Release 1.25.13

3D

Of course, it is also possible to simulate this structure in 3D. In this case, the unit of the current is [A] and have to
be divided by the area of the device perpendicular to the current flow direction to obtain the units of [A/cm2].

Last update: 17/07/2024

— DEV — n-i-n Si resistor

. Attention

This tutorial is under construction

Input files:
• nin-resistor_Si_Sabathil_JCE_2002_1D_nnp.in

Scope:
This tutorial aims to simulate the current through n-i-n Si transistors. We illustrate our method
for calculating the current by studying simple one-dimensional examples that we can compare to
full Pauli master equation results. Our method is capable of calculating the electronic structure
of a device fully quantum mechanically, yet employing a semi-classical scheme for the evaluation
of the current. As we shall see, the results are close to those obtained by the full Pauli master
equation provided we limit ourselves to situations not too far from equilibrium. The tutorial is
based on the example presented on p. 43 in Stefan Hackenbuchner’s PhD thesis [Hackenbuchn-
erPhD2002] and on the following paper: [Sabathil2002].

Output files:
• bias_xxxxx\density_electron.dat

• bias_xxxxx\bandeges.dat

• IV_characteristics.dat

Structure

We consider a one-dimensional 300 nm Si-based n-i-n resistor at room temperature where “n-i-n” stands for “n-
doped / intrinsic / n-doped” (see Figure 4.2.4.7). The intrinsic region and the n-doped regions are each 100 nm
wide. At both ends of the device there are ohmic contacts.

Figure 4.2.4.7: Geometry of the n-i-n Si resistor

The n-doped regions at the left and right sides are doped with a doping concentration of 𝑁D = 1 · 1017 cm−3.
The intrinsic region in the center of the device has a background concentration of 𝑛i = 1 · 1013 cm−3 (see p. 43
in [HackenbuchnerPhD2002]). This value is calculated by nextnano++ automatically and does not have to be
entered in the input file. Assuming Maxwell-Boltzmann statistics, the intrinsic carrier concentration 𝑛i is given by

𝑛i = (𝑁c𝑁v)
1
2 exp

(︂
− 𝐸gap

2𝑘B𝑇

)︂
, (4.2.4.1)

114 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

where 𝑇 = 300K is the temperature, 𝐸gap = 1.095 eV is the band gap energy of Si at 𝑇 = 300K, 𝑁c =
2.738 · 1019 cm−3, 𝑁v = 1.138 · 1019 cm−3. Using (4.2.4.1), one obtains 𝑛i = 1.12 · 1010 cm−3. For a more
detailed discussion of this equation (including Fermi-Dirac statistics), please read the description in Tutorial I-V
characteristics of an n-doped Si structure.

The conductivity electron mass is given by

𝑚*
e,cond =

2

1/0.916 + 2/0.19
m0 = 0.258𝑚0,

whereas the DOS electron effective mass is given by

𝑚*
e,DOS = (0.916 · 0.192) 1

3 𝑚0 = 0.321𝑚0.

The static dielectric constant is given by 𝜖 = 11.7. For the donors we assumed an ionization energy of 0.015 eV
and a degeneracy factor of 2.

Simulation

The electron density in nextnano++ can be calculated in two different ways:

• classical density (Thomas-Fermi approximation)

• quantum mechanical density (local quasi-Fermi levels).

The charge density is calculated for a given applied voltage by assuming the carriers to be in local equilibrium that
is characterized by energy-band dependent local quasi-Fermi levels 𝐸F(𝑥) (i.e. in the simplest case, one for holes
and one for electrons). These local quasi-Fermi levels are determined by global current conservation ∇j = 0,
where the current is assumed to be given by the semi-classical relation j = 𝜇(𝑥)𝑛(𝑥)∇𝐸F(𝑥), where 𝜇(𝑥) is the
electron mobility determined by the chosen mobility model. The carrier wave functions and energies are calculated
by solving the single-band Schrödinger-Poisson equation self-consistently. The Schrödinger, Poisson and current
continuity equations are solved iteratively. As a preparatory step, the built-in potential is calculated for zero applied
bias by solving the Schrödinger-Poisson equation self-consistently employing a predictor-corrector approach. The
ohmic contacts impose the boundary conditions 𝐸 = 0kV/cm on the electric field. For applied bias, the Fermi
level and the potential at the contacts are then shifted according to the applied potential which fixes the boundary
conditions. The main iteration scheme itself consists of two parts:

• In the first part, the wave functions and potential are kept fixed and the quasi-Fermi are calculated self-
consistently from the current continuity equation.

• In the second part, the quasi-Fermi levels are kept constant, and the density and the potential are calculated
self-consistently from the Schrödinger and Poisson equations.

In the input file nin-resistor_Si_Sabathil_JCE_2002_1D_nnp.in the variable $QM at the top of the file can be used
for conveniently switching between classical $QM = 0 and quantum mechanical $QM = 1 calculations.

Electron densities

Now let us first have a look at the electron densities at equilibrium (i.e. applied bias 𝑉 = 0V) for the cases of
classical and quantum mechanical calculations. The electron density is the sum over all three valleys (Γ-point,
𝐿-point and𝑋-point (or ∆ for Si) in the Brillouin zone), whereas for Si the dominant valley is the𝑋 valley which
is sixfold degenerate (or twelvefold degenerate including spin degeneracy). Thus, we solve Schrödinger’s equation
only in the𝑋 valley and take for the other valleys the classical density only. For the quantum mechanical calculation
we have to choose appropriate boundary conditions, which are to be specified by the variable $BC_QM at the top of
the input file nin-resistor_Si_Sabathil_JCE_2002_1D_nnp.in.

In Figure 4.2.4.8 we compare the classical and the quantum mechanical electron densities for 0 V applied bias. The
figure shows quantum mechanical calculating using Dirichlet and von Neumann boundary conditions. Dirichlet
boundary conditions force the wave function to be zero at the boundaries and thus the electron density is zero there
as well.

4.2. Basics 115

nextnano++ Documentation, Release 1.25.13

Figure 4.2.4.8: Comparison between classical and quantum mechanical electron densities for the n-i-n resistor.
Quantum mechanical simulations using Dirichlet and von Neumann boundary conditions are shown.

I-V characteristics

Now we vary the applied bias from 0V to 0.25V in steps of 0.05V and solve the drift-diffusion equations without
taking quantum mechanical densities into account (classical simulation). Here, we compare two different models
for calculating the mobility 𝜇, namely, the constant mobility model (𝜇 = 1417 cm2/Vs) and the Hänsch mobility
model. The Hänsch model is a high field mobility model, which includes the dependency of 𝜇 on the electric field.

Figure 4.2.4.9: IV characteristics of the 300 nm Si n-i-n resistor for the constant mobility model and high field
mobility model Hänsch (classical simulations).

The conduction band edges𝐸c and Fermi levels𝐸F,e (i.e. chemical potentials) for the electrons at different applied
voltages are plotted in Figure 4.2.4.10.

116 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.2.4.10: Conduction band edge profile𝐸c and electron quasi-Fermi levels𝐸F,e at bias points of 0V, 0.15V
and 0.25V.

Quantum mechanical calculations

As one may expect, true quantum mechanical effects play little role in this case and both the nextnano++ (i.e.
the semi-classical drift-diffusion) and the Pauli master equation approach yield practically identical results for the
density and conduction band edge energies (i.e. for the electrostatic potential). We would like to point out that this
good agreement is a nontrivial finding, as we calculate the density quantum mechanically with self-consistently
computed local quasi-Fermi levels rather than semi-classically.

Figure 4.2.4.11 shows the conduction band edge energies and the electron densities for an applied bias of 0.25V.
One can see that our results agree very well with the solution of the Pauli master equation [Fischetti1998]. Fischetti
obtains for the current density 6.8 · 104 A/cm2, whereas we obtain 3.65 · 104 A/cm2 by using a (semi-)classical
drift-diffusion model. However, we note that the current is directly proportional to the mobility in our model,
i.e. changing the mobility therefore changes the value of the current. If we had chosen a constant mobility of 𝜇 =
1417 cm2/Vs, then the current at 0.25V applied bias had been 7.67 ·104 A/cm2 (compare with I-V characteristics
above).

Figure 4.2.4.11: Calculated conduction band edges 𝐸c and the electron densities 𝑛 of the n-i-n structure as a
function of position inside the structure. The results obtained from the Pauli master equation [Fischetti1998] are
compared to our quantum mechanical results (full lines).

4.2. Basics 117

nextnano++ Documentation, Release 1.25.13

Conclusion

Here, we demonstrated our approach to calculate the electronic structure in non-equilibrium, where we combine the
stationary solutions of the Schrödinger equation with a semi-classical drift-diffusion model. For the electrostatic
potential and the charge carrier density, the method leads to a very good agreement with the more rigorous Pauli
master equation approach. In addition, the current can also be described accurately.

Last update: nnnn/nn/nn

4.2.5 Other
— EDU — Interpolation of 2-component alloys

• Header

• Introduction

• How to set up simulations and why

• Interpolations

• Linear - no bowing

• Quadratic - constant bowing

• Cubic - composition-dependent bowing

• Band offsets with the different schemes

• Exercises

Header

Files for the tutorial located in nextnano++\examples\education

• Interpolation_In(x)Ga(1-x)As_1D_linear_quadratic_nnp.in

• Interpolation_In(x)Ga(1-x)As_1D_cubic_nnp.in

• Interpolation_A(x)B(1-x)C_1D_linear_quadratic_nnp.in - for arbitrary materials

• Interpolation_A(x)B(1-x)C_1D_cubic_nnp.in - for arbitrary materials

Scope of the tutorial:
•

Main adjustable parameters in the input file:
• parameter $linear

• parameter $STRAIN

Relevant output files:
• bias_00000\bandedges.dat

Introduction

In Interpolation schemes, you can see how to introduce interpolations in your simulation system. This tutorial helps
you understand that more through plotting band offsets of a ternary compound In(x)Ga(1-x)As with the different
interpolation schemes.

Band offsets also provides with some insights into how to define band offsets, which is related to this tutorial.

118 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

How to set up simulations and why

First, we define structure{ } to build our simulation system.

35 structure{
36 region{
37 ternary_linear{ # the composition x of In(x)Ga(1-x)As varies linearly
38 name = $material
39 alloy_x = [0.0, 1.0] # vary x from 0.0 to 1.0 in In(x)Ga(1-x)As
40 x = [$xmin, $xmax] # x coordinate of start and end point (nm)
41 }
42 line{ x = [$xmin, $xmax] } # In(x)Ga(1-x)As exists from 0.0 to 1.0␣

→˓along the x direction
43 contact{ name = "fermi_contact" } # This region will be defined as a␣

→˓contact. In this case, the contact is called "fermi_contact"
44 }
45 }

As a result, pure GaAs exists at 𝑥 = 0 (𝑛𝑚) and pure InAs exists at 𝑥 = 1 (𝑛𝑚). The composition varies linealy
respect to x coordinate (nm).

Next, we consider what outputs to obtain from the simulation. We want to know the band offsets of In(x)Ga(1-x)As,
therefore, we need the syntax classical{ }.

55 classical{
56 Gamma{} # a conduction band with a minimum at Gamma point
57 HH{} # a heavy-hole valence band with a minimum at Gamma point
58 LH{} # a light-hole valence band with a minimum at Gamma point
59 SO{} # a split-off valence band with a minimum at Gamma point
60 output_bandedges{} # obtain band edges above
61 output_bandgap{} # obtain a band gap energy (optional)
62 }

The result is folded inside bias_00000\bandedges.dat.

We also have to initialize the poisson condition in poisson{ }. We do not want to apply an electric field to the
simulation because it affects the band offsets. Therefore, we explicitly define no electric field in the simulation.

65 poisson{
66 electric_field { strength = 0 }
67 }

If you use charge_neutral{} instead, it causes an electric field to require charge neutrality at all grid points.
You can get more information in poisson{ }

Lastly, we introduce strain effects into the system. The strain is caused by the mismatch of lattice constants between
the substrate InP and In(x)Ga(1-x)As. We assume that the strain is homogeneous.

Thus, we use pseudomorphic_strain{ } here.

8 $STRAIN = 0 # Choose strain option: 1: include strain, 0: do not include strain ␣
→˓(ListOfValues: 0, 1)

69 strain{
70 pseudomorphic_strain{ }
71 }

To ignore the strain, we use $STRAIN. If $STRAIN = 1, we take account into strain. If $STRAIN = 0, we do not.

4.2. Basics 119

nextnano++ Documentation, Release 1.25.13

73 run{
74 !IF($STRAIN)
75 strain{ }
76 !ENDIF
77 }

This is necessary to calculate strain effects. We will see the strain effects to the band offsets of In(x)Ga(1-x)As at
the end of this tutorial. Refer to strain{ } for further information.

Interpolations

We have three interpolation schemes, according to Interpolation schemes. Note that material parameters𝑃𝐴𝐵𝐶(𝑥),
𝑃𝐴𝐶 , and 𝑃𝐵𝐶 correspond to the ones of In(x)Ga(1-x)As, pure InAs and pure GaAs, respectively.

Linear - no bowing

In this scheme, the material parameter 𝑃𝐴𝐵𝐶(𝑥) is represented as follows,

𝑃𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) = 𝑥× 𝑃𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝑃𝐺𝑎𝐴𝑠

This formula means that all material parameters of In(x)Ga(1-x)As are independent of a bowing parameter. There
are three necessary material parameters (the energy gap 𝐸Γ

𝑔 , the average energy of three top valence bands 𝐸𝑣,𝑎𝑣 ,
and the spin-orbit splitting energy ∆𝑠𝑜) to obtain band offsets of In(x)Ga(1-x)As (Band offsets).

Therefore, for example, in terms of the energy gap (𝐸Γ
𝑔,𝐼𝑛𝐺𝑎𝐴𝑠), the following formula holds.

𝐸Γ
𝑔,𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) = 𝑥× 𝐸Γ

𝑔,𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝐸Γ
𝑔,𝐺𝑎𝐴𝑠

This is also true for the other two parameters (𝐸𝑣,𝑎𝑣 and ∆𝑠𝑜).

We need to define those parameters of InAs and GaAs with database{ }.

81 database{
82 # All the material parameters of InAs here (equivalent to P_InAs)
83 binary_zb{
84 name = InAs
85 conduction_bands{
86 Gamma{
87 bandgap = 0.417 # E_{g,InAs}^{Gamma}, Vurgaftman1 (0 K)
88 bandgap_alpha = 0.276e-3 # Vurgaftman1
89 bandgap_beta = 93 # Vurgaftman1
90 }
91 }
92 valence_bands{
93 bandoffset = 1.390 # E_{v,av,InAs}, A. Zunger
94 delta_SO = 0.39 # Delta_{so,InAs}, Vurgaftman1
95 }
96 }
97

98 # All the material parameters of InAs here (equivalent to P_GaAs)
99 binary_zb{

100 name = GaAs
101 conduction_bands{
102 Gamma{
103 bandgap = 1.519 # E_{g,GaAs}^{Gamma}, Vurgaftman1 (0 K)
104 bandgap_alpha = 0.5405e-3 # Vurgaftman1
105 bandgap_beta = 204 # Vurgaftman1
106 }
107 }

(continues on next page)

120 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

108 valence_bands{
109 bandoffset = 1.346 # E_{v,av,GaAs}, A. Zunger
110 delta_SO = 0.341 # Delta_{so,GaAs}, Vurgaftman1
111 }
112 }

Then, we further define bowing parameters, which are all 0 in linear interpolation, inside database{ } as well.

118 # All bowing parameters are set to 0 in linear interpolation
119 ternary_zb{
120 name = "In(x)Ga(1-x)As"
121 valence = III_V
122 binary_x = InAs
123 binary_1_x = GaAs
124

125 conduction_bands{
126 Gamma{ bandgap = 0.0 } # set to 0 deliberately
127 }
128 valence_bands{
129 bandoffset = 0.0 # set to 0 deliberately
130 delta_SO = 0.0 # set to 0 deliberately
131 }
132 }

The original database file (default: database_nnp.in) that nextnanomat refers to has data about In(x)Ga(1-x)As,
thus, it is automatically adopted and overwrites your database unless you explicitly define that they are equivalent
to 0. Therefore, you have to check the original database and how the bowing parameters of materials are
defined before you define them by your own.

Quadratic - constant bowing

In this scheme, the material parameter 𝑃𝐴𝐵𝐶(𝑥) is represented as follows,

𝑃𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) = 𝑥× 𝑃𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝑃𝐺𝑎𝐴𝑠 − 𝑥[1− 𝑥]× 𝑏𝐼𝑛𝐺𝑎𝐴𝑠

𝑏𝐼𝑛𝐺𝑎𝐴𝑠 is a constant bowing parameter and we have to define it inside database{ } in this case. We also have
to define parameters 𝑃𝐼𝑛𝐴𝑠 and 𝑃𝐺𝑎𝐴𝑠 as well as in the linear scheme.

81 database{
82 # All the material parameters of InAs here (equivalent to P_InAs) as well as in␣

→˓the linear scheme
83 binary_zb{
84 name = InAs
85 }
86

87 # All the material parameters of InAs here (equivalent to P_GaAs) as well as in␣
→˓the linear scheme

88 binary_zb{
89 name = GaAs
90 }

Then, we define constant bowing parameters 𝑏𝐼𝑛𝐺𝑎𝐴𝑠 as follows.

141 # All bowing parameters are constant in quadratic interpolation
142 ternary_zb{
143 name = "In(x)Ga(1-x)As"
144 valence = III_V

(continues on next page)

4.2. Basics 121

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

145 binary_x = InAs
146 binary_1_x = GaAs
147

148 conduction_bands{
149 Gamma{ bandgap = 0.477 } # Vurgaftman1
150 }
151 valence_bands{
152 bandoffset = -0.43 # the band offset (= average valence band edge␣

→˓energy)
153 delta_SO = 0.15 # Vurgaftman1
154 }
155 }

Here, some necessary parameters to describe band offsets, for example 𝐸Γ
𝑔,𝐼𝑛𝐺𝑎𝐴𝑠, is represented as follows,

𝐸Γ
𝑔,𝐼𝑛𝐺𝑎𝐴𝑠 = 𝑥× 𝐸Γ

𝑔,𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝐸Γ
𝑔,𝐺𝑎𝐴𝑠 − 𝑥[1− 𝑥]× 𝑏𝐼𝑛𝐺𝑎𝐴𝑠

𝑏𝐼𝑛𝐺𝑎𝐴𝑠 is the bowing parameter for the band gap and defined in the code as Gamma{ bandgap = 0.477}.

This is true for the other two parameters (𝐸𝑣,𝑎𝑣 and ∆𝑠𝑜) as well.

Cubic - composition-dependent bowing

In this scheme, the material parameter 𝑃𝐴𝐵𝐶(𝑥) is represented as follows,

𝑃𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) = 𝑥× 𝑃𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝑃𝐺𝑎𝐴𝑠 − 𝑥[1− 𝑥]× 𝑏𝐼𝑛𝐺𝑎𝐴𝑠(𝑥)

𝑏𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) = 𝑥× 𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐺𝑎𝐴𝑠

𝑏𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) is a composition-dependent bowing parameter. The 𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐼𝑛𝐴𝑠 is a constant bowing pa-
rameter for nearly pure InAs (𝑥 = 1), while the 𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐺𝑎𝐴𝑠 is also a constant bowing parameter for
nearly pure GaAs (𝑥 = 0).

To define 𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐼𝑛𝐴𝑠, and 𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐺𝑎𝐴𝑠, we need bowing_zb{}. Moreover,
ternary2_zb{} should be used to relate all the bowing parameters and the component materials (InAs
and GaAs) for the alloy (In(x)Ga(1-x)As). Again, note that we also have to define parameters 𝑃𝐼𝑛𝐴𝑠 and 𝑃𝐺𝑎𝐴𝑠
as well as in the linear scheme.

81 database{
82 # All the material parameters of InAs here (equivalent to P_InAs) as well as in␣

→˓the linear scheme
83 binary_zb{
84 name = InAs
85 }
86

87 # All the material parameters of InAs here (equivalent to P_GaAs) as well as in␣
→˓the linear scheme

88 binary_zb{
89 name = GaAs
90 }

Then, we define composition-dependent bowing parameters as follows. As explained before, the original database
has data about In(x)Ga(1-x)As. Therefore, we need ternary2_zb{} to have a different name from the one in
ternary_zb{} to avoid duplication between them.

166 bowing_zb{
167 name = "InGaAs_Bowing_InAs"
168 valence = III_V

(continues on next page)

122 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

169 conduction_bands{
170 Gamma{ bandgap = 0.359 } # b_In(x)Ga(1-x)As ---> b_InAs (x = 1)
171 }
172 valence_bands{
173 bandoffset = -0.43 # the band offset (= average valence band edge␣

→˓energy)
174 delta_SO = 0.15 # Vurgaftman1
175 }
176 }
177

178 bowing_zb{
179 name = "InGaAs_Bowing_GaAs"
180 valence = III_V
181 conduction_bands{
182 Gamma{ bandgap = 1.43 } # b_In(x)Ga(1-x)As ---> b_GaAs (x = 0)
183 }
184 valence_bands{
185 bandoffset = -0.43 # the band offset (= average valence band edge␣

→˓energy)
186 delta_SO = 0.15 # Vurgaftman1
187 }
188 }
189

190 ternary2_zb{
191 name = "In(x)Ga(1-x)As_cubic" # rename to avoid duplication with␣

→˓data on the original database
192 valence = III_V
193 binary_x = InAs
194 binary_1_x = GaAs
195 bowing_x = InGaAs_Bowing_InAs # b_In(x)Ga(1-x)As ---> b_InAs (x = 1)
196 bowing_1_x = InGaAs_Bowing_GaAs # b_In(x)Ga(1-x)As ---> b_GaAs (x = 0)
197 }

Here, some necessary parameters to describe band offsets, for example 𝐸Γ
𝑔,𝐼𝑛𝐺𝑎𝐴𝑠, is represented as follows, As

explained before,

𝐸Γ
𝑔,𝐼𝑛𝐺𝑎𝐴𝑠 = 𝑥× 𝐸Γ

𝑔,𝐼𝑛𝐴𝑠 + [1− 𝑥]× 𝐸Γ
𝑔,𝐺𝑎𝐴𝑠 − 𝑥[1− 𝑥]× 𝑏𝐼𝑛𝐺𝑎𝐴𝑠(𝑥)

𝑏𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) is the bowing parameter for the bang gap and defined as the formula below on the Table 6.14 in
[Adachi2009].

𝑏𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) = 0.359 + 0.491 · (1− 𝑥) + 0.580 · (1− 𝑥)2

Therefore,

𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐼𝑛𝐴𝑠 = 𝑏𝐼𝑛𝐺𝑎𝐴𝑠(1) = 0.359 + 0.491 · (1− 1) + 0.580 · (1− 1)2 = 0.359

𝑏𝐼𝑛(𝑥)𝐺𝑎(1−𝑥)𝐴𝑠→𝐺𝑎𝐴𝑠 = 𝑏𝐼𝑛𝐺𝑎𝐴𝑠(0) = 0.359 + 0.491 · (1− 0) + 0.580 · (1− 0)2 = 1.43

Because we do not have formulas for the bowing parameters for 𝐸𝑣,𝑎𝑣 and ∆𝑠𝑜, we define them as the same values
between InAs and GaAs in the code above. This means that the two bowing parameters are constant and have the
quadratic scheme for the valence bands.

Band offsets with the different schemes

According to the three schemes, which is explained above, we plot band offsets of In(x)Ga(1-x)As (Figure 4.2.5.1).

Note that we define the bowing parameters for 𝐸𝑣,𝑎𝑣,𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) and ∆𝑠𝑜,𝐼𝑛𝐺𝑎𝐴𝑠(𝑥) as constant in the cubic
scheme, therefore valence bands in the scheme are plotted with the quadratic scheme instead. Without strain,𝐸𝐻𝐻

4.2. Basics 123

nextnano++ Documentation, Release 1.25.13

Figure 4.2.5.1: Band edges of In(x)Ga(1-x)As with a linear scheme in (a). (b) is with a quadratic scheme. (c) is
with a cubic scheme. The band edges without strain are plotted with solid lines. The ones with strain are plotted
with dotted lines.

and 𝐸𝐿𝐻 are degenerated in the all schemes. When strain is introduced due to the mismatch of lattice constants
between the substrate InP and In(x)Ga(1-x)As, band edges are bent. This is because interpolations are executed
first and then the strain is introduced to shift band energies.

Exercises

Plot band offsets of Al(x)Ga(1-x)As with the following steps:
• check the original database and how it is defined in it

• plot them with the linear scheme

• plot them with the quadratic scheme

• plot them with the cubic scheme

• introduce strain into the simulations and check the effects

You can get some clues to solve them in Interpolation schemes and Band offsets.

Last update: 08/03/2024

4.3 p-n Junctions & Solar Cells

4.3.1 — FREE — GaAs p–n junction
Author Stefan Birner

ò Note

See a tutorial on IV curves for pn junctions described here

Input Files:
• pn_junction_GaAs_1D_nnp.in

• pn_junction_GaAs_2D_nnp.in

• pn_junction_GaAs_3D_nnp.in

This tutorial aims to reproduce Figure 3.1 (p. 51) of Joachim Piprek’s book “Semiconductor Optoelectronic De-
vices - Introduction to Physics and Simulation” (Section 3.2 “pn-junctions”)

124 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Doping concentration

The structure consists of 300 nm GaAs. At the left and right boundaries, metal contacts are connected to the GaAs
semiconductor (i.e. from 0 nm to 10 nm, and from 310 nm to 320 nm). The structure is p-type doped from 10 nm
to 160 nm and n-type doped from 160 nm and 310 nm.

The following figure shows the concentration of donors and acceptors of the p-n junction. In the p-type region
between 10 nm and 160 nm, the number of acceptors, 𝑁𝐴 is 0.5× 1018 cm-3 In the n-type region between 160 nm
and 310 nm, the number of donors, 𝑁𝐷 is 2.0× 1018 cm-3

Carrier concentrations

The equilibrium condition for a p-n junction is achieved by a small transfer of electrons from the n region to the p
region, where they recombine with holes. This leads to a depletion region (depletion width = 𝑤𝑝 + 𝑤𝑛), i.e. the
region around the p-n junction only has very few free carriers left. The following figure shows the electron and
hole densities and the depletion region around the p-n junction at 160 nm. Here, we assumed that all donors and
acceptors are fully ionized.

Net charges (space charge)

In the depletion region, a net charge results from the ionized donors𝑁𝐷 and ionized acceptors𝑁𝐴. The following
figure shows the net charge density of the p-n junction.

Electric field

The slope of the electric field is proportional to the net charge (Poisson equation), thus the extremum of the electric
field is expected to be at the p-n junction. In regions without charges, the electric field is zero. The following figure
shows the electric field of the p-n junction.

4.3. p-n Junctions & Solar Cells 125

nextnano++ Documentation, Release 1.25.13

The extremum of the electric field 𝐹𝑚𝑎𝑥 (at 160 nm) can be approximated as follows:

𝐹𝑚𝑎𝑥 =
−𝑒𝑁𝐴𝑤𝑝

𝜖𝜖0
= −6.997× 1014V/m2𝑤𝑝 = 387kV/cm

=
−𝑒𝑁𝐷𝑤𝑛

𝜖𝜖0
= −2.799× 1015V/m2𝑤𝑛 = 386kV/cm

Symbol Value
e 1.6022× 10−19As
𝜖 12.93 (Dielectric constant of GaAs)
𝜖0 8.854× 1012As/(Vm)
𝑁𝐴 0.5× 1018cm−3

𝑁𝐷 2.0× 1018cm−3

𝑤𝑝 55.3 nm
𝑤𝑛 13.8 nm

Electrostatic potential, conduction and valence band edges

In regions, where the electric field is zero, the electrostatic potential is constant. The electrostatic potential phi
determines the conduction and valence band edges:

• 𝐸𝑐 = 𝐸𝑐0 − 𝑒𝜑

• 𝐸𝑣 = 𝐸𝑣0 − 𝑒𝜑

The following figure shows the conduction and valence band edges, the electrostatic potential and the Fermi level
of the p-n junction.

Without external bias (i.e. equilibrium), the Fermi level 𝐸𝐹 is constant (𝐸𝐹 = 0eV).

126 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The built-in potential 𝜑𝑏𝑖 was calculated by nextnano++ to be equal to 1.426 V It can be approximated as follows:

𝜑𝑏𝑖 = 𝐹max(𝑤𝑝 + 𝑤𝑛)/2

Assuming 𝐹max = 387kV/cm, this would result in a depletion width: 𝑤𝑝 + 𝑤𝑛 = 73.7nm

To allow for a constant chemical potential (i.e. constant Fermi level 𝐸𝐹), a total potential difference of −𝑒𝜑𝑏𝑖 is
required.

Quantum mechanical solution

Using the nextnano3 input file pn_junction_GaAs_1D_QM_nn3.in, we can solve the Schrödinger equation for the
electrons, light and heavy holes in the single-band approximation over the whole device, rather than classically.
We calculate up to 300 eigenvalues for each band. Thus the electron and hole densities are calculated purely
quantum mechanically. The following figure shows the electron and hole concentrations for the classical and
quantum mechanical calculations. For the QM calculations, different boundary conditions were used.

• Dirichlet boundary conditions force the wave functions to be zero at the boundaries, thus the density goes
to zero at the boundaries which is unphysically.

• Neumann boundary conditions lead to unphysically large values at the boundaries.

For the classical calculation, the densities at the boundaries are constant. Nevertheless, in the interesting region
around the p-n junction, all four options lead to identical densities.

The following figure shows the band edges of the p-n junction for the four cases:

• Classical calculation

4.3. p-n Junctions & Solar Cells 127

nextnano++ Documentation, Release 1.25.13

• Quantum mechanical calculation with Dirchlet boundary conditions

• Quantum mechanical calculation with Neumann boundary conditions

• Quantum mechanical calculation with mixed boundary conditions (this feature is no longer supported)

For all cases the band edges are identical in the area around the p-n junction. Tiny deviations exist at the boundaries
of the device.

This figure is a zoom into the right boundary of the conduction band edge. On this scale, the tiny deviations for
the different boundary conditions can be clearly seen.

Non-equilibrium

So-called “quasi-Fermi levels” which are different for electrons (𝐸𝐹 , 𝑛) and holes (𝐸𝐹 , 𝑝) are used to describe
nonequilibrium carrier concentrations.

In equilibrium the quasi-Fermi levels are constant and have the same value for both electrons and holes (𝐸𝐹𝑛 =
𝐸𝐹𝑝 = 0eV). The current is proportional to the mobility and the gradient of the quasi-Fermi level 𝐸𝐹 .

2D/3D Simulations

• pn_junction_GaAs_2D_nnp.in

• pn_junction_GaAs_3D_nnp.in

These input files are for the same p-n junction structure as in the 1D case, but extended into 2D and 3D.

• 2D: rectangle of dimension 320 nm x 200 nm

• 3D: cuboid of dimension 320 nm x 200 nm x 100 nm

128 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Complete input file for nextnano++

pn_junction_GaAs_1D_nnp.in ␣
→˓!

global{
simulate1D{}

temperature = 300.0 #␣
→˓Kelvin

substrate{ name = "GaAs" }

crystal_zb{
x_hkl = [1, 0, 0]
y_hkl = [0, 1, 0]

}
}

grid{
#
For consistency reasons, we use the same nonuniform grid spacing as the␣
→˓nextnano3 input file.
However, using jumps in the grid spacing (e.g. at x=100.0 where the grid␣
→˓spacing changes abruptly)
is not a good practice, as numerical errors increase.
#
xgrid{

line{ pos = 0.0 spacing = 2.0 }
line{ pos = 10.0 spacing = 2.0 }
line{ pos = 10.0 spacing = 1.0 }
line{ pos = 100.0 spacing = 1.0 }
line{ pos = 100.0 spacing = 0.5 }
line{ pos = 140.0 spacing = 0.5 }
line{ pos = 140.0 spacing = 0.25 }
line{ pos = 180.0 spacing = 0.25 }
line{ pos = 180.0 spacing = 0.5 }
line{ pos = 220.0 spacing = 0.5 }
line{ pos = 220.0 spacing = 1.0 }
line{ pos = 310.0 spacing = 1.0 }
line{ pos = 310.0 spacing = 2.0 }
line{ pos = 320.0 spacing = 2.0 }

}
}

structure{
output_region_index{ boxes = no }
output_material_index{ boxes = no }
output_alloy_composition{ boxes = no }
output_impurities{ boxes = no }

region{
everywhere{}
binary{ name = "GaAs" }

}
region{

line{
(continues on next page)

4.3. p-n Junctions & Solar Cells 129

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

x = [0.0, 10.0]
}
binary{

name = "GaAs"
}
contact { name = source }

}
region{

line{
x = [10.0, 310.0]

}
binary{

name = "GaAs"
}

}
region{

line{
x = [310.0, 320.0]

}
binary{

name = "GaAs"
}
contact { name = drain }

}

region{
line{

x = [0.0, 160.0]
x = [10.0, 160.0] # doping must not start at 10.0
}
doping{

constant{
name = "p-type"
conc = 0.5e18

}
}

}

region{
line{
x = [160.0, 310.0] # doping must not end at 310.0

x = [160.0, 320.0]
}
doping{

constant{
name = "n-type"
conc = 2.0e18

}
}

}
}

impurities{
donor{ name = "n-type" energy = 0.027 degeneracy = 2 }
acceptor{ name = "p-type" energy = 0.0058 degeneracy = 4 }

donor{ name = "n-type" energy = -1000.0 degeneracy = 2 } # '-

(continues on next page)

130 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓1000.0' eV = all ionized
acceptor{ name = "p-type" energy = -1000.0 degeneracy = 4 } # '-1000.0'␣
→˓eV = all ionized
}

contacts{
ohmic{ name = "source" bias = 0.0 }
ohmic{ name = "drain" bias = 0.0 }
}

classical{
Gamma{}
HH{}
LH{}
SO{}

output_bandedges{ averaged = no}
output_carrier_densities{}
output_ionized_dopant_densities{}
output_intrinsic_density{}
}

poisson{
output_potential{}
output_electric_field{}
}

run{
solve_poisson{ }
}

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.3.2 I–V characteristic of GaAs p–n junction | 1D/2D/3D

. Warning

This tutorial is under construction

Input Files:
• pn_junction_GaAs_ForwardBias_1D_nnp.in

• pn_junction_GaAs_ForwardBias_2D_nnp.in

• pn_junction_GaAs_ForwardBias_3D_nnp.in

Scope:
This tutorial shows how to perform bias sweeps to compute IV curves.

Most relevant keywords:
• contacts{ ohmic{ bias } }

• contacts{ ohmic{ steps } }

4.3. p-n Junctions & Solar Cells 131

nextnano++ Documentation, Release 1.25.13

Output Files:
IV_characteristics.dat

Introduction

In the present tutorial we are concerned with the question of how to determine the I-V characteristics of a device.
For this purpose, one side of the device is biased, and the simulation is repeatedly executed for a range of different
voltages. The nextnano++ tool offers a convenient way to perform this bias sweep. The computed current and
voltage values are automatically collected in one file. In what follows, we simulate a simple p-n junction (see also
p-n junction tutorial), to demonstrate the usage of the keywords which are relevant to trigger the bias sweep.

Input File

First, two contact regions at both ends of the structure are needed: one as source and the other as drain channel.
The contact regions will allow us to bias the structure by applying an explicit voltage to either side of the device.

structure{

...

region{
line{ x = [-$BOUNDARY, -$SIZE] } # contact on left device boundary
contact{ name = leftgate } # contact name

}
region{

line{ x =[$SIZE, $BOUNDARY] } # contact on right device boundary
contact{ name = rightgate } # contact name

}

...
}

The actual properties of the contacts are specified inside the group contacts{ }. There are several contact types
available (e.g. ohmic{}, schottky{}, fermi{}, . . .), each imply different boundary conditions which are applied
to the electrostatic potential 𝜑(𝑥). In our case we choose ohmic{} contacts.

The voltage on the right side is set to zero (bias = 0 V) and the left contact is biased. In order to sweep over different
voltages automatically, the bias for the left contact is to be specified as a vector with start and end value (bias =
[Vstart, Vend]). The attribute steps specifies the total number of voltage values.

contacts{
ohmic{ # left contact

name = leftgate # refer to region labeled 'leftgate'
bias = [0 , 1.0] # [V] start and end value of bias sweep
steps = 20 # number of sweep values

}
ohmic{ # right contact

name = rightgate # refer to region labeled 'rightgate'
bias = 0.0 # [V] unbiased

}
}

For simulating charge carrier transport the Poisson and Current equation are solved self consistently. It is important
to use proper convergence parameter inside the group run{ }.

ò Note

It is important to be aware that applying different voltages change the physical properties of the system, e.g.
the electric field, and therefore it is not guaranteed that one set of convergence parameters are applicable to all

132 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

voltages of the sweep.

poisson{
charge_neutral{} # initialize Fermi levels in the contacts that charge␣

→˓neutrality is obtained

output settings
output_potential{}
output_electric_field{}

}

currents{
electron_mobility{

low_field_model = minimos # mobility model
}
hole_mobility{

low_field_model = minimos # mobility model
}

recombination_model{ # recombination models
SRH = yes
Auger = yes
radiative = yes

}

insulator_bandgap = 0.5 # initialization parameter

minimum_density_electrons = 1e-10 # convergence parameter
minimum_density_holes = 1e-10 # convergence parameter
maximum_density_holes = 1e15 # convergence parameter

output settings
output_fermi_levels{}
output_currents{ }
output_mobilities{}
output_recombination{}

}

run{
current_poisson{

iterations = 1000 # max iteration
current_repetitions = 10 # current repetition
alpha_fermi = 0.7 # under-relaxation parameter
residual_fermi = 1e-12 # desired residual of Fermi levels
output_log = yes # information about convergence behavior

}
}

Results

When the input file is executed, simulation results for each bias value are written in separate folders. These are
located in the output folder of the simulation under \bias_xxxxx and contain e.g. band edges, electric fields, con-
vergence behaviors, etc.

The output folder also contains a file with the combined current-voltage values. The corresponding file is labeled
IV_characteristics.dat. The I-V curve, as presented in Figure 4.3.2.1, can be directly visualized in nextnanomat.

4.3. p-n Junctions & Solar Cells 133

nextnano++ Documentation, Release 1.25.13

Figure 4.3.2.1: Current density as function of applied bias (1d simulation)

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.3.3 — NEW/EDU — p-n junction in the dark

. Attention

This tutorial is under construction

• Header

• Introduction

• At equilibrium

• Under applied bias

• J-V curve

– Recombination current region

– Diffusion current region

– High-injection region

– Series-resistance effect

• Numerical control

• Exercises

Header

Files for the tutorial located in nextnano++\examples\education

• pn-junction-dark_GaAs_Nelson_2003_1D_nnp.in

Scope of the tutorial:
•

Main adjustable parameters in the input file:

134 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• parameter $min_density

• parameter $max_density

Relevant output files:
• bias_XXXXX\bandedges.dat

• bias_XXXXX\density_electon.dat

• bias_XXXXX\density_hole.dat

• bias_XXXXX\electric_field.dat

• bias_XXXXX\potential.dat

• IV_characteristics.dat

Introduction

In this tutorial, you can learn fundamentals of p-n junction. We refer to S6 in [NelsonPSC2003] and S2 in
[Sze_Kwok_2007] to make this tutorial. We look into the physical properties of the GaAs p-n junction at equi-
librium first. Then, we apply forward bias and investigate the current-voltage characteristics. We apply the p-n
junction to a solar cell and explain the basic principles of the solar cell in — EDU — p-n junction under illumina-
tion. If you are interested in simulation of solar cells, we recommend that you read it too.

At equilibrium

Figure 4.3.3.1 shows the schematic illustration of the p-n junction.

Figure 4.3.3.1: The schematic illustration of the p-n junction.

At equilibrium, the built-in-potential 𝑉𝑏𝑖 is formed across the space charge region. The process of forming the
built-in-potential is explained below. First, the carrier density gradients arise across the junction when p-doped
GaAs and n-doped GaAs are joined. Then, the free electrons in n-doped GaAs diffuse and combine with holes in
p-doped GaAs. Similarly, the free holes in p-doped GaAs diffuse and combine with electrons in n-doped GaAs.
On the other hand, the ionized dopants, such as negatively charged acceptor and positively charged donor, cannot
move and are fixed at their initial positions. Therefore, the ionized dopants in the region where the carriers are
depleted form the electric field and the built-in-potential 𝑉𝑏𝑖 that impede the diffusion of majority carriers.
The space charge region (the width: 𝑤𝑑) denotes the region that is charged and loses the mobile carriers.

Figure 4.3.3.2 shows the basic characteristics of the diode at equilibrium.

Note that we assume the all dopants are ionized in the result to be consistent with Fig. 6.3. in [NelsonPSC2003].
You can see that the electric field is formed within the space change region and the voltage is equivalent to 𝑉𝑏𝑖
from Figure 4.3.3.2 (b) and (c).

4.3. p-n Junctions & Solar Cells 135

nextnano++ Documentation, Release 1.25.13

Figure 4.3.3.2: Some characteristics are shown across a p-n junction. (a) shows the dopant profile. (b) and (c) are
the electric field and the potential across the space charge region, respectively.

Figure 4.3.3.3 shows (a) the band profiles and (b) the carrier densities at equilibrium. bandedges.dat, den-
sity_electon.dat, and density_hole.dat are used to produce this figure.

Figure 4.3.3.3: The band profiles are plotted in (a). The carrier densities are plotted in (b). The hole density is
shown in violet, whereas the electron density is in green.

In (a), CB and VB represent conduction and valence band, respectively. E𝐹𝑛 and E𝐹𝑝 are the electron quasi Fermi
level and the hole quasi Fermi level. The results are in a good agreement with Fig. 6.5. in [NelsonPSC2003].

𝑉𝑏𝑖 can be calculated at potential.dat and it is 2.7848 − 1.5779 = 1.207 V in this case. The width of the space
charge region 𝑤𝑠𝑐𝑟 can be acquired by the following procedures.

Since

𝑤𝑝 =
1

𝑁𝑎

⎯⎸⎸⎷ 2𝜀0𝜀𝑉𝑏𝑖

𝑞
(︁

1
𝑁𝑎

+ 1
𝑁𝑑

)︁ (4.3.3.1)

and

𝑤𝑛 =
1

𝑁𝑑

⎯⎸⎸⎷ 2𝜀0𝜀𝑉𝑏𝑖

𝑞
(︁

1
𝑁𝑎

+ 1
𝑁𝑑

)︁ , (4.3.3.2)

Thus,

𝑤𝑠𝑐𝑟 = 𝑤𝑝 + 𝑤𝑛 =

√︃
2𝜀0𝜀

𝑞

(︂
1

𝑁𝑎
+

1

𝑁𝑑

)︂
𝑉𝑏𝑖 (4.3.3.3)

Each parameter corresponds to a value in the table below.

Parameter Value
𝑞 (Elementary charge) 1.6022× 10−19 C
𝜀0 (Vacuum permittivity) 8.854× 10−12 C/(Vm)
𝜀 (Relative permittivity of GaAs) 12.93
𝑁𝑎 1.0× 1017 cm−3

𝑁𝑑 1.0× 1016 cm−3

136 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Thus, 𝑤𝑠𝑐𝑟 is:

𝑤𝑠𝑐𝑟 =

√︂
2 · 8.854× 10−14 C/(Vcm) · 12.93 · 1.207 V

1.6022× 10−19 C

1.0× 1017 cm−3 + 1.0× 1016 cm−3

1.0× 1017 cm−3 · 1.0× 1016 cm−3
= 4.356× 10−5 cm = 435.6 nm

From the equation (4.3.3.3), you can see that the higher the dopant concentration is, the thinner 𝑤𝑠𝑐𝑟 becomes.

The derivation of the equations is explained in S6 in [NelsonPSC2003].

Under applied bias

We look into the case of the diode under forward bias. Figure 4.3.3.4 shows animation of (a) the band profiles, (b)
the electric field, and (c) the space charge, respect to the applied bias.

Figure 4.3.3.4: Some characters, (a) the band profiles, (b) the electric field, and (c) the space charge, respect to the
applied bias.

As you see in Figure 4.3.3.4, the width 𝑤𝑠𝑐𝑟 decreases as the forward bias is applied. The width 𝑤𝑠𝑐𝑟 under the
forward bias can be represented as follows.

𝑤𝑠𝑐𝑟 = 𝑤𝑝 + 𝑤𝑛 =

√︃
2𝜀0𝜀

𝑞

(︂
1

𝑁𝑎
+

1

𝑁𝑑

)︂
(𝑉𝑏𝑖 − 𝑉) (4.3.3.4)

As the width 𝑤𝑠𝑐𝑟 decreases, the electric field that prevents the diffusion of majority carriers also decreases.

Whereas the current density across the diode is 0 at equilirium, applied bias enables majority carriers to diffuse
across the junction. This means that a net current of electrons flow from n to p, and a net current of holes from p
to n.

To see the effects of applied bias more clearly, let us look at the band profiles and carrier densities at 0.5 V.

Figure 4.3.3.5: The band profiles are plotted in (a). The carrier densities are plotted in (b). The hole density is
shown in violet, whereas the electron density is in green.

The results are consistent with Fig. 6.6. in [NelsonPSC2003] with high accuracy. The built-in-potential is reduced
to 𝑉𝑏𝑖−𝑉 = 1.207− 0.5 = 0.707 V. Here, the difference between the quasi Fermi levels within the space charge
region is equivalent to 𝑞𝑉 .

Thus,

𝑞𝑉 = 𝐸𝐹𝑛 − 𝐸𝐹𝑝 (4.3.3.5)

This relation can be seen from Figure 4.3.3.5 (a).

4.3. p-n Junctions & Solar Cells 137

nextnano++ Documentation, Release 1.25.13

J-V curve

In this section, we sweep forward bias to acquire J-V curve. You can refer to I–V characteristic of GaAs p–n
junction | 1D/2D/3D to understand how to apply bias in nextnano++.

Figure 4.3.3.6 shows the J-V curve of the diode. IV_characteristics.dat is used to produce this figure.

Figure 4.3.3.6: J-V curve of the diode. (i) space charge recombination current region, (ii) diffusion current region,
(iii) high-injection region, (iv) series-resistence effect region.

The light-blue curve shows the numerical result in nextnano++. The violet and orange dashed-dotted curves are
acquired analytically. They correspond to 𝐽𝑠𝑐𝑟 and 𝐽𝑑𝑖𝑓𝑓 in Fig. 6.7. in [NelsonPSC2003], respectively.

𝐽𝑠𝑐𝑟 is called the recombination current density and expressed in the following equation:

𝐽𝑠𝑐𝑟(𝑉) = 𝐽𝑠𝑐𝑟,0(exp(𝑞𝑉/2𝑘𝐵𝑇)− 1), (4.3.3.6)

where

𝐽𝑠𝑐𝑟,0 =
𝑞𝑛𝑖(𝑤𝑝 + 𝑤𝑛)√

𝜏𝑛𝜏𝑝
(4.3.3.7)

𝐽𝑑𝑖𝑓𝑓 is called the diffusion current density and expressed in the following equation:

𝐽𝑑𝑖𝑓𝑓 (𝑉) = 𝐽𝑑𝑖𝑓𝑓,0(exp(𝑞𝑉/𝑘𝐵𝑇)− 1), (4.3.3.8)

where

𝐽𝑑𝑖𝑓𝑓,0 = 𝑞𝑛𝑖
2

(︂
𝐷𝑛

𝑁𝑎𝐿𝑛
+

𝐷𝑝

𝑁𝑑𝐿𝑝

)︂
(4.3.3.9)

The parameters used in the expressions above are in the table.

Parame-
ters

Description (unit) Value used for the analytical J-V curve

𝑘𝐵 Boltzmann constant (J/K) 1.3806E-23
𝑇 The temperature (K) 300
𝑛𝑖 The intrinsic carrier density (cm-3) 2.318E+6
𝜏𝑛/𝑝 The lifetimes of electrons/holes (s) 3.333× 10-9 for 𝐽𝑠𝑐𝑟 and 1.0× 10-10 for 𝐽𝑑𝑖𝑓𝑓

(*)
𝐷𝑛/𝑝 The diffusion coefficients of electrons/holes

(cm2/Vs)
219.73 / 20.681

𝐿𝑛/𝑝 The diffusion lengths of electrons/holes (cm) 1.4823 × 10-4 / 4.5476 × 10-5

138 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

. Attention

(*) There seems to be some errors related to the units in Fig. 6.7. in [NelsonPSC2003]
Therefore we used the lifetimes as fittig parameters.

The derivation of those equations above are described in S6 in [NelsonPSC2003]. 𝐽𝑎 is the sum of 𝐽𝑠𝑐𝑟 and 𝐽𝑑𝑖𝑓𝑓
(𝐽𝑎 = 𝐽𝑠𝑐𝑟 + 𝐽𝑑𝑖𝑓𝑓). Our result (the light-blue curve) is in a good agreement with 𝐽𝑎 until 𝑉 ≈ 1.2 (𝑉).

Our result shows the four distinct regions as marked Figure 4.3.3.6 (region (i), (ii), (iii), (iv)). In the next section,
we identify the origins of the appearance of the regions.

Recombination current region

The region (i) is attributed to the recombination current region, where the contribution of 𝐽𝑠𝑐𝑟 is dominant. In this
region, electrons and holes recombine within the space charge region since the region still exists. Therefore, the
recombination current flows to compensate externally for the disappearance of the recombined carriers. As you
can see from (4.3.3.6), in the semi-log plot 𝑙𝑜𝑔(𝐽) 𝑣𝑠 𝑉 , the slope in the region (i) is 𝑞𝑉/2𝑘𝐵𝑇 .

Diffusion current region

The region (ii) is the diffusion current region. The contribution of 𝐽𝑑𝑖𝑓𝑓 is large in this region. Since the space
change region almost disappears, a large amount of carriers starts to diffuse. This means that electrons are injected
into p-doped GaAs and holes are injected into n-doped GaAs (minority carriers injection). As you can see from
(4.3.3.8), in the semi-log plot 𝑙𝑜𝑔(𝐽) 𝑣𝑠 𝑉 , the slope in the region (ii) 𝑞𝑉/𝑘𝐵𝑇 .

High-injection region

With increasing the forward bias towards 𝑉𝑏𝑖, the injected hole density becomes comparable to the electron density
at the n-side of the junction. You can see it in Figure 4.3.3.7 (b), where 1.2 V is applied to the diode.

Figure 4.3.3.7: The band profiles are plotted in (a). The carrier densities are plotted in (b). The hole density is
shown in violet, whereas the electron density is in green.

Then, the electron density must increase to maintain the neutrality. As a result, 𝑛 ≈ 𝑝 holds.

Because of the law of the junction,

𝑛𝑝 = 𝑛2𝑖 exp(𝑞𝑉/𝑘𝐵𝑇), (4.3.3.10)

we acquire the equation as follows.

𝑛 = 𝑝 = 𝑛𝑖 exp(𝑞𝑉/2𝑘𝐵𝑇) (4.3.3.11)

Therefore, the current density becomes roughly proportional to exp(𝑞𝑉/2𝑘𝐵𝑇).

Series-resistance effect

At large currents, the voltage drop outside the space charge region becomes too large to ignore. This is equivalent
to considering a single resistance (𝑅) added in series to the ideal diode and corresponds to the region (iv). In this
region, the diffusion current density becomes proportional to the applied voltage to the diode (𝑉 *).

𝐽𝑑𝑖𝑓𝑓,𝑟𝑒𝑔𝑖𝑜𝑛(𝑖𝑣) ≈ 𝐽𝑑𝑖𝑓𝑓,0
𝑞𝑉 *

𝑘𝐵𝑇
, (4.3.3.12)

4.3. p-n Junctions & Solar Cells 139

nextnano++ Documentation, Release 1.25.13

where

𝑉 * = 𝑉 − 𝐼𝑅 (4.3.3.13)

Numerical control

Since we solve the current equation and the poisson equation (explanation: Optoelectronic characterization) self-
consistently, we need some techniques to make the calculations more stable.

In this section, we introduce the effects of minimum_density_electrons, minimum_density_holes, maxi-
mum_density_electrons, and maximum_density_holes.

You should also check Convergence.

In Figure 4.3.3.6, we divide the simulation scheme into 3, depending on the magnitudes of minimum and maximum
carrier densities (scheme (A), (B), and (C)). Scheme (A): 0 ∼ 0.4 V Scheme (B): 0.4 ∼ 0.7 V Scheme (C):
0.7 ∼ 1.5 V

First, the code below defines the magnitudes of the minimum and maximum carrier densities. Note that we use the
variables $min_density and $max_density for convenience.

178 currents{
179 minimum_density_electrons = $min_density
180 minimum_density_holes = $min_density
181 maximum_density_electrons = $max_density
182 maximum_density_holes = $max_density
183

184 }

Usually, you can set the values of $min_density_* and $max_density_* by referring to
bias_XXXXX\density_electon.dat and bias_XXXXX\density_hole.dat. In the scheme (C), the maximum
electron and hole densities are about 1.0 × 1018 (cm−3). Therefore, it is set to 1.0E+20. Similarly, you
can set $minimum_density_*. Since the minimum electron and hole densities are about 1.0 × 100 (cm−3),
$minimum_density_electrons = 1.0E-2 and $minimum_density_holes = 1.0E-2 are enough low to
evaluate the current density accurately. Note that 𝑥 = 0 (𝑛𝑚) and 𝑥 = 3000 (𝑛𝑚) correspond to the positions
of the interfaces of diode/contact. Therefore, we do not include the carrier densities at the positions into the
procedures.

In the scheme (B), $minimum_density_electrons = 1.0E-2 and $minimum_density_holes = 1.0E-2 is
enough low as well. However, you have to take care of the magnitude of $minimum_density_*.

Figure 4.3.3.8 (a) shows the effect of the magnitude of $minimum_density_* on the current density under 0.5 V
in the scheme (B).

Figure 4.3.3.8: The effect of the magnitude of $minimum_density_* on the current density. (a) is under 0.5 V
in the scheme (B). (b) is under 0.1 V in the scheme (A).

Although the current density has to be constant through the diode, it becomes unstable at minimum_density_* set
to 1.0E+16 and minimum_density*_ set to 1.0E+20. Thus, you should set $minimum_density_* to 1.0E+15,
which shows the constant current density.

In the scheme (A), the same techniques should be applied. Figure 4.3.3.8 (b) shows the effect of the mag-
nitude of $maximum_density_* on the current density under 0.1 V in the scheme (A). As you can see,
maximum_density_* should be set to 1.0E+12 to keep the current density constant through the diode.

140 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Exercises

under construction

Last update: 16/07/2024

4.3.4 — EDU — p-n junction under illumination

. Attention

This tutorial is under construction

• Header

• Introduction

• How to illuminate in nextnano++

• Short circuit

• The Photovoltatic effect

• Open circuit

• J-V curve

• Effects of irradiation intensity and temperature

– Effect of irradiation intensity

– Effect of temperature

• Exercises

Header

Files for the tutorial located in nextnano++\examples\education

• pn-junction-illuminated_GaAs_Nelson_2003_1D_nnp.in

Main adjustable parameters in the input file:
• parameter $sun

Relevant output files:
• bias_XXXXX\bandedges.dat

• bias_XXXXX\density_electon.dat

• bias_XXXXX\density_hole.dat

• bias_XXXXX\electric_field.dat

• bias_XXXXX\potential.dat

• IV_characteristics.dat

4.3. p-n Junctions & Solar Cells 141

nextnano++ Documentation, Release 1.25.13

Introduction

In this tutorial, we introduce simulation of a solar cell with nextnano++. This tutorial is based on S6 in [Nel-
sonPSC2003] and S13 in [Sze_Kwok_2007]. Solar cells work based on p-n junction, which is explained in detail
in — NEW/EDU — p-n junction in the dark. Therefore, we recommend that you read it before going through
this tutorial. In addition, GaAs solar cell will help you understand the simulation scheme for solar cells used in
nextnano++.

How to illuminate in nextnano++

To control the concentration of the irradiated light, you have to adjust some variables in nextnano++.

$sun = 10 # concentration of the sun, 10 is used for this tutorial

optics{
irradiation{

min_energy = 0.01
max_energy = 5
energy_resolution = 1e-4

global_illumination{
direction_x = 1
database_spectrum{

name = "Solar-ASTM-G173-global"
concentration = $sun

}
}
global_reflectivity{

database_spectrum{ name = "GaAs" }
}
global_absorption_coeff{

database_spectrum{ name = "GaAs" }
}

}
}

min_energy and max_energy correspond to the minimum and maximum energy of irradiated photons.
energy_resolution is the energy step which is used to calculate optical properties. $sun controls the
concentration of the incident light as it can be defined at global_illumination{ database_spectrum{
concentration = $sun } }. In this tutorial, Solar-ASTM-G173-global, which is equivalent to the solar
spectrum, is also used as in GaAs solar cell. The data of reflectivity and absorption coefficient of GaAs is written
at database{ } at the end of the input file. You can refer to GaAs solar cell for further information.

Short circuit

Let us investigate the behavior of p-n junction when it is illuminated by the sun light. First, we consider when the
voltage across the diode is zero. We call the condition short circuit. The junction before the illumination is at
equilibrium, having the space charge region and the electric field as shown in Figure 4.3.4.1 (a). The electric field
impedes the diffusion of majority carriers as explained in — NEW/EDU — p-n junction in the dark.

Figure 4.3.4.1: The schematic images showing the principles of a solar cell. (a) is the p-n junction at equilibrium.
When it is illuminated, an electron-hole pair is generated at the junction (b). The current runs as long as the diode
is illuminated (c). We assume the resistance of the light bulb is zero because of the short circuit.

142 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

When the light is illuminated, it excites an electron in the valence band if the energy of the light is bigger than the
band gap. The excited electron goes to the conduction band and becomes a conduction electron. On the other hand,
a hole is generated at the valence band, instead of the excited electron. The electric field drifts the electron-hole
pair and the electron goes to the n-doped GaAs whereas the hole goes to the p-doped GaAs as the result (Figure
4.3.4.1 (b)). As long as the junction is illuminated, the electron-hole pair is generated and constitutes the current
(Figure 4.3.4.1 (c)).

Figure 4.3.4.2 shows the band profile and the carrier densities at short circuit. bandedges.dat, density_electon.dat,
and density_hole.dat are used to produce this figure.

Figure 4.3.4.2: The band profiles are plotted in (a). When the light reaches the junction and the energy is bigger
than the band gap, the electron-hole pair is generated as shown in (b). The carrier densities are plotted in (c). The
hole density is shown in violet, whereas the electron density is in green.

In (a), CB and VB represent conduction and valence band, respectively. E𝐹𝑛 and E𝐹𝑝 are the electron quasi Fermi
level and the hole quasi Fermi level. The results are in a good agreement with Fig. 6.8. in [NelsonPSC2003].

As you can see from Figure 4.3.4.2 (a) and (b), the built-in-potential 𝑉𝑏𝑖 is formed across the junction and the
carriers generated by the illuminated light are drifted by the electric field. In addition, the quasi Fermi levels are
split since the carriers are drifted and the carrier densities 𝑛 and 𝑝 increase above their equilibrium values.

In the short circuit, the photocurrent density 𝐽𝑝ℎ is called the short-circuit current density 𝐽𝑠𝑐. The short-circuit
current density is the maximum current density that the solar cell can produce.

The Photovoltatic effect

When the circuit is connected to a resistive load, the negative charges accumulated at n-doped GaAs and the
positive charges accumulated at p-doped GaAs form a voltage (photovoltage). The current flows through the
diode due to the voltage and is analogy to the current which flows across the diode under applied bias in the dark.
Therefore, this current is called the dark current. The dark current density (𝐽𝑑𝑎𝑟𝑘) is in the opposite direction to
the photocurrent density (𝐽𝑝ℎ) as shown in Figure 4.3.4.3.

Figure 4.3.4.3: The circuit is connected to a resistive load. Note that 𝐽𝑑𝑎𝑟𝑘 flows in the opposite direction to 𝐽𝑝ℎ.

4.3. p-n Junctions & Solar Cells 143

nextnano++ Documentation, Release 1.25.13

Generally speaking, when the photovoltage 𝑉 is across the diode, the current density 𝐽 through the diode can be
expressed with the superposition approximation as below.

𝐽(𝑉) = 𝐽𝑑𝑎𝑟𝑘(𝑉)− 𝐽𝑝ℎ(𝑉) = 𝐽𝑑𝑎𝑟𝑘(𝑉)− 𝐽𝑠𝑐, (4.3.4.1)

The photovoltage 𝑉 is defied so that the forward bias is applied to the diode, where 𝑉 > 0. In the superposition
approximation, the photocurrent density is independent of the applied voltage (𝐽𝑝ℎ(𝑉) = 𝐽𝑠𝑐). Note that we do not
take into account the intensity of the irradiated light and the temperature of the diode here for the sake of simplicity.
The effects will be explained in the last section of this tutorial.

𝐽𝑑𝑎𝑟𝑘(𝑉) can be expressed by the equation described in — NEW/EDU — p-n junction in the dark.

𝐽𝑑𝑎𝑟𝑘(𝑉) = 𝐽𝑚,0(exp(𝑞𝑉/𝑚𝑘𝐵𝑇)− 1) (4.3.4.2)

where𝑚 is the ideality factor and 𝐽𝑚,0 is a constant. The recombination current density 𝐽𝑠𝑐𝑟 is dominant and 𝐽𝑚,0
becomes 𝐽𝑠𝑐𝑟,0 when 𝑚 = 2. On the other hand, the diffusion current density 𝐽𝑑𝑖𝑓𝑓 is much bigger than 𝐽𝑠𝑐𝑟 and
𝐽𝑚,0 becomes 𝐽𝑑𝑖𝑓𝑓,0 when 𝑚 = 1.

As a result,

𝐽(𝑉) = 𝐽𝑚,0(exp(𝑞𝑉/𝑚𝑘𝐵𝑇)− 1)− 𝐽𝑠𝑐 (4.3.4.3)

Now, let us look into the situation 𝑉 = 0.5 (𝑉). In nextnano++, we can set the situation by applying forward bias
externally to the diode. Thus, the applied bias is equivalent to the photovoltage across the diode. Figure 4.3.4.4
shows the band profiles and the carrier densities of the diode under 0.5 (𝑉).

Figure 4.3.4.4: The band profiles are plotted in (a). The carrier densities are plotted in (b). The hole density is
shown in violet, whereas the electron density is in green.

The results are very similar to Fig. 6.8. in [NelsonPSC2003]. As in the diode with forward bias, the built-in-
potential is reduced to 𝑉𝑏𝑖 − 𝑉 . Applying the bias splits the quasi Fermi levels within the space charge region and
the difference of the quasi Fermi levels is equivalent to 𝑞𝑉 as shown in Figure 4.3.4.4 (a).

Open circuit

When the circuit is open (open circuit), the photovoltage 𝑉 across the diode is called the open-circuit voltage 𝑉𝑜𝑐.

Since 𝐽(𝑉) = 0 in (4.3.4.3) in this case,

𝑉𝑜𝑐 =
𝑚𝑘𝐵𝑇

𝑞
ln

(︂
𝐽𝑠𝑐
𝐽0

+ 1

)︂
(4.3.4.4)

The open-circuit voltage is the maximum voltage that the solar cell can produce.

J-V curve

We look into the output characteristics of the solar cell in this section. Figure 4.3.4.6 shows J-V curves of the solar
cell under the illumination and under the dark condition.

144 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.3.4.5: The circuit is open and the voltage 𝑉𝑜𝑐 is applied to the diode.

Figure 4.3.4.6: The J-V curves of the solar cell. The J-V curve under the illumination is shown in violet, whereas
the J-V curve under the dark condition is in light-blue. The orange-filled area indicates the output of the maximum
power density of the solar cell.

4.3. p-n Junctions & Solar Cells 145

nextnano++ Documentation, Release 1.25.13

Again, the maximum current density that the solar cell can produce is the short-circuit current density, and the
maximum voltage of the cell is the open-circuit voltage. However, the output of the maximum power density 𝑃𝑚
is not equal to the product of them. It is represented by the intersection of 𝐽𝑚 and 𝑉𝑚.

This arises from the parasitic resistances which are connected in series and parallel to the solar cell. The series
resistance consist of the electrical resistance present on the carrier transport path, such as the semiconductors and
the contacts of the solar cell. The parallel resistance is attributed to leakage of the current due to defects in the
solar cell.

We can derive 𝑃𝑚 using the equations described in the sections above.

First, the power density of the solar cell is given by

𝑃 = 𝐽𝑉 = 𝐽0𝑉 (exp(𝑞𝑉/𝑚𝑘𝐵𝑇)− 1)− 𝐽𝑠𝑐𝑉 (4.3.4.5)

The condition for the maximum power density is achieved when 𝑑𝑃/𝑑𝑉 = 0.

Thus,

𝑉𝑚 =
1

𝛽
ln [(𝐽𝑠𝑐/𝐽0) + 1]− 1

𝛽
ln (1 + 𝛽𝑉𝑚) = 𝑉𝑜𝑐 −

1

𝛽
ln (1 + 𝛽𝑉𝑚) , (4.3.4.6)

𝐽𝑚 = 𝐽0𝛽𝑉𝑚 exp(𝛽𝑉𝑚), (4.3.4.7)

where 𝛽 = 𝑞/𝑘𝐵𝑇 .

Therefore,

𝑃𝑚 = 𝐽𝑚𝑉𝑚 = 𝐽0𝛽𝑉
2
𝑚 exp(𝛽𝑉𝑚) = 𝐹𝐹𝐽𝑠𝑐𝑉𝑜𝑐, (4.3.4.8)

where 𝐹𝐹 is called the fill factor and the ratio to measure the sharpness of the J-V curve.

𝐹𝐹 =
𝐽𝑚𝑉𝑚
𝐽𝑠𝑐𝑉𝑜𝑐

(4.3.4.9)

In addition, the energy conversion efficiency of the solar cell (𝜂) is derived by dividing 𝑃𝑚 by the incident power
of the sun 𝑃𝑖𝑛.

𝜂 =
𝑃𝑚
𝑃𝑖𝑛

=
𝐼𝑚𝑉𝑚
𝑃𝑖𝑛

=
𝐽𝑠𝑐𝑉𝑜𝑐𝐹𝐹

𝑃𝑖𝑛
(4.3.4.10)

Effects of irradiation intensity and temperature

So far, the effects of the intensity of the incident light and temperature of the system on the behavior of the solar
cell have not been considered. In this section, we briefy investigate the effects on J-V characteristics.

Figure 4.3.4.7: The J-V curves of the solar cell under incident light of various intensities is shown in (a). The
J-V curves of the solar cell under different temperatures are shown in (b). The arrows indicate the direction of
increasing intensity of the incident sunlight or the temperature.

146 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Effect of irradiation intensity

Figure 4.3.4.7 (a) illustrates the effect of the light intensity on the J-V curve. Since the generation rate for electron-
hole pairs is proportional to the light intensity, the photocurrent increases as the light intensity gets bigger. From
(4.3.4.4), 𝑉𝑜𝑐 also increases logarithmically with the irradiation intensity. Thus, the more intensive light enables to
obtain a bigger output of the maximum power density. However, increasing the light intensity is not always good
as the light also raises the temperature and increases the series resistance of the solar cell, which degrade the cell
performance.

Effect of temperature

The effect of the temperature on the J-V curve is shown in (b) in Figure 4.3.4.7. As the temperature is increased,
the intrinsic carrier density 𝑛𝑖 increases exponentially. When the diffusion current is dominant in the dark current
across the solar cell, 𝐽0 becomes 𝐽𝑑𝑖𝑓𝑓,0. Thus, 𝐽𝑑𝑖𝑓𝑓,0 is also increased as 𝑛𝑖 increased. According to (4.3.4.4),
𝑉𝑜𝑐 decreases logarithmically with increasing 𝐽𝑑𝑖𝑓𝑓,0 under a given 𝐽𝑠𝑐.

This occurs more noticeably than when the recombination current is dominant (𝐽0 = 𝐽𝑠𝑐𝑟,0) since 𝐽𝑑𝑖𝑓𝑓,0 is
proportional to 𝑛2𝑖 , whereas 𝐽𝑠𝑐𝑟,0 is proportional to 𝑛𝑖. The detailed equations of 𝐽𝑑𝑖𝑓𝑓,0 and 𝐽𝑠𝑐𝑟,0 are in —
NEW/EDU — p-n junction in the dark.

Actually, 𝐽𝑠𝑐 becomes larger since the band gap is reduced as the temperature increases and lower energy photons
can be absorbed. However, the gain in 𝐽𝑑𝑖𝑓𝑓,0 is more significant than the gain in 𝐽𝑠𝑐, which eventually leads to
the decrease of 𝑉𝑜𝑐. Therefore, increasing temperature reduces the performance of the solar cell.

Exercises

under construction

Last update: 16/07/2024

4.3.5 GaAs solar cell

• Header

• Input files

• Reference

• Structure

• Simulation procedure

• How does a solar cell work? & How do we simulate it?

– 1. Solar spectrum

– 1. Generation rate (internal calculation)

– 1. Generation rate (import)

– 4. Current-Voltage characteristics

– 5. Solar efficiency

Header

Files for the tutorial located in nextnano++\examples

• 1DGaAs_SolarCell_nnp.in

• 1DGaAs_SolarCell_nnp_import_generation.in

4.3. p-n Junctions & Solar Cells 147

nextnano++ Documentation, Release 1.25.13

• 1DGaAs_SolarCell_nnp_local_absorption.in

• 1DGaAs_SolarCell_nnp_complex_refractive_index.in

Here we demonstrate that solar cells can be simulated using nextnano. The self-consistent solutions to the Poisson
equation coupled with current (drift-diffusion) equation give the figure of merit of solar cells that consists of arbi-
trary materials. Current-Voltage (I-V) curves and corresponding power and solar cell efficiency as a function of
bias voltage are exported to the output folder.

Input files

Here the numerics parameters are optimized for convergence of the calculation in the bias range of interest. Please
pay attention to the convergence of the calculation when you change device geometry etc.

In the simulation of input files 1DGaAs_SolarCell_nnp.in and 1DGaAs_SolarCell_nn3.in, the following data are
used to calculate generation rate 𝐺(𝐸, 𝑥) internally:

• Absorption spectrum 𝛼(𝐸)

• Reflectivity 𝑅(𝐸)

• Solar spectral irradiance

In 1DGaAs_SolarCell_nnp.in (nextnano++), these data are already specified in database_optional.in for some
materials. For example, you can use these by specifying irradiation{} as follows:

classical{
...

irradiation{
...

global_illumination{
direction_x = 1

database_spectrum{
name = "Solar-ASTM-G173-global"
concentration = 1.0

}
}

global_reflectivity{
database_spectrum{

name = "Al0.80Ga0.20As"
}

}

global_absorption_coeff{
database_spectrum{

name = "GaAs"
}

}
}

}

If you want to use the materials that are not in the database or rewrite the database, you can specify the new data
in database{ } as you want.

You can also import the data of generation rate itself. In the simulation
1DGaAs_SolarCell_nnp_import_generation.in, the following file must be read in.

• /optics/GenerationRateLight_vs_Position_sun1.dat

This data file is also in the sample file folder.

148 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Reference

• J. Nelson, The Physics of Solar Cells (Imperial College Press, 2003)

• S.M. Sze and Kwok K. Ng, Physics of Semiconductor Devices (Wiley, 2007)

Structure

Figure 4.3.5.1 shows the band edges and quasi Fermi levels of the device. The device structure is as follows:

• 0-30 nm Al0.8Ga0.2As Window layer

• 30-530 nm p-doped GaAs

• 530-3530 nm n-doped GaAs

• 3530-3630 nm n-doped GaAs back surface field layer

Strain is not calculated in this example.

Figure 4.3.5.1: Band edges and quasi-Fermi levels of the solar cell at zero bias bias_000000/bandedges.dat

The left side of the device (x=0 nm) is illuminated by the sun. As shown in Figure 4.3.5.6, mobile electrons and
holes are created mainly in the p-layer. Electrons then flow to the right because of the AlGaAs ternary barrier (0-30
nm), and holes to the left. The back of the cell (3530-3630 nm) is doped with 10 times larger concentration, so that
it prevents the minority carrier (hole) from leaking to the right contact. Since the current from p-layer to n-layer is
defined to be positive, the photo-induced current has negative sign.

Simulation procedure

The workflow of the simulation is summarized in Figure 4.3.5.2. To obtain the figures shown in this tutorial,

1. Specify in the input file the three data, namely (1) spectral irradiance (solar spectrum), (2) reflectivity at the
front surface and (3) absorption spectrum. (Referring the database or rewriting the database)

4.3. p-n Junctions & Solar Cells 149

nextnano++ Documentation, Release 1.25.13

2. Run nextnano++, and all of your nextnano++ results are in your output folder! Generation rate 𝐺(𝐸, 𝑥) is
internally calculated before the current-Poisson iteration starts. The efficiency-voltage curve is generated as
a final result.

3. If you already have generation rate profile as a .dat file, you can import it.

Figure 4.3.5.2: Workflow of solar cell simulation. Each quantity is explained in the following section.

How does a solar cell work? & How do we simulate it?

1. Solar spectrum

The sun emits light with a range of wavelengths ranging from the ultraviolet, visible to infrared region. The
extraterrestrial solar spectrum resembles the spectrum of a black body at 𝑇sun = 5760K [Nelson Chapter 2]:

2𝜋 sin2 𝜃sun
ℎ3𝑐2

𝐸2

𝑒𝐸/𝑘B𝑇sun − 1
,

where 𝐸 is the photon energy and 𝜃sun = 1.44 × 10−3𝜋[rad] when measured from the earth. The solar light
travels from the sun to the earth, and then from the outer space to our solar cell devices, during which the spectrum
attenuates and changes its shape. The standard solar spectrum assumed in solar cell analysis is called AM1.5G
(AM = air mass), which takes into account the attenuation of the intensity and illumination from all angles (rather
than direct from the sun) due to scattering in the atmosphere. The spectral photon flux, i.e. the spectrum of the
number of incident photons per area per time, is denoted by 𝜑(𝐸) [m−2s−1eV−1]. The spectral irradiance, namely
the spectrum of the amount of energy supplied per area per time, is given by 𝐿(𝐸) = 𝐸𝜑(𝐸) with the unit of
[Wm−2eV−1]. We have taken the AM1.5G spectral irradiance data from this website (Figure 4.3.5.3). If you have
space applications in mind, please use the extraterrestrial spectrum, namely air mass zero (AM0).

The power of incident light

𝑃sun =

∫︁ ∞

0

𝐿(𝐸)d𝐸 = 1000 Wm−2,

is solely determined by the condition of the sun and the atmosphere of the earth (for AM0 𝑃sun = 1353 Wm−2).
The ultimate challenge of solar cell research is to achieve the most efficient conversion of this energy input into
electric power 𝑃out [Wm−2]. The figure of merit is therefore defined as 𝜂 = 𝑃out

𝑃sun
.

150 Chapter 4. Tutorials

https://en.wikipedia.org/wiki/Air_mass_(solar_energy)
https://www.nrel.gov/grid/solar-resource/spectra.html

nextnano++ Documentation, Release 1.25.13

Figure 4.3.5.3: The AM1.5G spectral irradiance 𝐿(𝐸), that is, the solar spectrum measured on the earth. The
nextnano++ tool reads from the predifined data Solar-ASTM-G173-global and stores it in the output file Irra-
diation/illumination_spectrum_power_eV.dat.

1. Generation rate (internal calculation)

(If you already have available data for generation rate, you can skip this section.)

When the sunlight illuminates the device, some photons are reflected at the front surface (air-semiconductor inter-
face) and the rest enters the device. This effect is taken into account by considering the reflectivity of Al0.8Ga0.2As.
Through the absorption of one photon, a pair of mobile electron and hole is created, while the photon flux attenu-
ates exponentially with respect to the penetration depth. The generation rate thus depends not only on the incident
photon flux 𝜑(𝐸) but also on the absorption coefficient𝛼(𝐸) of the material and the reflectivity𝑅(𝐸) at the surface
(Figure 4.3.5.2):

𝐺(𝐸, 𝑥) = 𝑁𝜑(𝐸) · (1−𝑅(𝐸)) · 𝛼(𝐸)𝑒−𝛼(𝐸)𝑥,

where “the number of suns” 𝑁 is multiplied to the photon flux 𝜑(𝐸) to take into account the concentration of
sunlight. The corresponding keyword is concentration.

In the sample input file for nextnano++, predefined value is used for 𝐿(𝜆). 𝛼(𝜆) and 𝑅(𝜆) are defined in
database{ }. In the group optics{ }, one can specify which data to use as those variables. These spectra
are translated into 𝛼(𝐸), 𝑅(𝐸), 𝑁𝜑(𝐸) and substituted into the generation rate formula.

nextnano++
optics{

...

global_illumination{
direction_x = 1

database_spectrum{
name = "Solar-ASTM-G173-global"
concentration = 1.0 # e.g. 1 sun

}
(continues on next page)

4.3. p-n Junctions & Solar Cells 151

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

global_reflectivity{
database_spectrum{

name = "Al0.80Ga0.20As"
}

}

global_absorption_coeff{
database_spectrum{

name = "GaAs"
}

}
}

If no reflectivity data is specified, perfect interface (zero reflection) is assumed. The reflectivity data of Al0.8Ga0.2As
used in this simulation (optical_reflectivity in database_nnp_optional.in) have been generated through the
Fresnel formula for perpendicular incident light

𝑅(𝜆) = |𝑟(𝜆)|2 =

⃒⃒⃒⃒
1− [𝑛(𝜆) + 𝑖𝜅(𝜆)]

1 + [𝑛(𝜆) + 𝑖𝜅(𝜆)]

⃒⃒⃒⃒2
where the refractive index 𝑛 and extinction coefficient 𝜅 of GaAs and AlAs are taken from here. To obtain the
values of ternary Al0.8Ga0.2As, we performed linear interpolation.

If you consider a textured surface to reduce surface light reflection, please prepare the corresponding reflectiv-
ity data and import to the nextnano simulation. For nextnano++, 𝛼(𝐸), 𝑅(𝐸) and 𝐿(𝐸) are stored in the out-
put folder Irradiation with file names absorption_spectrum_eV.dat, reflectivity_spectrum_eV.dat and illumina-
tion_spectrum_eV.dat, respectively.

The resulting generation rate is shown in Figure 4.3.5.4, Figure 4.3.5.5 and Figure 4.3.5.6.

1. Generation rate (import)

If the generation rate data 𝐺(𝑥) =
∫︀
𝐺(𝐸, 𝑥)d𝐸 (Figure 4.3.5.6) is available from literature or publications,

you can import the .dat file without worrying about the above-mentioned calculation. The data must con-
tain position [nm] in the first column and generation rate [1018cm−3s−1] in the second. In the sample file
1DGaAs_SolarCell_nnp_import_generation.in, we import the data generated elsewhere.

nextnano++
structure{

region{
everywhere{}
generation{

import{ import_from = "GenImportProfile" }
}

}
}

import{
file{

name = "GenImportProfile"
filename = "(directory path)\GenerationRateLight_vs_Position_sun1.dat"
format = DAT
scale = 1e18 # import data is multiplied by this scaling factor (optional,

→˓ default value is 1.0)
}

}

152 Chapter 4. Tutorials

https://refractiveindex.info/?shelf=main&book=GaAs&page=Aspnes

nextnano++ Documentation, Release 1.25.13

Figure 4.3.5.4: Generation rate as a function of position and energy Irradia-
tion/photo_generation_energy_resolved.fld in units of 1018cm−3eV−1s−1. This quantity is internally calculated
using the absorption coefficient, reflectivity of the front surface and solar spectrum AM1.5G (Figure 4.3.5.3).
Photons at around 3V are largely absorbed near the front surface due to a large absorption coefficient, which can
be seen in the output optics/AbsorptionCoefficient_eV.dat/Irradiation/absorption_spectrum_eV.dat (not shown).
Photons with lower energy, in contrast, travel a longer distance in the device.

4.3. p-n Junctions & Solar Cells 153

nextnano++ Documentation, Release 1.25.13

Figure 4.3.5.5: Generation rate as a function of energy Irradiation/photo_generation_integrated.dat. Obviously,
the generation rate becomes larger when the reflection at the front surface is neglected. One can also clearly see,
by comparing with Figure 4.3.5.4, that the low e nergy photons below the band gap cannot contribute to the carrier
generation. For this reason the band gap of semiconductors affects the solar cell efficiency and is discussed in the
context of the Shockley-Queisser efficiency limit.

Figure 4.3.5.6: Generation rate as a function of position Irradiation/photogeneration.dat. This data is obtained by
integrating Figure 4.3.5.4 over energy𝐸. When the photon flux travels through the device, the intensity diminishes
exponentially, leading to the exponential decrease in generation rate. Most of the carrier generation occurs within
500 nm from the front surface, i.e. within the p-layer (30–530 nm).

154 Chapter 4. Tutorials

https://en.wikipedia.org/wiki/Shockley%E2%80%93Queisser_limit

nextnano++ Documentation, Release 1.25.13

4. Current-Voltage characteristics

The calculated or imported generation rate contributes to the right-hand side of the coupled current equations for
electrons and holes,

−𝑒𝜕𝑛
𝜕𝑡

+∇ · j𝑛 = −𝑒(𝐺−𝑅),

𝑒
𝜕𝑝

𝜕𝑡
+∇ · j𝑝 = 𝑒(𝐺−𝑅),

where 𝐺 and 𝑅 are the (position-dependent) generation and recombination rates for electron-hole pairs.
Here the charge current density j𝑛,𝑝 has a dimension of (charge)(area)-1(time)-1 and the generation rate has
(volume)-1(time)-1. The recombination rate is the sum of three different processes 𝑅 = 𝑅rad + 𝑅Auger + 𝑅SRH.
See our Laser diode tutorial, [Nelson] or other literature for details.

By solving this current equation and the Poisson equation self-consistently, the program obtains the current density
at each bias step. The resulting I-V curve is shown in Figure 4.3.5.7. For comparison, the dark current has been
simulated by setting

nextnano++
structure{

region{
generation{

constant{ rate = 0.0 }
}

}
}

The dark current in the present device behaves like in a diode under forward bias. When the sun illuminates the
device, electrons and holes are created and current flows in the reverse direction.

If you change the device geometry or materials and the I-V curve is no longer reasonable, it is likely that the
numerical calculation did not converge. Please check the .log file. For the convergence of the current-Poisson
equation, you might need to change the settings under run{ }.

5. Solar efficiency

From the I-V curve the solar cell power density 𝑃out = −𝐼𝑉 and the efficiency 𝜂 = 𝑃out

𝑃sun
are calculated. For

the present device under 1 sun, the maximum efficiency of 15.8% is achieved at the bias 0.9 V (Figure 4.3.5.8
red). The theoretical limit for GaAs (band gap 1.42 eV at 𝑇 = 300𝐾) is around 30% under the AM1.5 condition
without concentration [Sze].

The maximum efficiency of the present device increases to 21.6% (nextnano++) for 100-sun concentration,
mainly due to the increase in open circuit voltage (Figure 4.3.5.8 blue). This means one cell operating under 100
suns can produce the same power output as 100𝑃𝑠𝑢𝑛×0.216

𝑃𝑠𝑢𝑛×0.158 = 137 cells under 1 sun. Optical concentration reduces
the total cost of solar cells since concentrator materials are usually less expensive than the ones for solar cells [Sze].

The .log file contains additional properties of the solar cell.

The convergence of the simulation is sensitive to the device settings such as the number of suns. If the convergence
fails in your original device, please consider changing the settings in run{ }.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.3. p-n Junctions & Solar Cells 155

nextnano++ Documentation, Release 1.25.13

Figure 4.3.5.7: I-V characteristics of the solar cell IV_characteristics.dat (nextnano++). In the bias regime 0-1 V
the system works as a solar cell.

Figure 4.3.5.8: Solar cell efficiency 𝜂 for no sunlight concentration (red) and 100-sun concentration (blue) by
nextnano++. The data is contained in solar_cell_efficiency.dat.

156 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.3.6 Cascade solar cell (Tandem solar cell)
Input Files:

• 1DCascadeSolarCell_nnp.in

In this tutorial, we solve the Poisson equation in an AlGaAs/InGaAs monolithic cascade solar cell (tandem solar
cell).

The layout is based on US patent 4179702 (1979): Cascade solar cells by Michael F. Lamorte.

See also the following publication for more details

Computer Modeling of a Two-Junction, Monolithic Cascade Solar Cell
M.F. Lamorte, D.H. Abbott
IEEE Transactions on Electron Devices 27 (1), 231 (1980)

Input files used in this tutorial are followings:

Outputs

Band profile

The following figure shows the conduction band edge and the valence band edges (heavy hole, light hole and
split-off hole) of this solar cell at zero bias. The built-in potential has been calculated to be 1.83 V.

On the left side (region 1), a graded p-type AlGaAs layer has been used to generate an electric field of 3 kV /
cm (= 30 meV / 100 nm). We assumed that all materials are strained with respect to the GaAs substrate, thus the
degeneracy of heavy and light hole valence band edges is lifted, especially inside the InGaAs regions.

Band gap

The band gap as a function of distance is shown in the following figure. This data can be found in these files. For
nextnano++, we need to add classical{ output_bandgap{} } in the sample file.

• bias_00000/bandgap.dat (nextnano++)

4.3. p-n Junctions & Solar Cells 157

https://patents.google.com/patent/US4179702

nextnano++ Documentation, Release 1.25.13

Electron and hole densities

Here, the electron and hole densities are plotted. This data can be found in these files.

• bias_00000/density_electron.dat, bias_00000/dentity_hole.dat (nextnano++)

Tunnel junction

The area around the tunnel junction which is in the middle of the device at ~2100 nm is shown in this plot:

The electron and hole densities in the vicinity of the tunnel junction are shown in this graph. Note that the density
has been calculated classically (without solving the Schrödinger equation, i.e. without quantum mechanics).

158 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.3. p-n Junctions & Solar Cells 159

nextnano++ Documentation, Release 1.25.13

What we can do on a solar cell using nextnano

We have the demonstration of the simulation for GaAs solar cell using nextnano here: GaAs Solar Cell.

As we can see in this demonstration, we can calculate the following characteristics by solving the Poisson equation
and current equation self-consistently.

• Current-Voltage characteristics
– The dark current can also be calculated.

• Solar efficiency
– We can also see the effect of optical concentration quantitatively.

The data we need to prepare independently for this calculation is:

1. spectral irradiance (solar spectrum)

2. reflectivity at the front surface

3. absorption spectrum

Both nextnano++ can calculate the generation rate 𝐺(𝑥). We can also import the data of 𝐺(𝑥) directly instead of
2 and 3 above.

The links for all the used data is also specified in this tutorial: GaAs Solar Cell.

This tutorial also exists for nextnano3.

Last update: 2024/06/10

4.4 Light-Emitting Diodes

4.4.1 InGaAs Multi-quantum well laser diode

• Header

• Introduction

• Current equation

• Recombination of carriers and emission spectrum

• Input file

• Results

– Band structure

– Energy eigenstates and eigenvalues

– Charge densities

– Emission and absorption spectra

– Current and internal quantum efficiency

Header

Files for the tutorial located in nextnano++\examples

• LaserDiode_InGaAs_1D_cl_nnp.in

• LaserDiode_InGaAs_1D_qm_nnp.in

160 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Introduction

In this tutorial, we simulate optical emission of a 1D InGaAs multi-quantum well laser diode grown on InP sub-
strate. The blue region, seen in Figure 4.4.1.1, is the separate confinement heterostructure (SCH), which forms an
optical waveguide in the transverse direction to confine the emitted light (red arrow). The multi-quantum wells and
SCH are clad by InP on both sides. A voltage bias is applied to the gray edges.

Figure 4.4.1.1: Structure overview

Current equation

The properties of optoelectronic devices are governed by Poisson equation, Schrödinger equation, drift-diffusion
and continuity equations. We denote by 𝑛 and 𝑝 the carrier number density per unit volume. The continuity
equations in the presence of creation (generation, 𝐺) or annihilation (recombination, 𝑅) of electron-hole pairs
read

−𝑒𝜕𝑛
𝜕𝑡

+∇ · (−𝑒j𝑛(x)) =− 𝑒(𝐺(x)−𝑅(x)),

𝑒
𝜕𝑝

𝜕𝑡
+∇ · 𝑒j𝑝(x) =𝑒(𝐺(x)−𝑅(x)),

(4.4.1.1)

where the current is proportional to the gradient of quasi Fermi levels 𝐸𝐹,𝑛/𝑝(x)

j𝑛(x) = −𝜇𝑛(x)𝑛(x)∇𝐸𝐹,𝑛(x),
j𝑝(x) = 𝜇𝑝(x)𝑝(x)∇𝐸𝐹,𝑝(x).

(4.4.1.2)

Here the charge current has the unit of (area)−1(time)−1. 𝜇𝑛/𝑝 are the mobilities of each carrier. In nextnano++,
𝜇𝑛/𝑝 are determined using the mobility model specified in the input file under currents{ }. Hereafter we consider

4.4. Light-Emitting Diodes 161

nextnano++ Documentation, Release 1.25.13

stationary solutions and set �̇� = �̇� = 0. The governing equations then reduce to

∇ · 𝜇𝑛(x)𝑛(x)∇𝐸𝐹,𝑛(x) = −(𝐺(x)−𝑅(x)),

∇ · 𝜇𝑝(x)𝑝(x)∇𝐸𝐹,𝑝(x) = 𝐺(x)−𝑅(x),
(4.4.1.3)

which we call current equation (generation𝐺 = 0 in the present case). The nextnano++ tool solves this equation
and Poisson equation self-consistently when one specifies it in the input file as:

run{
current_poisson{ }

}

Recombination of carriers and emission spectrum

The generation/recombination rate, 𝑅(x), originates from several physical processes. In nextnano++, the follow-
ing mechanisms are implemented (cf. recombination_model{ })

• Schockley-Read-Hall recombination 𝑅SRH – carrier trapping by impurities.

• Auger recombination 𝑅Auger – a collision between two carriers results in the excitation of one and the
recombination of the other with a carrier of opposite charge.

• radiative recombination 𝑅rad – emission/absorption of a photon.

Each mechanism can be turned on and off in the input file.

Radiative recombination describes the recombination of electron-hole pairs at a position x by emitting a photon
and is given by

𝑅𝑠𝑝𝑜𝑛rad (x, 𝐸) = 𝐶(x)

∫︁
𝑑𝐸ℎ

∫︁
𝑑𝐸𝑒 𝑛(x, 𝐸𝑒)𝑝(x, 𝐸ℎ)𝛿(𝐸𝑒 − 𝐸ℎ − 𝐸), (4.4.1.4)

where 𝐶(𝑥) [cm3s−1] is the (material-dependent) radiative recombination parameter which is proportional to the
one specified in the database (Radiative recombination) and 𝑛(x, 𝐸), 𝑝(x, 𝐸) [cm−3eV−1] are the charge densities
as a function of energy and position.

In nextnano++, this radiative recombination whose rate is calculated as above is regarded as spontaneous emis-
sion. On the other hand, the net amount of the stimulated emission rate is given by:

𝑅𝑠𝑡𝑖𝑚𝑟𝑎𝑑,𝑛𝑒𝑡(x, 𝐸) =

(︂
1− 𝑒

𝐸−(𝐸𝐹𝑛−𝐸𝐹𝑝)

𝑘𝐵𝑇

)︂
𝑅𝑠𝑝𝑜𝑛𝑟𝑎𝑑 (x, 𝐸) (4.4.1.5)

This is consistent with eq.(9.2.39) in [ChuangOpto1995]. We note that here it is assumed that photon modes
occupied by one photon each, i.e. takes into account neither energy-dependent photon density of states nor Bose-
Einstein distribution.

Since the radiative recombination process involves no phonons, this transition is vertical and therefore this contri-
bution is only relevant for semiconductors with a direct band gap such as GaAs.

Absorption coefficient is calculated from 𝑅𝑠𝑡𝑖𝑚𝑟𝑎𝑑,𝑛𝑒𝑡(𝐸) as

𝛼(𝐸) =
𝜋2ℏ3𝑐2

𝑛2𝑟𝐸
2

𝑅𝑠𝑡𝑖𝑚𝑟𝑎𝑑,𝑛𝑒𝑡(𝐸)

𝑉
(4.4.1.6)

where 𝑛𝑟 is the refractive index and 𝑉 is the total volume of the device. The unit is [cm−1]. In case of 1D
simulation, calculated 𝑅𝑠𝑡𝑖𝑚𝑟𝑎𝑑,𝑛𝑒𝑡(𝐸) has the unit [cm−2s−1eV−1] and is divided by the total length instead of the
volume. This formula is consistent with eq (9.2.25) in [ChuangOpto1995].

162 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Input file

In the beginning of the input file, we define several variables for the structure and parameters for simulation. The
variable definitions are shown in Figure 4.4.1.2.

Figure 4.4.1.2: The definition of variables. The gray regions are contacts of 1nm thickness. $NUMBER_OF_WELLS
determines the repetition of quantum wells. The program automatically sweeps the bias voltage starting from
$BIAS_START until $BIAS_END, at intervals of $BIAS_STEPS.

Charge density as a function of position 𝑛(x) is always calculated by default. On the other hand, charge density
as a function of energy 𝑛(𝐸), 𝑝(𝐸), charge density as a function of both position and energy 𝑛(x, 𝐸), 𝑝(x, 𝐸) and
emission spectrum are calculated when the followings are specified (see classical{ } for details):

grid{
...
energy_grid{

min_energy = -1.5 # Integrate from
max_energy = 0.5 # Integrate to
energy_resolution = 0.005 # Integration resolution

}
}

classical{
...
energy_distribution{ # Calculation of carrier␣

→˓densities as a function of energy
min_energy = -1.5 # Integrate from
max_energy = 0.5 # Integrate to
energy_resolution = 0.005 # Integration resolution
only_density_quantum_regions = yes

}

energy_resolved_density{
only_density_quantum_regions = yes
output_energy_resolved_densities{}

(continues on next page)

4.4. Light-Emitting Diodes 163

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

semiclassical_spectra{
output_spectra{

emission = yes
gain = yes
absorption = yes

spectra_over_energy = yes
spectra_over_wavelength = yes
spectra_over_frequency = yes
spectra_over_wavenumber = yes

photon_spectra = yes
power_spectra = yes

}
output_photon_density = yes
output_power_density = yes

}
}

The mobility model and recombination models for the current equation are specified in currents{ } as

currents{
mobility_model = constant

mobility_model = minimos
recombination_model{

SRH = yes # 'yes' or 'no'
Auger = yes # 'yes' or 'no'
radiative = yes # 'yes' or 'no'

}
}

The run{ } flag specifies which equations to solve. This is the main difference between LaserDiode_*_qm_nnp.in
and LaserDiode_*_cl_nnp.in.

qm
run{

strain{ } # solves the strain equation
current_poisson{ # solves the coupled current and␣

→˓Poisson equations self-consistently
output_log = yes
iterations = 1000
alpha_fermi = 0.5

}
quantum_current_poisson{ # solves the Schrödinger, Poisson␣

→˓(and current) equations self-consistently
iterations = 1000
alpha_fermi = 0.9
residual = 1e6
residual_fermi = 1e-8
output_log = yes

}
}

(continues on next page)

164 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

cl
run{

strain{ } # solves the strain equation
current_poisson{ # solves the coupled current and␣

→˓Poisson equations self-consistently
output_log = yes
iterations = 1000
alpha_fermi = 0.7
residual_fermi = 1e-10

}
}

In this case nextnano++ first solves the strain equation from the crystal orientation to decide the polarization charges
(piezoelectric effect) and shifted band edges. Then the program solves the coupled current-Poisson-Schrödinger
equations in a self-consistent way (input file: LaserDiode_InGaAs_1D_qm_nnp.in). For the classical calcula-
tion (LaserDiode_InGaAs_1D_cl_nnp.in), quantum_current_poisson{ } is commented out to restrict the
calculation to the current-Poisson equations only.

Results

Band structure

The band structure and emission power spectrum of the system are stored in bandedges.dat. Figure 4.4.1.3 shows
the case for the bias 0.2 V. Here the quasi Fermi level of electrons is lower than the quantum wells.

Figure 4.4.1.3: Band structure of the laser diode system for a low bias of 0.2 V.

For the bias 0.8 V (Figure 4.4.1.4), in contrast, it lies above the red line, allowing electrons to flow into the quantum
wells. An electron trapped in the quantum wells is likely to recombine with a hole in the valence band, emitting a

4.4. Light-Emitting Diodes 165

nextnano++ Documentation, Release 1.25.13

photon. In the input file \Optical\emission_photon_density.dat, one can see that the photons are emitted
from this active region (not shown). Figure 4.4.1.12 shows the emission spectrum in this case. When the bias is
too small, e.g. Figure 4.4.1.3, the intensity is much smaller, as can be seen in Figure 4.4.1.16.

Figure 4.4.1.4: Band structure for a high bias 0.8 V. Electrons flowing from the left and holes from the right
recombine in the active zone (multi-quantum well structure).

Energy eigenstates and eigenvalues

In the input file LaserDiode_InGaAs_1D_qm_nnp.in, the single-band Schrödinger equation is coupled to the
current-Poisson equation and solved self-consistently. The wave functions of electrons and holes along with eigen-
values are written in \Quantum\probabilities_shift_quantum_region_Gamma_0000.dat and \Quantum\
probabilities_shift_quantum_region_HH_0000.dat (Figure 4.4.1.5 and Figure 4.4.1.6). The light hole
and split-off states are out of the quantum wells and not of our interest here.

Charge densities

We can find the energy-resolved charge density 𝑛(𝑥,𝐸) and 𝑝(𝑥,𝐸) in the output
electron_density_vs_energy.fld and hole_density_vs_energy.fld. The following figures repre-
sent 𝑛(𝑥,𝐸) and 𝑝(𝑥,𝐸) [cm−3eV−1] with respect to the band edges and quasi-Fermi levels at bias 0.2, 0.4, 0.6,
0.8 and 1.0 V. We can see that the carrier densities around the quantum wells increase as the bias increases.

We also have the charge densities integrated over the device 𝑛(𝐸), 𝑝(𝐸) [cm−2eV−1] and energy 𝑛(𝑥), 𝑝(𝑥)
[cm−3].

𝑛(𝐸) and 𝑝(𝐸) with and without quantum calculation shows different features due to the discretization of energy
levels in quantum wells. This is shown in integrated_densities_vs_energy.dat.

Figure 4.4.1.12 illustrates the population inversion in stationary (quasi-equilibrium) state of the device under bias.
Solid and dashed lines are for quantum and classical calculations, respectively. The black arrows mark the relevant
energies of the structure 4 at bias of 0.8 V. The hole density is shown in Figure 4.4.1.13 with higher resolution.

The energy resolution in Figure 4.4.1.13 has been increased by a factor of 10 from Figure 4.4.1.12.

166 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.5: Probability distribution |𝜓(𝑥)|2 of the lowest localized modes of electrons and holes for the band
structure Figure 4.4.1.3. Horizontal lines are the corresponding eigenenergies.

Figure 4.4.1.6: Eigenvalues of the Gamma-band up to 5th and heavy-hole-band states up to 13th in relation to band
edges. The Eigenvalues above these are higher than the barrier energy of the quantum wells. The Gamma band has
single “miniband”, whereas the heavy-hole band has three. The 1st heavy-hole miniband consists of the 1st~5th
eigenvalues, the 2nd heavy-hole miniband consists of the 6th~11th eigenvalues and the 3rd consists of the 12th and
13th eigenvalues.

4.4. Light-Emitting Diodes 167

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.7: Energy-resolved electron and hole density, Gamma conduction band edge, HH valence band edge
and quasi-Fermi levels at bias 0.2 V in quantum calculation.

Figure 4.4.1.8: Energy-resolved electron and hole density, Gamma conduction band edge, HH valence band edge
and quasi-Fermi levels at bias 0.4 V in quantum calculation.

168 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.9: Energy-resolved electron and hole density, Gamma conduction band edge, HH valence band edge
and quasi-Fermi levels at bias 0.6 V in quantum calculation.

Figure 4.4.1.10: Energy-resolved electron and hole density, Gamma conduction band edge, HH valence band edge
and quasi-Fermi levels at bias 0.8 V in quantum calculation.

4.4. Light-Emitting Diodes 169

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.11: Energy-resolved electron and hole density, Gamma conduction band edge, HH valence band edge
and quasi-Fermi levels at bias 1.0 V in quantum calculation.

Figure 4.4.1.12: Electron (red) and hole (blue) densities integrated over the device as a function of energy.

170 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.13: Hole density integrated over the device from classical (dashed) and quantum (solid) calculation.

ò Note

Although these charge densities either with variable𝐸 or𝑥 are both obtained by integrating𝑛(𝑥,𝐸) and 𝑝(𝑥,𝐸)
over the corresponding variable, these are independently calculated in nn++ simulation. Hence it is possible to
turn off the calculation only for 𝑛(𝑥,𝐸) and 𝑝(𝑥,𝐸) calculating the integrated charge densities. In this case it
runs much faster and needs much less memory.

Emission and absorption spectra

The spontaneous and stimulated emission spectra are written in \Optical\
semiclassical_spectra_photons.dat and \Optical\stim_semiclassical_spectra_photons.dat,
respectively (Figure 4.4.1.14). The peak is at around 0.7-0.8eV, which is consistent with the charge distribution in
Figure 4.4.1.12. The stimulated emission does not occur above the quasi Fermi level separation, 𝐸𝐹𝑛 − 𝐸𝐹𝑝.

The formulas used for the calculation in the source code are specified above: Recombination of carriers and emis-
sion spectrum.

The absorption spectra are calculated as

𝛼(𝐸) =
𝜋2ℏ3𝑐2

𝑛2𝑟𝐸
2

𝑅𝑠𝑡𝑖𝑚𝑟𝑎𝑑,𝑛𝑒𝑡(𝐸)

𝑉

where 𝑛𝑟 is the refractive index and 𝑉 is the total volume of the device. The unit is [cm−1]. In case of 1D
simulation, calculated 𝑅𝑠𝑡𝑖𝑚𝑟𝑎𝑑,𝑛𝑒𝑡(𝐸) has the unit [cm−2s−1eV−1] and is divided by the total length instead of the
volume. This formula is consistent with eq (9.2.25) in [ChuangOpto1995].

The absorption spectra 𝛼(𝐸) and gain spectra 𝑔(𝐸) are essentially the same quantity with opposite signs,

𝛼(𝐸) = −𝑔(𝐸)

These are by definition independent of the initial photon population. Please note that the gain spectrum in
nextnano++ is cut off where it is negative. For details, see classical{ }.

4.4. Light-Emitting Diodes 171

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.14: Emission spectrum of the laser diode for the bias 0.8 V.

The spectrum changes its sign at the energy𝐸𝐹𝑛−𝐸𝐹𝑝, that is, the separation of the quasi Fermi levels. According
to the output bandedges.dat, this value is -0.0001-(-0.7702)=0.7701eV. The following result has been calculated
classically. We also get qualitatively consistent results from quantum mechanical simulation.

Current and internal quantum efficiency

The output file IV_characteristics.dat contains right- and left-contact current in unit of [Acm−2]. In the
present case, the right-contact current is hole current, whereas the left-contact current is electron current. In Figure
4.4.1.15, we compare the hole current and photocurrent.

Figure 4.4.1.16 clearly shows the consequence of the difference in band structures Figure 4.4.1.3 and Figure 4.4.1.4.
The holes and electrons recombine in the multi-quantum well layers, emitting one photon per electron-hole pair.
The efficiency of conversion from charge current into photocurrent is called the internal quantum efficiency

𝜂 =
𝐼photon
𝐼charge

. (4.4.1.7)

This quantity is written in internal_quantum_efficiency.dat and shown in Figure 16.

Last update: 16/07/2024

4.4.2 UV LED: Quantitative evaluation of the effectiveness of EBL

• Header

• Structure

• Scheme

172 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.15: Classically calculated absorption and gain spectra. The sign of the spectrum switches at the energy
corresponding to the quasi Fermi-level separation in the active region.

Figure 4.4.1.16: Charge current and photocurrent as a function of bias voltage (IV characteristics).

4.4. Light-Emitting Diodes 173

nextnano++ Documentation, Release 1.25.13

Figure 4.4.1.17: Conversion efficiency of the InGaAs laser diode.

• Results

– Current-voltage characteristics

– Bandedges

– Current Density

∗ Charge carrier densities

∗ Power of light emission

– Internal quantum efficiency

• What can we do further?

Header

Files for the tutorial located in nextnano++\examples

• 1D_DUV_LED_HirayamaJAP2005_EBL_nnp.in

We investigate how the electron blocking layer (EBL) improves the characteristics of UV LEDs using nextnano++.
Current-Poisson equation and semi-classical calculation of optical properties (classical{ }) in nextnano++ enables
us to quantitatively analyze the effect of this strucutre.

We refer to the structure used to obtain Fig. 28 in the [HirayamaJAP2005]:

Structure

The simulation region consists of the following structure:

• n-Al0.18Ga0.82N layer

• 3-layer MQW based on InAlGaN

• AlxGa1-xN EBL (Al content = 0.18, 0.24, 0.28)

174 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• p-Al0.18Ga0.82N layer

Each layer has the following thickness and doping concentration:

Material Thickness Doping
n-Al0.18Ga0.82N 100 nm 8 × 1018 [cm-3] (donor)
In0.02Al0.09Ga0.89N -
In0.02Al0.22Ga0.76N 3-layer MQW

well: 2.5 nm, bar-
rier: 15 nm

0 [cm-3]

AlxGa1-xN EBL with x=0.28, 0.24,
0.18

10 nm 0 [cm-3] for x=0.28, 0.24, 2 × 1019 [cm-3] for
x=0.18 (acceptor)

p-Al0.18Ga0.82N 100 nm 2 × 1019 [cm-3] (acceptor)

Al content x=0.18 in the EBL is used for the structure without EBL, while x=0.24 and 0.28 are for the structure
with EBL in different barrier height.

Donor and acceptor ionization energies are defined as 0.030 eV and 0.158 eV where Si and Mg are in mind,
respectively.

Figure 4.4.2.1: The band edges and Fermi levels for the structure with higher EBL (x=0.28, bias=4.00V, total
current density=1.67×105 A/cm2)

Scheme

We can specify which simulation or equations would be solved on run{ } section in your input file.

In 1D_DUV_LED_HirayamaJAP2005_EBL_nnp.in it is described as

run{
strain{ }
current_poisson{ }

}

Then nextnano++ solves the current equation and Poisson equation self-consistently after solving strain equation.

After the Current-Poisson equation is converged, optoelectronic characteristics are calculated according to the
specification in the section classical{ }.

For further details, please see Optoelectronic characterization.

4.4. Light-Emitting Diodes 175

nextnano++ Documentation, Release 1.25.13

Results

Current-voltage characteristics

Here we show the current-voltage characteristics for the total current density 𝐼total measured at p-contact and pho-
tocurrent density 𝐼photo, which is defined as (2.15.1.1). 𝐼photo represents the amount of electrical current consumed
by the radiative recombination in the total current 𝐼total. Please note that the scales of the y-axis in these graphs are
different in 10 times.

We can observe that the smaller 𝐼total is , the higher the EBL barrier is. On the other hand, at the applied bias of
4.0V, the bigger 𝐼photo is, the higher the EBL barrier is. We can say that the larger proportion of the total current
consists of the photocurrent in the higher EBL structure, which results in the larger IQE.

Figure 4.4.2.2: (Left:) The relationship between the p-contact current density and bias voltage. (Right:) The
relationship between the photocurrent 𝐼𝑝ℎ𝑜𝑡𝑜 and bias voltage.

Bandedges

The following figures show the band edge profiles and the quasi-Fermi levels for the higher EBL (top) and no EBL
(bottom) structure where the total current densities are almost the same around 1.70 × 105 A/cm2. The applied
bias is 4.00 V for the left graph and is 3.90 V for the right graph.

Current Density

The following figure show the current density profiles for the higher EBL (top, x=0.28), lower EBL (middle,
x=0.24), and no EBL (bottom, x=0.18) structure where the total current densities are almost the same around 1.70
× 105 A/cm2.

We can see that the amount of electron current and hole current becomes closer as the EBL height is increased,
while the electron current is dominant without EBL. It can be also confirmed that the current overflow is suppressed
by the EBL.

Charge carrier densities

The figures showed below are the electron and hole densities around the MQW region for the structure with higher
EBL and without EBL (left, x=0.28 and right, x=0.18) for almost the same current density around 1.70 × 105

A/cm2. The introduction of EBL at 167 nm-177 nm reduces the electron densitiy in the p-AlGaN region.

Power of light emission

Here we show the relationship between optical power defined in (2.15.1.4) and current density of p-contact for each
structure.

176 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.2.3: The band edges and Fermi levels for the structure with EBL (x=0.28, bias=4.00V, total current
density=1.67×105 A/cm2)

Figure 4.4.2.4: The band edges and Fermi levels for the structure without EBL (x=0.18, bias=3.90V, total current
density=1.68×105 A/cm2)

4.4. Light-Emitting Diodes 177

nextnano++ Documentation, Release 1.25.13

Figure 4.4.2.5: The current density profile for the the structures with higher EBL (top, 4.00 V, 1.67× 105 A/cm2),
lower EBL (middle, 3.94 V, 1.74× 105 A/cm2), and no EBL (bottom, 3.90 V, 1.68× 105 A/cm2).

178 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.2.6: The electron and hole densities calculated in the structures with higher EBL (left, 4.00 V, 1.67×
105 A/cm2) and no EBL (right, 3.90 V, 1.68× 105 A/cm2).

Figure 4.4.2.7: Current vs. power of light emission

4.4. Light-Emitting Diodes 179

nextnano++ Documentation, Release 1.25.13

Internal quantum efficiency

In nextnano++, the internal quantum efficiency is calculated as

𝜂IQE = 𝜂VQE · 𝜂IE =
𝐼photo

𝐼total
(4.4.2.1)

where 𝐼photo is the photo-urrent consumed by the radiative recombination and 𝐼total is the current injected in total.

This quantity shows the improvement by the introduction of higher EBL as follows:

Figure 4.4.2.8: Current and internal quantum efficiency (IQE).

The nextnano++ tool also outputs the volume quantum efficiency 𝜂VQE, also known as radiative efficiency,
which represents the proportion of the radiative recombination rate to the total recombination rate. This quantity
is calculated as

𝜂VQE =
𝑅𝑠𝑡𝑖𝑚rad,net +𝑅fixed

𝑅total
(4.4.2.2)

and also shows the improvement by the introduction of EBL:

The IQE can be decomposed like (4.4.2.1) into this volume QE and the injection efficiency 𝜂IE, which represents
the proportion of the current consumed by the total recombination (radiative + nonradiative) to the total injected
current.

Thus using the results of 𝜂IQE and 𝜂VQE above, we can also get this 𝜂IE :

From the above results, we can see that the improvement of IQE due to the introduction of EBL comes from the
imrovement of mainly IE rather than volume QE.

What can we do further?

The effect of EBL on the optoelectronic characteristics has been estimated quantitatively using the semiclassical
calculation in nextnano++.

We can also optimize the Al content of EBL or the thickness by sweeping the corresponding parameters, for
example. Our open source python package nextnanopy is a strong tool for this purpose.

The graphs shown in this tutorial are also generated by a python script using nextnanopy.

Last update: 16/07/2024

180 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.2.9: Current and volume quantum effciency (radiative efficiency).

Figure 4.4.2.10: Current and injection efficiency (IE).

4.4. Light-Emitting Diodes 181

nextnano++ Documentation, Release 1.25.13

4.4.3 UV LED: Quantitative evaluation of the effectiveness of superlattice struc-
ture in p-region

• Header

• Hole density estimation

– Structure

∗ Bandedges

– Scheme

∗ Schrödinger-Poisson equation

∗ Ionization of dopant

– Results

∗ Spatially averaged hole density

∗ Hole density/Ionized acceptor density distribution

• IQE estimation

– Structure

∗ Bandedges

– Scheme

– IQE result

• What can we do further?

Header

Files for the tutorial located in nextnano++\examples

• 1D_UV_LED_KozodoyAPL1999_nnp.in

• 1D_DUV_LED_HirayamaJAP2005_SL_nnp.in

In the recent UV-LEDs based on AlGaN, the superlattice (SL) structure is introduced into the p-type layer in order
to enhance the acceptor ionization, which results in the improvement of the hole conductivity. We investigate how
this structure improves the characteristics of UV LEDs using nextnano++.

First, the hole concentration in a p-type AlGaN/GaN SL structure is calculated using Schrödinger-Poisson solver
and the enhancement of the acceptor ionization is quantitatively examined. This part is based on [Schuber-
tAPL1996] and [KozodoyAPL1999].

Second, the SL structure is introduced into the p-region of LED structure with InAlGaN MQW and Current-Poisson
equation is solved. Then the IQE result is compared to the LED structure with the bulk p-region. The structure
used in this part is based on [HirayamaJAP2005].

Hole density estimation

Structure

The simulation region consists of the following structure:

Material Thickness Doping
Al0.2Ga0.8N/GaN 8-layer MQW 𝐿 = 𝐿well = 𝐿barrier 5.0 × 1019 [cm-3]

The simulation is sweeped over the well and barrier thickness 𝐿 from 1 nm to 10 nm.

182 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Bandedges

The following figure shows the band edge profile and the Fermi energy for the SL structure with 𝐿 = 4.0 nm.

Figure 4.4.3.1: The band edge profile and the Fermi level

The band edge tilting is due to the piezo- and pyro-electricity, which actually enhances the acceptor ionization as
can be seen later.

Scheme

Schrödinger-Poisson equation

We can specify which simulation or equations would be solved on run{ } section in your input file.

In 1D_UV_LED_KozodoyAPL1999_nnp.in it is described as

run{
strain{ }
poisson{ }
quantum_poisson{ }

}

Then nextnano++ solves the strain equation and self-consistent Schrödinger-Poisson equation.

The resulting electrostatic potential 𝜑(𝑥), electron density 𝑛(𝑥), and hole density 𝑝(𝑥) should satisfy both Poisson
equation and the carrier density calculation based on Schrödinger equation. For further detailed discussion, please
refer to Optoelectronic characterization.

Ionization of dopant

The ionized donor and acceptor densities, 𝑁+
𝐷 , 𝑁

−
𝐴 are calculated as

𝑁+
𝐷 (x) =

∑︁
𝑖∈Donors

𝑁𝐷,𝑖(x)

1 + 𝑔𝐷,𝑖 exp((𝐸𝐹,𝑛(x)− 𝐸𝐷,𝑖(x))/𝑘𝐵𝑇)
(4.4.3.1)

𝑁−
𝐴 (x) =

∑︁
𝑖∈Acceptors

𝑁𝐴,𝑖(x)

1 + 𝑔𝐴,𝑖 exp((𝐸𝐴,𝑖(x)− 𝐸𝐹,𝑝(x))/𝑘𝐵𝑇)
(4.4.3.2)

where the summation is over all different donor or acceptors, 𝑁𝐷, 𝑁𝐴 are the doping concentrations, 𝑔𝐷, 𝑔𝐴 are
the degeneracy factors (𝑔𝐷 = 2 and 𝑔𝐴 = 4 for shallow impurities), and 𝐸𝐷, 𝐸𝐴 are the energies of the neutral
donor and acceptor impurities, respectively.

4.4. Light-Emitting Diodes 183

nextnano++ Documentation, Release 1.25.13

These energies 𝐸𝐷, 𝐸𝐴 are determined by the ionization energies 𝐸𝑖𝑜𝑛𝐷,𝑖 , 𝐸𝑖𝑜𝑛𝐴,𝑖 , the bulk conduction and valence
band edges (including shifts due to strain) and the electrostatic potential as

𝐸𝐷(x) = 𝐸𝑐,0(x)− 𝑒𝜑(x)− 𝐸𝑖𝑜𝑛𝐷 (x), (4.4.3.3)

𝐸𝐴(x) = 𝐸𝑣,0(x)− 𝑒𝜑(x) + 𝐸𝑖𝑜𝑛𝐴 (x). (4.4.3.4)

The parameters can be specified in the input file as follows:

• Doping concentrations 𝑁𝐷, 𝑁𝐴 are specified at structure{ region{ doping{} } } like

structure{
...
region{

...
doping{

#constant{
name = "donor_impurity"
conc = 2.0e18 # cm^-3
#}
constant{

name = "acceptor_impurity"
conc = 5.0e19 # cm^-3

}
}

}
}

• The degeneracy factors 𝑔𝐷, 𝑔𝐴 and ionization energies 𝐸𝑖𝑜𝑛𝐷,𝑖 , 𝐸𝑖𝑜𝑛𝐴,𝑖 are specified at impurities{ } like

impurities{
donor{

name = "donor_impurity" # Si
energy = 0.030 # ionization energy measured from the␣

→˓conduction band edge. (fully ionized when -1000)
degeneracy = 2 # degeneracy: 2 for n-type

}
acceptor{

name = "acceptor_impurity" # Mg
energy = 0.23 # ionization energy measured from the valence␣

→˓band edge. 0.23 eV is taken from Kozodoy1999. (fully ionized when -1000)
degeneracy = 4 # degeneracy: 4 for p-type

}
}

Results

Spatially averaged hole density

Here we show the relation between 𝐿 = 𝐿well = 𝐿barrier and the spatially averaged hole densities.

The orange line is the result of Poisson equation ignoring the polarization fields, the blue line is the result of Poisson
equation including the polarization fields, and the green line is the result of Schrödinger-Poisson equation including
the polarization fields.

The corresponding hole density for bulk Al0.2Ga0.8N with the same acceptor concentration 5.0 × 1019 [cm-3] has
been calculated as around 0.43× 1018 [cm-3], so the hole density is improved in any case.

184 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

What we can also see is that the polarization field further enhances the acceptor ionization, while the quantization
effect reduces it as 𝐿 becomes smaller.

Figure 4.4.3.2: Barrier and well width 𝐿 and spatially averaged hole densities.

Hole density/Ionized acceptor density distribution

Here we see the spatial distribution of the hole density and ionized acceptor density. We can confirm that the holes
generated by the ionization of the acceptors in the barrier layers are accumulated into the well layers.

Figure 4.4.3.3: Hole density distribution calculated at 𝐿 =4.0 nm by Schrödinger-Poisson equation including the
polarization fields. The valence band edges are also displayed.

IQE estimation

Structure

The simulation region consists of the following structure:

4.4. Light-Emitting Diodes 185

nextnano++ Documentation, Release 1.25.13

Figure 4.4.3.4: Ionized acceptor density distribution calculated at 𝐿 =4.0 nm by Schrödinger-Poisson equation
including the polarization fields. The valence band edges are also displayed.

Material Thickness Doping
n-Al0.18Ga0.82N 100 nm 8 × 1018 [cm-3] (donor)
In0.02Al0.09Ga0.89N - In0.02Al0.22Ga0.76N 3-layer
MQW

well: 2.5 nm, barrier: 15 nm 0 [cm-3]

Al0.24Ga0.76N/Al0.17Ga0.83N 8-layer MQW well: 4.0 nm, barrier: 4.0 nm 2 × 1019 [cm-3] (accep-
tor)

p-Al0.17Ga0.83N as a p-contact layer | 20 nm 2 × 1019 [cm-3] (accep-
tor)

The simulation result of this structure is compared with the structure where the p-region consists of bulk
Al0.20Ga0.80N.

The electron blocking layer is not included here.

Bandedges

The following figures show the band edge profiles and the Fermi energies for the structures with (top) and without
(bottom) SL. The width of the SL wells and barriers is set to 𝐿 = 4.0 nm.

Scheme

The corresponding run{ } section is described as

run{
strain{ }
current_poisson{ }

}

Then nextnano++ solves the current equation and Poisson equation self-consistently after solving strain equation.

After the Current-Poisson equation has been converged, optoelectronic characteristics are calculated according to
the specification in the section classical{ }.

For further details, please see Optoelectronic characterization.

186 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.4.3.5: The band edges and Fermi levels for the structure with SL (bias=4.00 V, total current
density=2.67×105 A/cm2)

Figure 4.4.3.6: The band edges and Fermi levels for the structure with bulk p-region (bias=3.97 V, total current
density=2.71×105 A/cm2)

4.4. Light-Emitting Diodes 187

nextnano++ Documentation, Release 1.25.13

IQE result

The calculated IQEs with respect to the applied bias (left) and current density (right) are shown here. We can see
that the IQE for the structure with SL, which is slightly smaller than that of bulk at the bias around 3.4 V, becomes
superior to bulk for larger biases.

Figure 4.4.3.7: Left: Applied bias and IQE. Right: Current density at p-contact and IQE.

What can we do further?

By sweeping the simulation over the corresponding parameters, we can optimize the device strucutres such as 𝐿,
number of SLs, or the Al content of the SL region, for example. Our open source python package nextnanopy is a
powerful tool for this purpose.

Last update: nnnn/nn/nn

4.5 Quantum Mechanics

4.5.1 Parabolic Quantum Well (GaAs / AlAs)
Input files:

• parabola_half-parabola_nnpp.in

Scope:
This tutorial aims to reproduce figures 3.11 and 3.12 (pp. 83-84) of [HarrisonQWWD2005],
thus the following description is based on the explanations made therein.

General comments on the solutions of a parabolic potential

An ideal parabolic potential represents a “harmonic oscillator” which is described in nearly every beginner’s text-
book on quantum mechanics. The eigenstates can be calculated analytically and are given by the following rela-
tionship:

𝐸𝑛 =

(︂
𝑛− 1

2

)︂
ℏ𝜔0 (4.5.1.1)

where 𝑛 = 1, 2, 3, . . .

One feature of a particle that is confined in such a well is that the energy levels are equally spaced by ℏ𝜔0 above
the zero point energy of 1/2 ℏ𝜔0.

188 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The eigenfunctions show an even-odd alternation which is also the case in symmetric, square quantum wells.

The eigenenergies can be measured experimentally by analyzing the optical transitions between the conduction and
the valence band states, taking into account the selection rules (both states must have the same parity, see tutorial on
interband transitions). For intersubband transitions, different selection rules apply (see tutorial on intersubband
transitions). Such an experiment can be used to measure the conduction and valence band offsets because the
curvature of the conduction and valence band edges (and thus the eigenstates) depends on the offsets.

More information on this can be found in [Davies1998].

Parabolic quantum well: 10 nm 𝐴𝑙𝐴𝑠 / 10 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 10 nm 𝐴𝑙𝐴𝑠

It is possible to grow parabolic quantum wells by continuously varying the composition of an alloy. Our structure
consists of a 10 nm 𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 parabolic quantum well (the 𝑥 alloy content varies parabolically) that is sur-
rounded by 10 nm 𝐴𝑙𝐴𝑠 barriers on each side. We thus have the following layer sequence: 10 nm 𝐴𝑙𝐴𝑠 / 10 nm
𝐴𝑙𝐺𝑎1−𝑥𝐴𝑠 / 10 nm 𝐴𝑙𝐴𝑠.

Bandeges

Figure 4.5.1.1 shows the conduction band edge and the three lowest electron wave functions (𝜓) that are confined
inside the parabolic quantum well. All other states are not confined anymore.

Figure 4.5.1.1: Calculated conduction band edge and the three lowest electron wave functions that are confined
inside the parabolic QW. The energies were shifted so that the conduction band edge of 𝐺𝑎𝐴𝑠 equals 0 eV.

The figure is in perfect agreement with Fig. 3.11 (p. 83) of [HarrisonQWWD2005].

Technical details

The parabolic potential is specified by using a parabolic alloy profile.

structure{
...
region{

line{ x = [-5.0 , 5.0] }
}
ternary_linear{

name = "In(x)Ga(1-x)As"
alloy_x = [0.0, 1.0]
x = [-5.0, 5.0]

}
}

In agreement with Paul Harrison, we assumed a constant effective mass of 0.067𝑚0 throughout the whole sample
and further assumed the conduction band offset between 𝐺𝑎𝐴𝑠 and 𝐴𝑙𝐴𝑠 to be 0.83549 eV.

4.5. Quantum Mechanics 189

nextnano++ Documentation, Release 1.25.13

Output

The conduction band edge of the Gamma conduction band can be found here bias_00000\bandedge_Gamma.dat.
The 1st column contains the position in units of [nm] and the 2nd column contains the conduction band edge in
units of [eV].

The file probabilities_shift_quantum_region_Gamma.dat contains the eigenenergies and the squared wave func-
tions (𝑃𝑠𝑖2). The 1st column contains the position in units of [nm]. Note that the Ψ2

𝑛 are shifted with respect to
their energy 𝐸𝑛 so that they can be nicely plotted into the conduction band profile.

amplitudes_shift_quantum_region_Gamma.dat contains the eigenenergies and the wave functions (𝑃𝑠𝑖). The 1st
column contains the position in units of [nm]. Note that Psin is shifted with respect to its energy En so that they
can be nicely plotted into the conduction band profile.

Both probabilities_shift_quantum_region_Gamma.dat and amplitudes_shift_quantum_region_Gamma.dat con-
tain the eigenenergies of the electron states in units of [eV]. Paul Harrison uses a 0.01 nm grid whereas we use the
0.01 nm grid only in the middle of the device (or 0.02 nm), but at the boundaries (i.e. from 0 nm to 5 nm and from
25 nm to 30 nm) we use a 0.1 nm grid to avoid long CPU times. The eigenvalues read:

𝑛 𝐸𝑛 (nextnano++) 𝐸𝑛 ([HarrisonQWWD2005])
1 0.13777630889948 0.1377751623
2 0.41211073419019 0.4121058503
2 0.67581828697139 0.6755025905

Making use of equation (4.5.1.1) with 𝜔0 =
√︀
𝐶/𝑚* (𝑚* = effective mass, 𝐶 = constant which is related to the

parabolic potential 𝑉 (𝑥) = 1/2𝐾𝑥2), one can calculate 𝐸𝑛 = ℏ𝜔0:

• ℏ𝜔0 = 2𝐸1 - 0 eV = 0.276 eV

• ℏ𝜔0 = 𝐸2 - 𝐸1 = 0.274 eV

• ℏ𝜔0 = 𝐸3 - 𝐸2 = 0.264 eV

Obviously, due to the finite 𝐴𝑙𝐴𝑠 barrier that we have employed, the higher lying states deviate slightly from the
analytical results where infinite barriers have been assumed.

Figure 4.5.1.2 shows the eigenenergies for the confined states 𝐸1, 𝐸2 and 𝐸3. As expected they are lying on a
straight line because they are separated by ℏ𝜔0. The figure is in perfect agreement with Fig. 3.12 (p. 84) of
[HarrisonQWWD2005].

Figure 4.5.1.2: Eigenenergies for the three lowest states.

190 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Matrix elements

The following matrix elements have been calculated:

• overlap_integrals{}: This spatial overlap matrix elements ⟨𝜓𝑓 |𝜓𝑖⟩ simply returns the Kronecker delta
as expected, because the wave functions are orthogonal.

• momentum_matrix_elements{}: ⟨𝜓𝑓 |𝑝𝑥|𝜓𝑖⟩ (see Tutorial on intraband transition)

• dipole_moment_matrix_elements{}: ⟨𝜓𝑓 |𝑥|𝜓𝑖⟩ (see Tutorial on intraband transition)

“Infinite” (30 eV) parabolic QW confinement for GaAs

Inputfile: 1DGaAs_ParabolicQW_infinite.in

Figure 4.5.1.3 shows the eigenstates of a parabolic quantum well (𝐺𝑎𝐴𝑠) where the confinement is assumed to be
30 eV. Now up to 37 eigenstates are confined in the quantum well (grid resolution: 0.025 nm inside the well, 0.05
nm inside the barrier).

Figure 4.5.1.3: Calculated conduction band profile and probability densities (Ψ2) for eigenstate 𝑛 (𝑛 = 1, 2, . . . ,
37).

Figure 4.5.1.4 shows the energies of the 37 confined electron states as a function of eigenstate 𝑛. As expected, the
curve shows a linear dependence because the eigenstates are equally spaced by ℏ𝜔0 = 0.826 eV (where we used𝐸𝑛
= (𝑛 - 1/2) ℏ𝜔0).

ℏ𝜔0 = 2 𝐸1 - 0 eV = 0.8261 eV 𝐸1/(2𝐸1) = 0.5000
ℏ𝜔0 = 𝐸2 - 𝐸1 = 0.8260 eV 𝐸2/(2𝐸1) = 1.4999
ℏ𝜔0 = 𝐸3 - 𝐸2 = 0.8260 eV 𝐸2/(2𝐸1) = 2.4997
ℏ𝜔0 = 𝐸4 - 𝐸3 = 0.8259 eV 𝐸4/(2𝐸1) = 3.4994
ℏ𝜔0 = 𝐸5 - 𝐸4 = 0.8259 eV 𝐸5/(2𝐸1) = 4.4991
ℏ𝜔0 = 𝐸6 - 𝐸5 = 0.8258 eV 𝐸6/(2𝐸1) = 5.4987
ℏ𝜔0 = 𝐸7 - 𝐸6 = 0.8258 eV 𝐸7/(2𝐸1) = 6.4982
ℏ𝜔0 = 𝐸8 - 𝐸7 = 0.8257 eV 𝐸8/(2𝐸1) = 7.4978

Still, due to the “infinite” barrier of 30 eV (which is still a finite barrier) that we have employed, the higher lying
states deviate slightly from the analytical results where infinite barriers have been assumed.

One should bear in mind that the energy level spacing of such parabolic quantum wells is inversely proportional to
both the well width and the square root of the effective mass.

It is also interesting to look at the momentum matrix elements, i.e. to investigate the probability for intersubband
transitions. The relevant output is contained in these two files:

4.5. Quantum Mechanics 191

nextnano++ Documentation, Release 1.25.13

Figure 4.5.1.4: Eigenenergies of 37 eigenstates for an infinite parabolic QW.

• \bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_Gamma_100.txt - 𝑝𝑥
• \bias_00000\Quantum\momentum_matrix_elements_quantum_region_Gamma_100.txt - 𝑥

From the calculated oscillator strengths it can be seen that only transitions from one level to the neighboring levels
(+1 and -1) are allowed. Because in the case of a harmonic oscillator the momentum operator is proportional to
the sum of the creation and the annihilation operators, thus only states can couple that have different occupation
numbers with the difference equal to 1.

“Infinite” (30 eV) half-parabolic QW confinement for GaAs

Input file: 1DGaAs_ParabolicQW_infinite_half_nnpp.in

Figure 4.5.1.5 shows the eigenstates when taking only the right half of the parabolic quantum well (𝐺𝑎𝐴𝑠) that
has been calculated above. The confinement is 30 eV on the right and infinite confinement on the left (Dirichlet
boundary conditions). Now only 18 eigenstates are confined in the quantum well, i.e. half the number of the
eigenvalues compared with the full parabolic QW (grid resolution: 0.025 nm inside the well, 0.05 nm inside the
barrier). The figure shows the conduction band profile and the square of the wave functions (Ψ2

𝑛) for eigenstate 𝑛
(𝑛 = 1, 2, . . . , 18).

Figure 4.5.1.5: Calculated conduction band profile and probability densities (Ψ2) for all confined eigenstates in an
half-parabolic potential.

Again, the eigenstates are equally spaced. However, the separation energy is now twice as large as before, i.e. ℏ𝜔0

= 2 · 0.826 eV = 1.65 eV.

192 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The ground state energy this time is given by: 𝐸1 = 3/2 ℏ𝜔0/2.

• ℏ𝜔0 = 4/3 𝐸1 - 0 eV = 1.639 eV

• ℏ𝜔0 = 𝐸2 - 𝐸1 = 1.647 eV

• ℏ𝜔0 = 𝐸3 - 𝐸2 = 1.648 eV

• ℏ𝜔0 = 𝐸4 - 𝐸3 = 1.648 eV

It is also interesting to look at the momentum matrix elements, i.e. to investigate the probability for intersubband
transitions. The relevant output is contained in these two files:

• \bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_Gamma_100.txt - 𝑝𝑥
• \bias_00000\Quantum\momentum_matrix_elements_quantum_region_Gamma_100.txt - 𝑥

Conclusion

We note that also more realistic parabolic quantum wells can be calculated with nextnano++. Assuming that the
alloy profile is parabolic,

• strain can be included (the strain tensor depends on the alloy profile),

• as well as effective masses that depend on the alloy profile,

• an 8-band k.p model (necessary to get correct intersubband transition energies)

• and bowing parameters (especially important for 𝐴𝑙𝐺𝑎𝐴𝑠).

All these features are automatically included in the nextnano++ code.

Last update: 27/05/2025

4.5.2 Triangular well
In this tutorial we calculate the Schrödinger equation for a triangular well and compare the results with the analytic
solution.

The related input files are followings:

• 1DGaAs_triangular_well_nn*.in

Structure

A triangular well consists of a potential with a constant slope that is bound at one side by an infinite barrier.

For 𝑥 < 0 nm we have an infinite barrier. In our case it is represented by a huge conduction band offset of 100 eV
to avoid any wave function penetration into the barrier.

For 𝑥 > 0 nm we have a linear potential of 𝑉 (𝑥) = 𝑒𝐹𝑥 .

𝑉 (𝑥) describes a charge 𝑒 in an electric field 𝐹 where the product 𝑒𝐹 is assumed to be positive.

Comparison of nextnano++ and the analytic solution

The Schrödinger equation for the transverse component of the electronic wave function has the following form
inside the well: [︂

− ℏ2

2𝑚*
𝑑2

𝑑𝑥2
+ 𝑒𝐹𝑥

]︂
𝜓(𝑥) = 𝐸𝜓(𝑥)

Usually one applies Dirichlet boundary conditions at 𝑥 = 0 nm so that 𝜓(𝑥 = 0) = 0 in order to represent an
infinite barrier, i.e. the high barrier prevents significant penetration of electrons into the barrier region.

4.5. Quantum Mechanics 193

nextnano++ Documentation, Release 1.25.13

In our case, we apply Neumann (or Dirichlet) boundary conditions at 𝑥 = −10 nm and 𝑥 = 150 nm and let the
infinite barrier be represented by the huge conduction band offset of 100 eV. Then, both boundary conditions lead
to the same eigenenergies for the lowest eigenstates.

The Schrödinger equation can be simplified by introducing suitable new variables and thus reduces to the Stokes
or Airy equation. Its solutions, the so-called Airy functions, are discussed in most textbooks, see for example:

• The Physics of Low-Dimensional Semiconductors - An Introduction, John H. Davies, Cambridge University
Press (1998)

The figure shows the conduction band edge (black line) which is represented by a triangular potential well 𝑉 (𝑥) =
𝑒𝐹𝑥. Also shown are the four lowest energy levels and corresponding wave functions. The electric field that has
been applied is 𝐹 = 5 [MV/m], i.e. 0.05𝑉/10 nm. The effective electron mass has the value 0.067𝑚0 (GaAs).

One can see that the distance between the energy levels decreases with increasing 𝑛 because the quantum well
width gets larger for higher energies. Note that in a parabolic well, the energy levels are equally spaced whereas in
an infinitely deep square well, the energy level separation increases with increasing energy.

The eigenvalues of the Airy equation can be calculated using the formula:

𝐸𝑛 = 𝑐𝑛

[︂
𝑒𝐹ℏ2

2𝑚*

]︂1/3
(The units of 𝐸𝑛 in this equation are [J].)

The lowest eigenvalue has the value 𝑐1 = 2.338 .

For large 𝑛, 𝑐𝑛 can be approximated by the following equation which can be derived from WKB theory (named
after Wentzel, Kramers and Brillouin):

𝑐𝑛 ≃
[︂
3

2
𝜋
(︀
𝑛− 1

4

)︀]︂2/3
The eigenvalues for the lowest four eigenstates are in very good agreement with the analytic results:

194 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

nextnano++ eigenvalue calculated eigenvalue 𝑐𝑛 (exact) 𝑐𝑛 (approximated)
n = 1 0.05647 0.05664 𝑐1 = 2.338 𝑐1 = 2.320251
n = 2 0.09887 0.09889 𝑐2 𝑐2 = 4.081810
n = 3 0.13358 0.13365 𝑐3 𝑐3 = 5.517164
n = 4 0.16426 0.16435 𝑐4 𝑐4 = 6.784455

The triangular potential is not symmetric in 𝑥, thus the wave functions lack the even or odd symmetry that one
obtains for the infinitely deep square well.

The triangular well model is useful because it can be used to approximate the (idealized) triangularlike shape near a
heterojunction formed by the discontinuity of the conduction band and an electrostatic field of electrons or remote
ionized impurities.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.5.3 — FREE — Double Quantum Well
Input files:

• DoubleQuantumWell_6_nm_nnpp.in

This tutorial calculates the energy eigenstates of a double quantum well. This aims to reproduce two figures (Figs.
3.16, 3.17, p. 92) of Paul Harrison’s excellent book “Quantum Wells, Wires and Dots” (Section 3.9 “The Double
Quantum Well”), thus the following description is based on the explanations made therein. We are grateful that
the book comes along with a CD so that we were able to look up the relevant material parameters and to check the
results for consistency.

To generate the input files for various thicknesses and some of the plots the following nextnanomat features are
used:

• Template tab

• Postprocessing feature

It is recommended to read the documentation about these features of the graphical user interface nextnanomat
before starting this tutorial.

Structure: AlGaAs / 6 nm GaAs / AlGaAs / 6 nm AlGaAs / AlGaAs

Our symmetric double quantum well consists of two 6 nm GaAs quantum wells, separated by a Al0.2 Ga0.8 As
barrier and surrounded by 20 nm Al0.2 Ga0.8 As barriers on each side. We thus have the following layer sequence:
20 nm Al0.2 Ga0.8 As / 6 nm GaAs / Al0.2 Ga0.8 As / 6 nm GaAs / 20 nm Al0.2 Ga0.8 As. (The barriers are printed
in bold.)

In this tutorial, we demonstrate the following two examples:

1. we set the thickness of the Al0.2 Ga0.8 As barrier that separates the two quantum wells 4 nm and calculate
the lowest two eigenstates.

2. we vary the thickness of the barrier layer from 1 nm to 14 nm fixing the width of the quantum well (6 nm).
Then we calculate the lowest two eigenstates for each case and see the barrier-width dependency of their
eigenenergies.

We also explain where the relevant output files are in.

4.5. Quantum Mechanics 195

nextnano++ Documentation, Release 1.25.13

Material Parameters

The material parameters are given in database_nn*.in but we can also redefine them manually in input files. In
this tutorial, we redefine parameters so that they are the same as the section 3.9 of Paul Harrison’s book “Quantum
Wells, Wires and Dots”.

conduction band offset Al0.2 Ga0.52 As / GaAs 0.167 eV
conduction band effective mass Al0.2 Ga0.52 As 0.084 m0
conduction band effective mass GaAs 0.067 m0

Results

1. barrier width = 4 nm

• The following figure shows the conduction band edge and wave functions that are confined inside the wells
with barrier width = 4 nm.

(Note that the energies were shifted so that the conduction band edge of GaAs equals 0 eV.)

• The wave functions form a symmetric and an anti-symmetric pair. The symmetric one is lower in energy
than the anti-symmetric one. The plot is in excellent agreement with Fig. 3.17 (page 92) of Paul Harrison’s
book “Quantum Wells, Wires and Dots”.

• For comparison, the following figure shows for the same structure as above, the square of the wave function
rather than 𝜓 only.

196 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Output

a. The conduction band edge of the Gamma conduction band can be found here:

bias_00000/bandedge_Gamma.dat

b. This file contains the eigenenergies of the two lowest eigenstates. The units are [eV].

bias_00000/Quantum/wf_energy_spectrum_quantum_region_Gamma_0000.dat

These are the comparison of eigenvalues:

nextnano++ Harrison’s book
ground state energy [eV] 0.04920 0.04912
first excited state energy [eV] 0.05779 0.05770

c. This file contains the eigenenergies and the wave functions (𝜓):

bias_00000/Quantum/wf_amplitudes_shift_quantum_region_Gamma_0000.dat

This file contains the eigenenergies and the squared wave functions (𝜓2):

bias_00000/Quantum/wf_probabilities_shift_quantum_region_Gamma_0000.dat

The subscript _shift indicates that 𝜓2 and 𝜓 are shifted by the corresponding energy levels.

a. and c. can be used to plot the data as shown in the figures above.

2. barrier width = 1 ~ 14 nm

• Here, we varied the thickness of the Al0.2 Ga0.8 As barrier layer from 1 nm to 14 nm fixing the width of the
quantum well (6 nm). We calculated the lowest two eigenstates and show their eigenvalues for each barrier
width in the following figure (generated with the :Postprocessing feature of nextnanomat).

• If the separation between the two quantum wells is large, the wells behave as two independent single quan-
tum wells having the identical ground state energies. The interaction between the energy levels localized
within each well increases once the distance between the two wells decreases below 10 nm. One state is
forced to higher energies and the other to lower energies. (Here, the electron spins align in an “anti-parallel”
arrangement in order to satisfy the Pauli exclusion principle.)

• This is analogous to the hydrogen molecule where the formation of a pair of bonding and anti-bonding
orbitals occurs once the two hydrogen atoms A and B are brought together.

𝜓bonding = 1√
2
𝜓𝐴 + 𝜓𝐵 (lower energy)

𝜓antibonding = 1√
2
𝜓𝐴 − 𝜓𝐵 (higher energy)

• Again, the plot is in excellent agreement with Fig. 3.16 (page 92) of Paul Harrison’s book “Quantum Wells,
Wires and Dots”.

4.5. Quantum Mechanics 197

nextnano++ Documentation, Release 1.25.13

Output

The energy values were taken from the same file as before:

bias_00000/Quantum/wf_energy_spectrum_quantum_region_Gamma_0000.dat

For example, the values for the 1 nm barrier read:

nextnano++ Harrison’s book
ground state energy [eV] 0.03476 0.03470
first excited state energy [eV] 0.07298 0.07290

The values for the 14 nm barrier read:

nextnano++ Harrison’s book
ground state energy [eV] 0.05332 0.05323
first excited state energy [eV] 0.05338 0.05329

Tip: Sweeping

A sweep over the thickness of the Al0.2 Ga0.8 As barrier layer, i.e. the variable %QW_SEPARATION, can easily be
done by using nextnanomat’s Template feature. The following screenshot shows how this can be done. Go to
“Template”, open input file, select “Range of values”, select “QW_SEPARATION”, click on “Create input files”,
go to “Run and start your simulations.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

198 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.5.4 — EDU — Orbitals of the Hydrogen Atom

• Header

• Introduction

• Preparing the simulation

– Convenient vacuum “material”

– The grid and simulation domain

– Regularized Coulomb potential

• Results and Discussion

– Orbitals s1 and s2

– Regularized potential

– Energies

– Degeneracy of orbitals

• Exercises

Header

Files for the tutorial located in nextnano++\examples\education

• Orbitals_Hydrogen_3D_nnp.in

Scope of the tutorial:
• Schrödinger equation

• Coulomb potential

• Numerical accuracy

Main adjustable parameters in the input file:
• regularizing parameter $eta

• radius of the simulation domain $pos_end

• positions of the grid definitions: $pos_fine, $pos_medium, and $pos_coarse

• grid spacings: $grid_coarse, $grid_medium, and $grid_fine

Relevant output files:
• bias_00000\bandedge_Gamma_1d_z.dat

• bias_00000\bandedge_Gamma_2d_yz.dat

• bias_00000\Quantum\energy_spectrum_quantum_region_Gamma_00000.dat

• bias_00000\Quantum\amplitude_quantum_region_Gamma_XXXX.fld

Introduction

This tutorial demonstrates use of nextnano++ in computing orbitals of a Hydrogen atom. As orbitals and their
energies can be obtained analytically for the Hydrogen atom (see. [LeviAQM2006]), this tutorial serves also as a
playground for exploration of numerical limits of 3D simulations on small computers.

In this tutorial we assume that the proton is set in the origin of the coordinate system and the electron is confined
by the Coulomb potential arising from the presence of the proton

𝜑𝐶(𝑟) =
1

4𝜋𝜀0

𝑞

𝑟
, (4.5.4.1)

4.5. Quantum Mechanics 199

nextnano++ Documentation, Release 1.25.13

where 𝑞 is the elementary charge, 𝑟 is a distance from the proton, and 𝜀0 is the permittivity of vacuum. This
potential can be defined directly in the input file using coordinates as

𝑟 =
√︀
𝑥2 + 𝑦2 + 𝑧2

Note that the length is given in (nm) in the input file. The Schrödinger equation for the system is given by[︂
− ℏ2

2𝑚0
∇2 − 𝑞 𝜑𝐶(𝑥, 𝑦, 𝑧)

]︂
Ψ(𝑥, 𝑦, 𝑧) = 𝐸Ψ(𝑥, 𝑦, 𝑧), (4.5.4.2)

where 𝑚0 is the mass of a free electron and ℏ is Dirac’s constant.

This equation can be solved by nextnano++ within 1-band model. To do so one needs to take care about:

• definition of a convenient vacuum “material”,

• grid spacing and size of the simulation domain,

• infinity of the potential at the origin of the coordinate system.

Preparing the simulation

Convenient vacuum “material”

Let us define vacuum material modifying existing material, e.g., GaAs. As energy dispersion of electron in vacuum
is isotropic parabola, 1-band model for conduction band for zincblende crystals can be parametrized to describe
vacuum. The effective mass corresponding to the free electron is equal to 1. Assuming that total energy of sta-
tionary electron is equal 0 eV, we set the minimum of the band to be zero. We do it safely by setting all: band gap,
band offset, and spin-orbit splitting to zero.

40 database{ # gallium arsenide turned into vacuum at 0 eV
41 binary_zb{
42 name = GaAs # same as the substrate to neglect strain
43 conduction_bands{
44 Gamma{
45 bandgap = 0
46 mass = 1
47 }
48 }
49 valence_bands{
50 bandoffset = 0
51 delta_SO = 0
52 }
53 }
54 }

Note that we also turn off temperature dependence of the band gap so that Varshi formula is not applied and does
not shift the minimum. Choice of the crystal orientation and substrate are arbitrary in this simulation. We set some,
because the solver requires them. All strain effects are ignored as strain{ } is not called in the run{ } section
- there is no strain in the vacuum.

28 global{
29 simulate3D{}
30 crystal_zb{
31 x_hkl = [1, 0, 0]
32 y_hkl = [0, 1, 0]
33 }
34 substrate{ name = "GaAs" }
35

36 temperature_dependent_bandgap = no
37 temperature = 4.0 # Kelvin
38 }

200 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The vacuum is ready!

The grid and simulation domain

Keeping in mind that these computations are meant to be held on desktop computers or laptops, the biggest lim-
itation comes from the number of grid points that one can include in the simulation, as it directly impacts RAM
needed for the simulation. The simulation grid should be defined to have possibly low number of grid points while
keeping most of them the center of the atom to properly represent the potential and orbitals of interest.

In the input file for this tutorial we defined such a grid to keep it fine nearby the center of the atom and gradu-
ally coarser while going outwards (basic example on how to define such grids can be found here). For that pur-
pose we use 6 variables to have quite flexible control over the grid spacing ($grid_coarse, $grid_medium, and
$grid_fine) and positions where these spacings begin to apply ($pos_fine, $pos_medium, and $pos_coarse).
The last parameter of the grid, $pos_end, is defining the size of the entire simulation domain.

All of these parameters together are determining number of grid points, hence, how much memory the simulation
will require and how much time it will take to have the Schrödinger equation solved.

14 #spacing
15 $grid_coarse = 0.1
16 $grid_medium = 0.05
17 $grid_fine = 0.005

56 grid{
57 xgrid{
58 line{ pos =-$pos_end spacing = $grid_coarse }
59 line{ pos =-$pos_coarse spacing = $grid_coarse }
60 line{ pos =-$pos_medium spacing = $grid_medium }
61 line{ pos =-$pos_fine spacing = $grid_fine }
62 line{ pos = 0 spacing = $grid_fine }
63 line{ pos = $pos_fine spacing = $grid_fine }
64 line{ pos = $pos_medium spacing = $grid_medium }
65 line{ pos = $pos_coarse spacing = $grid_coarse }
66 line{ pos = $pos_end spacing = $grid_coarse }
67 }
68 ygrid{
69 line{ pos =-$pos_end spacing = $grid_coarse }
70 line{ pos =-$pos_coarse spacing = $grid_coarse }
71 line{ pos =-$pos_medium spacing = $grid_medium }
72 line{ pos =-$pos_fine spacing = $grid_fine }
73 line{ pos = 0 spacing = $grid_fine }
74 line{ pos = $pos_fine spacing = $grid_fine }
75 line{ pos = $pos_medium spacing = $grid_medium }
76 line{ pos = $pos_coarse spacing = $grid_coarse }
77 line{ pos = $pos_end spacing = $grid_coarse }
78 }
79 zgrid{
80 line{ pos =-$pos_end spacing = $grid_coarse }
81 line{ pos =-$pos_coarse spacing = $grid_coarse }
82 line{ pos =-$pos_medium spacing = $grid_medium }
83 line{ pos =-$pos_fine spacing = $grid_fine }
84 line{ pos = 0 spacing = $grid_fine }
85 line{ pos = $pos_fine spacing = $grid_fine }
86 line{ pos = $pos_medium spacing = $grid_medium }
87 line{ pos = $pos_coarse spacing = $grid_coarse }
88 line{ pos = $pos_end spacing = $grid_coarse }
89 }
90 }

4.5. Quantum Mechanics 201

nextnano++ Documentation, Release 1.25.13

ò Note

In general, the accuracy increases with reduction of the grid, unless machine precision begins to limit accuracy
of derivatives.

Regularized Coulomb potential

The Coulomb potential itself is posing a problem in this simulation as it introduces infinity, which gets more and
more severe when the grid gets finer around it. One way to remove this infinity is to regularize the potential (4.5.4.1)
introducing a regularizing parameter 𝜂 aiming at removing the infinity.

𝜑𝐶(𝑟) → 𝜑𝜂(𝑟) =
1

4𝜋𝜀0

𝑞√︀
𝑥2 + 𝑦2 + 𝑧2 + 𝜂2

(4.5.4.3)

Assuming that one cares about accuracy for the ground state in the Hydrogen atom, the 𝜂 should not modify the
potential much outside a volume that is negligibly small in comparison to the orbital 1s. Otherwise the regulariza-
tion will notably affect eigenenergy and shape of this orbital. We chose 𝜂 = 3.5 · 10−3 nm, which is around one
order of magnitude smaller than the Bohr radius, 𝑎𝐵 ≈ 5.3 · 10−2 nm.

This potential we define inside the import{ } group using $eta (see top of the input file) as a variable corresponding
to 𝜂.

161 $e = 1 #eV
162 $eps = 55.263E-3 #e^2eV^(-1)nm^(-1)
163 $pi = 3.1415
164

165 import{
166 analytic_function{
167 name = "Potential"
168 function = "(1/(4*$eps*$pi))*($e/(sqrt((x)^2 + (y)^2 + (z)^2 + $eta^2)))"
169 label = potential_label
170 }
171 output_imports{} # output all imported data including scale factor.
172 }

The potential is included as an initialization of Poisson equation, which further is not solved.

120 poisson{
121 import_potential{ import_from = "Potential" }
122 output_potential{}
123 }

Results and Discussion

Orbitals s1 and s2

Let us have a look at s orbitals that are expected to be the most affected by regularization of the Coulomb potential.
One can easily compare these orbitals with literature [LeviAQM2006] as their amplitudes have symmetry of a
sphere. To do so, one can define 1D sections through the center of the atom in the input file using section{ } nested
group and plot numerical amplitudes together with the ones derived analytically

Ψ1𝑠(𝑟) = 2

(︂
1

𝑎𝐵

)︂3/2

exp

(︂
− 𝑟

𝑎𝐵

)︂(︂
1

4𝜋

)︂1/2

,

Ψ2𝑠(𝑟) = 2

(︂
1

2𝑎𝐵

)︂3/2(︂
1− 𝑟

2𝑎𝐵

)︂
exp

(︂
− 𝑟

2𝑎𝐵

)︂(︂
1

4𝜋

)︂1/2

.

(4.5.4.4)

Such comparison of s1 and s2 orbitals obtained with both methods is shown in Figure 4.5.4.1 a) and b), respectively.

202 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.5.4.1: a), b) Comparison of 1s and 2s orbitals obtained from analytical formulas and numerical simulation.
c), d) Difference between the analytical and numerical wave functions of s1 and s2 orbitals, respectively.

As seen in the Figure 4.5.4.1 c) and d), the most significant loss of accuracy is present near the center of the atom,
where regularization has the biggest effect. It reaches approximately 10% of the maximum amplitude at the zero
coordinate, and falls below 1% at radius smaller than 0.05 nm.

Regularized potential

Investigating the potential (see Figure 4.5.4.2) one can see that regularization impacts the potential in the order of
magnitude 10-2 - 10-1 V at the distance near the Bohr radius.

Figure 4.5.4.2: (a) shows the Coulomb energy distribution. (b) is the difference between the numerical Coulomb
potential (𝑉𝜂) calculated by nextnano++ and the analytical potential (𝑉𝐴) at 𝑦 = 0, 𝑧 = 0 along the white dash
line in (a).

For that reason, a well-computed first orbital can be expected to have the eigenenergy deviating from the analytical
value by approximately 10-2 - 10-1 eV.

4.5. Quantum Mechanics 203

nextnano++ Documentation, Release 1.25.13

Energies

Accordingly, the effect can be best seen by comparing analytical energies of orbitals [LeviAQM2006]

𝐸𝑎 =
−𝑚0𝑞

4

2(4𝜋𝜀0)2ℏ2
1

𝑛2
, (4.5.4.5)

where 𝑛 is the principal quantum number, with computation using a fine grid ($grid_medium=0.01); see columns
4-6 in Table 4.5.4.1. Here the difference of energies is overestimated by approximately 0.19 eV for the ground state,
which corresponds to additional potential energy introduced by the regularization.

Table 4.5.4.1: Eigenenergies obtained using analytical formula (𝐸𝑎),
from the simulation with fine grid (𝐸𝑓𝑖𝑛𝑒) and coarser grid (𝐸𝑓𝑖𝑛𝑒) to
reduce simulation time.

𝑂𝑟𝑏𝑖𝑡𝑎𝑙 𝑛 𝑙 𝐸𝑎 (eV) (*) 𝐸𝑓𝑖𝑛𝑒 (eV) |𝐸𝑓𝑖𝑛𝑒 − 𝐸𝑎| (eV) 𝐸𝑓𝑎𝑠𝑡 (eV) |𝐸𝑓𝑎𝑠𝑡 − 𝐸𝑎| (eV)
1𝑠 1 0 −13.606 −13.420 1.86× 10−2 −13.605 1.26× 10−3

2𝑠 2 0 −3.401 −3.381 1.96× 10−2 −3.424 2.25× 10−3

2𝑝 2 1 −3.401 −3.402 1.44× 10−3 −3.450 4.85× 10−2

2𝑝 2 1 −3.401 −3.402 1.44× 10−3 −3.450 4.85× 10−2

2𝑝 2 1 −3.401 −3.402 1.44× 10−3 −3.450 4.85× 10−2

3𝑠 3 0 −1.512 −1.506 5.81× 10−3 −1.525 1.34× 10−2

3𝑝 3 1 −1.512 −1.512 4.40× 10−4 −1.532 1.96× 10−2

3𝑝 3 1 −1.512 −1.512 4.40× 10−4 −1.532 1.96× 10−2

3𝑝 3 1 −1.512 −1.512 4.40× 10−4 −1.532 1.96× 10−2

3𝑑 3 2 −1.512 −1.513 5.49× 10−4 −1.528 1.63× 10−2

3𝑑 3 2 −1.512 −1.513 5.49× 10−4 −1.528 1.63× 10−2

3𝑑 3 2 −1.512 −1.512 3.92× 10−5 −1.521 8.91× 10−3

3𝑑 3 2 −1.512 −1.512 3.92× 10−5 −1.521 8.91× 10−3

3𝑑 3 2 −1.512 −1.512 3.92× 10−5 −1.521 8.91× 10−3

Such fine simulation, however, can take more than half a day to finish. Interesting results can be also obtained
using coarser grid, therefore, within shorter simulation runs (couple of minutes). Columns 4 and 7-8 of Table
4.5.4.1 show that it is possible to match energy of the first orbital with the analytical results. However, this is just a
luck arising from lowering of numerical accuracy due to coarser grid. The proof are energies of all further orbitals,
which deviate from analytical solutions much more than for the fine simulation, moreover, being reduced instead of
increased despite additional energy introduced by regularization. As expected, the discrepancy is further gradually
reducing as orbitals are localized further away from the center of the potential; amplitudes are less varying in space.
The choice of the grid, therefore, depends on the goal of the simulation and must be performed carefully.

Degeneracy of orbitals

Finally, let us have a look at selected amplitudes of orbitals in the Hydrogen atom shown in Figure 4.5.4.3.

As the energy of the orbital without presence of magnetic field is given only by the principal quantum number 𝑛 one
should expect that all computed orbitals within one shell will be randomly superposed. For those, who do not look
for such effects, fortunately, symmetry of numerical grid and regularization are partly breaking this degeneracy and
the orbitals are distinguishable to some degree. All three orbitals 1s, 2s, 3s may have additionally overestimated
energy due to regularization which makes them always separated from superposing with other orbitals; grid may
have its own effect here as well. Orbitals p seems to have different energies from orbitals d due to symmetry of the
grid influencing their energies as these orbitals have different value of the azimuthal quantum number 𝑙. The three
orbitals 2p do not look exactly like in the books; they are tilted but seem to have proper relative orientation. The
orbitals 3d seems to be notably superposed, however, they remain recognizable and similar to the orbitals shown
in the literature. Because the numerical results tend to be rotated and superposed to some degree, the magnetic
quantum number is not easy to be indicated and ommited in the Figure 4.5.4.3 and the Table 4.5.4.1.

204 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.5.4.3: Cross-sections of 1s, 2s, 3s, 2p, and 3d orbitals computed for the Hydrogen atom.

4.5. Quantum Mechanics 205

nextnano++ Documentation, Release 1.25.13

Exercises

Compute lowest s, p, and d orbitals of a hydrogen atom and answer following questions:
• Are computed wave-functions of s orbitals in agreement with analytical solutions?

• Are all energies of orbitals the same as obtained analytically? If not, why do they deviate from analytical
solutions?

• Is proper degeneracy present in the numerical solutions?

Additional question on numerics:
• What is the biggest regularizing parameter that can be used for the electrostatic potential and grid

spacing if one aims at 1 meV accuracy for the energy of the ground state?

Last update: 27/10/2023

4.6 Quantum Wells

4.6.1 InAs / GaSb broken gap quantum well (BGQW) (type-II band alignment)
Author: Stefan Birner

Input files required:

• 1DInAs_GaSb_BGQW_k_zero_nnp.in

• 1DInAs_GaSb_BGQW_k_parallel_nnp.in

• 1DInAs_GaSb_BGQW_k_parallel_nnp_01.in

• 1DInAs_GaSb_BGQW_k_parallel__nnp_11.in

This tutorial aims to reproduce Figs. 1, 2(a), 2(b) and 3 of Hybridization of electron, light-hole, and heavy-hole
states in InAs/GaSb quantum wells

Material parameters used are taken from Optical transitions in broken gap heterostructures.

The heterostructure is a broken gap quantum well (BGQW) with 15 nm InAs and 10 nm GaSb, sandwiched
between two 10 nm AlSb layers. Note that this heterostructure is asymmetric.

To be consistent with the above cited papers, strain is not included into the calculations although this would be
possible. The structure has a type-II band alignment, i.e. the electrons are confined in the InAs layer, whereas the
holes are confined in the GaSb layer. Depending on the width of the InAs and/or GaSb layers, things can be even
more complicated because the hole states can hybridize with the electron states, making it difficult to distinguish
between electron-like and hole-like states. Another difficulty arises because the lowest electron states might be
located below the highest hole states. This requires a new algorithm to occupy the states according to a suitable
Fermi level.

The following figure shows the electron and hole band edges of the BGQW structure.

• band_structure/cb1D_001.dat (Gamma conduction band edge) in units of [eV]

• band_structure/vb1D_001.dat (heavy hole valence band edge) in units of [eV]

• band_structure/vb1D_002.dat (light hole valence band edge) in units of [eV]

• band_structure/vb1D_003.dat (split-off hole valence band edge) in units of [eV]

The origin of the energy scale is set to the InAs conduction band edge energy. The heavy hole and light hole band
edges are degenerate because we neglect the effects of strain to be consistent with the above cited papers.

206 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Results

The input file used here is 1DInAs_GaSb_BGQW_k_zero_nnp.in. The following figure shows the conduction band
edge and the heavy/light hole valence band edges in this BGQW structure together with the electron (e1, e2), heavy
hole (hh1, hh2, hh3) and light hole (lh1) energies and wave functions (𝜓2), calculated within 8-band k · p theory
at the zone center, i.e. at k|| :math:` = 0.`

One can clearly see that the electron state (e1, e2) are confined in the InAs layer (left part of the figure), whereas
the heavy (hh1, hh2, hh3) and light hole (lh1) states are confined in the GaSb layer (right part of the figure). One
can see a slight hybridization of the e1 and lh1 states, i.e. these states are mixed states whereas the heavy hole
states (hh1, h2, hh3) are not mixed and thus confined in the GaSb layer.

We use the data files

• Schroedinger_kp/kp_8x8psi_squared_qc001_el_kpar0001_1D_dir.dat, which contains 𝜓2

• Schroedinger_kp/kp_8x8psi_squared_qc001_el_kpar0001_1D_dir_shift.dat, which contains
𝜓2 + Ei

The latter file contains the square of the wave functions (for par0001, i.e 𝑘|| = 0, i.e. 𝑘𝑥 = 𝑘𝑦 = 0), shifted by
their energies, so that one can nicely plot the conduction and valence band edges together with the square of the
wave functions.

The energies of the eigenstates are in units of [eV] and are contained in the file Schroedinger_kp/
kp_8x8eigenvalues_qc001_el_kpar0001_1D_dir.dat

The input file 1DInAs_GaSb_BGQW_k_parallel.in was used for the following results. The following figure shows
the E(k||) dispersion of the electron and hole states along the [10] direction and along the [11] direction in (𝑘𝑥,
𝑘𝑦) space. The [01] direction has the same dispersion due to symmetry arguments.

In this input file, the energy levels and wave functions for 24 k|| points along a line from (𝑘𝑥, 𝑘𝑦) = (0,0) to (𝑘𝑥,
𝑘𝑦) = (0, 𝑘𝑦) have been calculated.

Schroedinger_kp/kpar1D_disp_01_00el_8x8kp_ev_min001_ev_max020.dat contains the 𝑘|| dispersion
from [00] to [01] because in the input file, it is specified that

dispersion{
path{

name = "kpar_01_00_10"
point{ k = [0.0, 0.0, 1.0] }

(continues on next page)

4.6. Quantum Wells 207

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

point{ k = [0.0, 0.0, 0.0] }
point{ k = [0.0, 1.0, 0.0] }
spacing = 1 / $number_k_parallel

}
path{

name = "kpar_10_00_11"
point{ k = [0.0, 1.0, 0.0] }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [0.0, 1.0, 1.0] }
spacing = 1 / $number_k_parallel

}

output_dispersions{}
output_masses{}

}

The first column contains the 𝑘|| value, the other columns contain the eigenvalues for each 𝑘|| value: En(𝑘||) =
En(𝑘𝑥, 𝑘𝑦) = En(0, 𝑘𝑦). Here, n = 1,. . . ,20. (. . . ev_min 001**_ev_max **020. . .) Note that for this particular
example, the eigenvalues have to be sorted manually if you want to connect the energy values, i.e. to include lines
(“lines are a guide to the eye”).

The black lines are the results of nextnano++, the red dots are the results of nextnano3.

At an in-plane wave vector of 0.014 1/Å, strong intermixing between the e1 and the lh1 states occurs. In contrast
to the wave functions at 𝑘|| = 0, where the e1 and lh1 wave functions are nearly purely electron- or hole like, the
wave functions at 𝑘|| = (0, 0.014) = (0.014, 0) are a mixture of electron and light hole wave functions. Compare
with Fig. 4 of the A. Zakharova et al.

In asymmetric quantum wells, the double spin degeneracy is lifted at finite values of k|| because of spin-orbit
interaction. This is the reason why we have two different dispersions E(k||) for “spin up” and “spin down” states.
This also means that the wave functions at finite k|| are different for “spin up” and “spin down” states.

The file Schroedinger_kp/kp_8x8k_parallel_qc001_el1D_dir.dat tells us which number of k|| vector
corresponds to (𝑘𝑥, 𝑘𝑦).

k_par_number k_x [1/nm] k_y [1/nm]
1 0.000000E+000 0.000000E+000 ==> k|| = (kx,ky) = (0,0) [1/nm]
...
29 0.000000E+000 1.400000E+000 ==> k|| = (kx,ky) = (0,0.14) [1/nm]

1326 1.00000E+000 1.000000E+000 ==> k|| = (kx,ky) = (1.0,1.0) [1/
→˓nm]

In the following figure, we plot the square of the wave functions for k|| = (0,0.14) nm-1. The corresponding label of
our k|| numbering is 29. Note that this labeling depends on the k|| space resolution, i.e. the number of k|| points
that have been specified in the input file: num-kp-parallel = 10000

208 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The wave functions (𝜓2 + Ei)are contained in the file Schroedinger_kp/
kp_8x8psi_squared_qc001_hl_kpar00029_1D_dir_shift.dat

The electron states (e1) couple strongly with the light hole states (lh1). This is expected from the energy dispersion
plot because at 0.14 nm-1 a strong anticrossing is present for these states. One can also clearly see that for spin
up and spin down states, different energy levels and different probability densities exist. This is in contrast to the
states at k|| = 0 which are two-fold spin degenerate as shown in the figure further above. Our results are similar to
Fig. 4 of Zakharova’s paper.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.6.2 Exciton Binding Energy in an Infinite Quantum Well
Input File:

1D_exciton_binding_energy_infinite_QW_nnp.in

Content:
In this tutorial we study the exciton binding energy between the electron ground state and heavy
hole ground state (e1−hh1) in a single quantum well (ZnSe/CdTe/ZnSe). This energy correction
is crucial, for example, when correlating computed optical transition energies in quantum wells
with experimental results.

We aim to reproduce figures 6.4 (p. 196) and 6.5 (p. 197) of Paul Harrison’s excellent book
“Quantum Wells, Wires and Dots” [HarrisonQWWD2005], thus the following description is
based on the explanations made therein. We are grateful that the book comes along with a CD
so that we were able to look up the relevant material parameters and to check the results for
consistency.

Output Files:
\bias00000\Quantum\exciton_spectrum_QuantumRegion_Gamma_HH.dat

Description of analytical formulas

We present briefly the analytical formulas for the exciton binding energy in 1) bulk material and 2) quantum well
structure (type-I). A full derivation can be found in [HarrisonQWWD2005].

1) Bulk

The 3D bulk exciton binding energy can be calculated analytically

𝐸ex,b = − 𝜇𝑒4

32𝜋2ℏ2𝑒2r 𝑒20
= − 𝜇

𝑚0𝑒2r
· 13.61 eV,

where

• 𝜇 is the reduced mass of the electron–hole pair

4.6. Quantum Wells 209

nextnano++ Documentation, Release 1.25.13

• ℏ is Planck’s constant divided by 2𝜋

• 𝑒 is the electron charge

• 𝑒r is the dielectric constant (𝑒r,GaAs = 12.93, 𝑒r,CdTe = 10.6)

• 𝑒0 is the vacuum permittivity

• 𝑚0 is the rest mass of the electron and

• 13.61 eV is the Rydberg energy.

The reduced mass of the electron–hole pair 𝜇 is calculated by

1

𝜇
=

1

𝑚e
+

1

𝑚h
,

with the effective masses of electrons and holes: me and mh.

Example
The reduced mass of GaAs and CdTe are

1

𝜇GaAs
=

1

0.067
+

1

0.5
⇒ 𝜇GaAs = 0.0591

1

𝜇CdTe
=

1

0.096
+

1

0.6
⇒ 𝜇CdTe = 0.0828

with respective Bohr radius

𝜆GaAs = 11.6 nm

𝜆CdTe = 6.8 nm.

From the 3D bulk exciton binding energies

𝐸ex,b(GaAs) = −4.8 meV

𝐸ex,b(CdTe) = −10.0 meV

the energy of the band gap transition including excitonic effects reads:

𝐸ex, GaAs = 𝐸gap + 𝐸ex,b = 1.519 eV − 0.005 eV = 1.514 eV

𝐸ex, CdTe = 𝐸gap + 𝐸ex,b = 1.606 eV − 0.010 eV = 1.596 eV

2) Quantum well (type-I)

Analytical results for the exciton ground state transition (e1–hh1) of a 1D quantum well (type-I) are only obtainable
in the following two limits:

• infinitely thin quantum well (2D limit)

𝐸ex,QW = 4 · 𝐸ex

𝜆ex,QW =
𝜆ex

2

• infinitely thick quantum well (3D bulk exciton limit)

𝐸ex,QW = 𝐸ex

𝜆ex,QW = 𝜆ex

Between these limits, the exciton correction, which depends on the well width, has to be calculated numerically,
not only for the ground state but also for excited states (e.g. e2–hh2, e1–lh1).

210 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Numerical calculation

Our numerical approach is based on a variational principle. We use the separable wave function

𝜓(𝑟) =

√︂
2

𝜋

1

𝜆
exp

(︁
− 𝑟

𝜆

)︁
, (4.6.2.1)

see e.g. p. 562, Eq. (13.4.27), Section 13.4.3 Variational Method for Exciton Problem in [ChuangOpto1995] or
[BastardPRB1982]. The excitonic binding energy is then minimized with respect to the variational parameter 𝜆
(= Bohr radius).

Simulation

We study the exciton binding energy of a CdTe quantum well (with infinite barriers) as a function of well width. We
chose infinite barriers, in order to be able to compare the nextnano++ calculations with standard textbook results,
originally published by [BastardPRB1982].

Input file

The material parameters used for CdTe are the following:

database{
binary_zb{

name = "CdTe"
conduction_bands{

Gamma{ mass = 0.096 }
...

}
valence_bands{

HH{ mass = 0.6 }
...

}
dielectric_consts{

static_a = 10.6
}
...

}

In order to calculate the exciton correction energy, the following group inside quantum{ } has to be used:

quantum{
...
region{

...
excitons{

dielectric_const = 10.6
electron_mass = 0.096
hole_mass = 0.6
energy_cutoff = 1000
accuracy = 1e-10

}
...

}
}

Parameter Sweep

The following screenshot (Figure 4.6.2.1) shows how to use the Template feature of nextnanomat in order to cal-
culate the exciton binding energy as a function of the quantum well width.

Initialization and execution of parameter sweep:

4.6. Quantum Wells 211

nextnano++ Documentation, Release 1.25.13

Figure 4.6.2.1: Initializing parameter sweep for QW_Width in tab Template

• Open input file in Template tab.

• Select List of values, select variable QW_Width. The corresponding list of values are loaded from the template
input file.

• Click on Create input files to create an input file for each quantum well width.

• Switch to Simulation tab and start the batch list of jobs.

Results

Figure 4.6.2.2 shows the exciton binding energy in an infinitely deep quantum well as a function of well width.
The quantities are given in units of the 3D bulk exciton energy 𝐸ex (also called effective Rydberg energy) and in
units of the 3D bulk exciton Bohr radius 𝜆ex respectively. We see that the 3D limit is not reproduced correctly in
our approach. To obtain the 3D limit, a nonseparable wave function 𝜓(𝑟, 𝑧e, 𝑧h) has to be used instead of (4.6.2.1).

Figure 4.6.2.2: Exciton energy as a function of quantum well width

212 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.6.2.3 shows the exciton binding energy in an infinitely deep CdTe quantum well as a function of well width.
The nextnano++ results are in agreement with fig. 6.4 of [HarrisonQWWD2005], although we use a simpler trial
wave function with only one variational parameter.

Figure 4.6.2.3: Exciton binding energy in an infinitely deep quantum well

Figure 4.6.2.4 shows the exciton Bohr radius a function of well width

Figure 4.6.2.4: Exciton Bohr radius energy in an infinitely deep quantum well

This tutorial also exists for nextnano3.

Last update: 2025/06/26

4.6.3 Scattering times for electrons in unbiased and biased single and multiple
quantum wells

Input files:
• 1DGaAs_AlGaAs_10nmQW_Lifetime.in

• 1DGaAs_AlGaAs_12nmQW_LifetimeFig5_field.in

• 1DGaAs_AlGaAs_SingleQW_7nm.in

• 1DGaAs_AlGaAs_DoubleQW_7nm_nonsymmetric.in

• 1DGaAs_AlGaAs_DoubleQW_LifetimeFig12_field.in

4.6. Quantum Wells 213

nextnano++ Documentation, Release 1.25.13

ò Note

If you want to obtain the input files that are used within this tutorial, please check if you
can find them in the installation directory. If you cannot find them, please submit a Support
Ticket.

Scope:
This tutorial tries to reproduce the results of [FerreiraBastard1989].

Scattering time as a function of quantum well width

Input file: 1DGaAs_AlGaAs_10nmQW_Lifetime.in

First, we want to study the electron lifetimes (scattering rates) of a single quantum well as a function of quantum
well width $QW_width. (Note: Use nextnanomat’s Template feature to automatically sweep over the quantum well
width.)

Our quantum well consists of 𝐺𝑎𝐴𝑠 that is sandwiched between two 𝐴𝑙0.3𝐺𝑎0.7𝐴𝑠 barriers. The material param-
eters that we are using for this tutorial are identical to the ones used in [FerreiraBastard1989], namely:

• electron mass: 𝑚𝑒 = 0.07 𝑚0

• conduction band offset: 𝐶𝐵𝑂 = 0.2138 eV

• static dielectric constant: 𝜖 = 12.5

• LO phonon energy: ℏ𝜔0 = 0.036 eV (longitudinal optical phonon)

For the calculations, a grid resolution of 0.1 nm has been used.

quantum{
region{

...
momentum_matrix_elements{ # calculate dipole moment elements <i|p|j> for␣

→˓intraband transitions
Gamma{}

}
dipole_moment_matrix_elements{ # calculate dipole moment elements <i|x|j> for␣

→˓intraband transitions
Gamma{}

}
transition_energies{ # calculate transition energies

Gamma{}
}
lifetimes{ # calculate lifetimes

Gamma{}
phonon_energy = 0.036 # [eV]

}
}

}

The following two figures (Figure 4.6.3.1, Figure 4.6.3.2) show the conduction band edges and the lowest confined
eigenstates (including the square of the wave functions) for a 6 nm and an 18 nm 𝐴𝑙𝐺𝑎𝐴𝑠/𝐺𝑎𝐴𝑠 quantum well.

The quantum well width can be varied easily by making use of the variable

$QW_width = 10 # (DisplayUnit:nm) (ListOfValues:5.2,5.4,5.6,5.8,6,7,8,10,12,14,15,16,
→˓17,18,19,20)

which can be swept automatically using the nextnanomat’s Template feature. Open the input file and select “List
of values” and variable “QW_width”.

214 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.6.3.1: Calculated conduction band edge profile (black) and wave functions of confined electron states (𝐸1

and 𝐸2)

Figure 4.6.3.2: Calculated conduction band edge profile (black) and wave functions of confined electron states (𝐸1,
𝐸2, 𝐸3 and 𝐸4).

4.6. Quantum Wells 215

nextnano++ Documentation, Release 1.25.13

Figure 4.6.3.3 shows the electron lifetime of the second eigenstate (𝐸2 = initial state) to the ground state (𝐸1 =
final state), i.e. the intersubband transition with energy 𝐸21 for different quantum well widths. The temperature is
set to 0 K.

For quantum well widths smaller than 5.4 nm ([FerreiraBastard1989]: 5.5 nm), only the ground state is confined
and 𝐸2 is unbound. For quantum well widths larger than 18 nm ([FerreiraBastard1989]: 17.8 nm), the transition
energy𝐸21 is smaller than the LO phonon energy of 36 meV, thus scattering through the emission of an LO phonon
is not possible anymore. The calculations are in good agreement with Fig. 3 of [FerreiraBastard1989].

Figure 4.6.3.3: Calculated lifetimes 𝜏 as a function of quantum well width

The output of the electron lifetime can be found in this file: bias_00000\Quantum\lifetimes_quantum_region_Gamma.dat.

...
Intersubband dipole moment | < psi_f* | pz | psi_i > | [h_bar /␣

→˓nm]
------------------|---
→˓---

Oscillator strength []
------------------|--------------|--
→˓---

Energy of transition [eV]
------------------|--------------|-------------|--------------------------------------
→˓---

m* [m_0] lifetime␣
→˓[ps]
------------------|--------------|-------------|-------------|-------------|----------
→˓---
...
<psi001*|pz|psi002> 0.19717291 0.985747159 0.085864536 0.070000000 0.
→˓833765805
...

Here, the shown values for the intersubband transitions correspond to a 10 nm QW.

Scattering times as a function of electric field magnitude

Input file: 1DGaAs_AlGaAs_12nmQW_LifetimeFig5_field.in

This input file will perform a sweep over the electric field strength. Figure 4.6.3.4 shows the lowest eigenstates of
a 12 nm 𝐴𝑙𝐺𝑎𝐴𝑠/ 𝐺𝑎𝐴𝑠 QW at an applied electric field of -50 kV/cm. This time the conduction band edge is not
flat anymore. It is tilted because of the electric field.

The sweep over the electric field magnitude can be done automatically. For these calculations, a grid resolution of
0.10 nm had been used. The calculations presented in Figure 4.6.3.5 are in reasonable agreement with Fig. 5 in
[FerreiraBastard1989].

Single quantum wells

Input file: 1DGaAs_AlGaAs_SingleQW_7nm.in

The two confined energy levels and wave functions of the 7 nm single quantum well are shown in Figure 4.6.3.6.
The energy of the ground state is 50.4 meV.

216 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.6.3.4: Calculated conduction band edge profile (black) and wave functions of confined electron states (𝐸1

and 𝐸2), when electric field of -50 kV/cm is applied.

Figure 4.6.3.5: Calculated lifetimes 𝜏 in a single quantum well as a function of applied electric field.

Figure 4.6.3.6: Calculated conduction band edge profile (black) and wave functions of confined electron states (𝐸1

and 𝐸2)

4.6. Quantum Wells 217

nextnano++ Documentation, Release 1.25.13

Double quantum wells

Input file: 1DGaAs_AlGaAs_DoubleQW_7nm_nonsymmetric.in

Here, we study the electron energy levels of a non-symmetric double quantum well structure as a function of
quantum well width of the right quantum well: $right_QW_width. The right quantum well width can be varied
easily by making use of the variable:

$right_QW_width = 7 # (DisplayUnit:nm) (ListOfValues:7.0,8.0,10.0,12.5,15.0,17.5,
→˓20.0,22.5,25.0,27.5,30.0,35.0,37.5,40.0,45.0,47.5,50.0,55.0,57.5,60.0,65.0,67.5,70.
→˓0,75.0,77.5,80.0,85.0,87.5,90.0,95.0,97.5,100.0)

which can be swept automatically using the nextnanomat’s Template feature. Open input file and select “List of
values” and variable “right_QW_width”. For the following figures, a grid resolution of 0.25 nm had been used.

Figure 4.6.3.7 shows the energy levels of a non-symmetric double quantum well structure (𝐺𝑎𝐴𝑠 /𝐴𝑙0.3𝐺𝑎0.7𝐴𝑠)
where the left quantum well always has the width 7 nm, and the right quantum well varies from 7 nm to 100 nm. The
two 𝐺𝑎𝐴𝑠 wells are separated by a 5 nm 𝐴𝑙0.3𝐺𝑎0.7𝐴𝑠 barrier. The figure shows the energy levels as a function
of the width of the larger quantum well.

Figure 4.6.3.7: Calculated energy levels for different energy states as a function of 𝐿QW,right.

One can see, that for certain widths of the larger quantum well, an anti-crossing due to bonding and anti-
bonding states occurs. This happens whenever an eigenstate of the larger well matches the energy of
the ground state of the smaller (7 nm) quantum well (which is at 50.4 meV, see example shown above:
1DGaAs_AlGaAs_SingleQW_7nm.in). Our calculations are in very good agreement with Fig. 9 in [FerreiraBas-
tard1989].

The anti-crossing behavior and the plateaus at 50.4 meV of the energy level scheme (see Figure 4.6.3.7) can be
illustrated by plotting the wave functions for different values of𝐿QW,right, see Figure 4.6.3.8, Figure 4.6.3.9, Figure
4.6.3.10 and Figure 4.6.3.11.

Figure 4.6.3.8 shows a symmetric double quantum well where both wells have the width 7 nm including the wave
functions of the lowest confined states. If the barrier between these two wells had been very large, both wells would
have had a ground state at 50.4 meV. However, due to the small barrier, coupling between these two wells becomes
possible. The two lowest states form a bonding and an anti-bonding state. The bonding state now has a reduced
energy of 48.7 meV and the anti-bonding state has an increased energy of 52.1 meV.

Figure 4.6.3.9 shows a non-symmetric double QW where the right QW has a width of 12.5 nm. In this case, the
ground state can be found in the larger well, the second state in the 7 nm QW, whereas the third eigenstate is again
localized in the larger well. Here, no bonding or anti-bonding states exist.

Figure 4.6.3.10 shows a non-symmetric double QW where the right QW has a width of 17.5 nm. In this case, the
ground state can be again found in the larger well (similar to Figure 4.6.3.9), but this time, the third state of moves

218 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.6.3.8: Calculated conduction band edge profile (black) for symmetric double quantum well: 𝐿left = 7 nm
and 𝐿right = 7 nm, with wave functions of confined electron states.

Figure 4.6.3.9: Calculated conduction band edge profile (black) for non-symmetric double quantum well: 𝐿left =
7 nm and 𝐿right = 12.5 nm, with wave functions of confined electron states.

4.6. Quantum Wells 219

nextnano++ Documentation, Release 1.25.13

down in energy and couples to the 7 nm ground state of the left well (compare with Figure 4.6.3.9). This coupling
leads to the formation of a bonding and an anti-bonding states.

Figure 4.6.3.10: Calculated conduction band edge profile (black) for non-symmetric double quantum well: 𝐿left =
7 nm and 𝐿right = 17.5 nm, with wave functions of confined electron states.

Figure 4.6.3.11 shows a non-symmetric double QW where the right QW has a width of 25 nm. In this case, the
ground state and the second state can be found in the larger well, whereas the third eigenstate is localized in the
smaller (7 nm) well. The forth eigenstate is localized in the larger well. Again, no bonding or anti-bonding states
exist

Figure 4.6.3.11: Calculated conduction band edge profile (black) for symmetric double quantum well: 𝐿left = 7
nm and 𝐿right = 25 nm, with wave functions of confined electron states.

Biased double quantum well

Input file: 1DGaAs_AlGaAs_DoubleQW_LifetimeFig12_field.in

Figure 4.6.3.12 shows the lifetime of the 2 → 1 transition (“ground state of left quantum well to ground state of
right quantum well transition”) as a function of electric field. The variable 𝑑 is the thickness of the left well and
the barrier region. The right well is assumed to have the same thickness as the left quantum well, i.e. 𝑑/2.

The parameter 𝑑 can be varied easily by making use of the variable

220 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

$QWBarrierThickness = 6 # (DisplayUnit:nm) (ListOfValues:6,9)

which can be swept automatically using the nextnanomat’s Template feature. Open input file and select “List of
values” and variable “QWBarrierThickness”.

There seems to be qualitative agreement to Fig. 12 in [FerreiraBastard1989]. For 𝑑 = 9 nm, the LO phonon
emission is forbidden for electric fields smaller than ~ | 40 kV/cm | because the transition energy is smaller than
the LO phonon energy of 36 meV.

Figure 4.6.3.12: Calculated lifetimes 𝜏 in a single quantum well as a function of applied electric field.

This tutorial also exists for nextnano3.

Last update: 27/05/2025

4.6.4 — DEV — Strain effects in freestanding nitride nanostructures

. Attention

This tutorial is under construction

Input files:
• Strained-QW_AlGaN-GaN_Povolotskyi_PSS_2005_3D_nnp.in

Scope:
This tutorial aims to simulate strain effects in a lattice mismatched, freestanding heterostructure with wurtzite
crystal structure consisting of an AlGaN/GaN quantum well. This tutorial is based on [Povolotskyi2005].

Output files:
• Strain/strain_simulation_2d_slice_middle_along_yz.vtr

• Strain/hydrostatic_strain_2d_slice_middle_along_yz.vtr

• Strain/strain_simulation_2d_slice_boundary_along_xz.vtr

• Strain/elastic_energy_density_2d_slice_middle_along_yz.vtr

Structure

Figure 4.6.4.1 shows the AlGaN/GaN/AlGaN quantum well structure, which is simulated in this tutorial. A 4 nm
wide GaN QW layer is embedded between two Al0.28Ga0.72N layers. The bottom AlGaN layer has a width of 10
nm, whereas the top AlGaN layer has a width of 6 nm. The overall shape of this nitride nanowire structure has the
form of a cuboid with 50 nm x 50 nm extensions in the 𝑥- and 𝑦-directions. The height in the 𝑧-direction is 20 nm.
The overall structure is surrounded by air (i.e. with a material where all elastic constants are zero).

The calculated strain pattern of this AlGaN/GaN structure is found to be highly non-homogeneous. The elastic
energy has been minimized using continuum elasticity theory. We assume that the external stress applied to the
structure is zero (freestanding structure).

4.6. Quantum Wells 221

nextnano++ Documentation, Release 1.25.13

Figure 4.6.4.1: Simulated heterostructure consisting of a GaN (green) layer sandwiched in between two AlGaN
(blue) layers.

Results

Strain tensor components

In this section we show several strain tensor components 𝜖𝑖𝑗(𝑥, 𝑦, 𝑧) as a function of position (𝑥, 𝑦, 𝑧) for slices
through the structure (vertical cross-section of the structure). Note that GaN has a larger lattice constant than
AlGaN. Consequently, we expect the GaN layer to be compressively strained and the AlGaN layers to be tensely
strained (or rather unstrained).

Figure 4.6.4.2 shows the strain tensor component 𝜖𝑥𝑥 along 𝑦, 𝑧 at 𝑥 = 25.0 nm. The corresponding data can
be found in the file Strain/strain_simulation_2d_slice_middle_along_yz.vtr. The bottom AlGaN layer is rather
unstrained (at the bottom), the GaN QW layer is strained compressively along the 𝑥-direction (blue region). This is
not a surprise as we assumed coherent interfaces, i.e. the atomic planes match each other perfectly (pseudomorphic
strain). The GaN QW induces a tensile strain to the AlGaN top layer (red region).

Figure 4.6.4.2: Calculated strain component 𝜖𝑥𝑥 in the 𝑦, 𝑧 plane at 𝑥 = 25.0 nm.

Figure 4.6.4.3 shows the strain tensor component 𝜖𝑦𝑦 . Similar to Figure 4.6.4.2, the GaN layer is compressively
strained (blue region), but only in the center and not at the boundaries, where it is nearly relaxed. Note that the
𝜖𝑥𝑥 and 𝜖𝑦𝑦 strain tensor components are not symmetric. This is due to the nitride crystal structure which has
hexagonal symmetry perpendicular to the (𝑥, 𝑦) plane (and not cubic symmetry as the geometry of the structure).

• In the center (blue region), the GaN takes on the lattice constant of AlGaN (compressive strain).

222 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• At the QW boundaries, the GaN takes on the lattice constant of ~GaN (nearly fully relaxed).

• Below and above the QW boundaries (red regions), the AlGaN takes on the lattice constant of ~GaN (tensile
strain).

Figure 4.6.4.3: Calculated strain component 𝜖𝑦𝑦 in the 𝑦, 𝑧 plane at 𝑥 = 25.0 nm.

Figure 4.6.4.4 shows the strain tensor component 𝜖𝑧𝑧 . As the GaN layer is compressively strained along both the 𝑥-
and 𝑦-directions, it is tensilely strained (green region) along the 𝑧-direction (biaxially strained GaN layer, Poisson
ratio).

Figure 4.6.4.4: Calculated strain component 𝜖𝑧𝑧 in the 𝑦, 𝑧 plane at 𝑥 = 25.0 nm.

Figure 4.6.4.5 shows the hydrostatic strain 𝜖hydro = 𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧 , which is the trace of the strain tensor, i.e.
the sum of the diagonal strain tensor components. It corresponds to the overall volume change. The data can be
found in the file Strain/hydrostatic_strain_2d_slice_middle_along_yz.vtr. The blue region indicates that the GaN
is strained compressively. AlGaN is mostly unstrained apart from the red regions at the left and right boundaries of
the material interfaces. In a real sample, due to the deformation, the heterostructure changes its shape and becomes
bent. In our case, the strain is small (less than 1%), so the shape of the structure does not change significantly.

In contrast to heterostructures, which are infinitely large and homogeneous in the lateral directions (i.e. in the (𝑥, 𝑦)
plane), the deformation of a structure of a finite size is not homogeneous, as e.g. in GaN nanowire heterostructures.
Since the structure is grown along the high symmetry direction [0001], the strain patterns exhibits reflection sym-
metry along the axis through the center (oriented parallel to the 𝑧-axis). The deformation becomes homogeneous
in the region near the central axis, reproducing the case of an infinitely large structure.

Figure 4.6.4.6 shows the off-diagonal strain tensor component 𝜖𝑦𝑧 . The strain tensor components 𝜖𝑥𝑦 and 𝜖𝑥𝑧 are
zero for this particular slice. (In fact, the maximum value of 𝜖𝑥𝑦 is an order of magnitude smaller that the maximum
value of 𝜖𝑥𝑧 or 𝜖𝑦𝑧 .)

Figure 4.6.4.7 shows the same off-diagonal strain tensor component 𝜖𝑦𝑧 , but this time at
slices at the left and right boundaries. The corresponding data can be found in the file
Strain/strain_simulation_2d_slice_boundary_along_xz.vtr

4.6. Quantum Wells 223

nextnano++ Documentation, Release 1.25.13

Figure 4.6.4.5: Calculated hydrostatic strain component 𝜖hydro = 𝜖𝑥𝑥+ 𝜖𝑦𝑦+ 𝜖𝑧𝑧 in the 𝑦, 𝑧 plane at 𝑥 = 25.0 nm.

Figure 4.6.4.6: Calculated strain component 𝜖𝑦𝑧 in the 𝑦, 𝑧 plane at 𝑥 = 25.0 nm.

Figure 4.6.4.7: Calculated strain component 𝜖𝑦𝑧 in the 𝑥, 𝑧 plane at the boundaries.

224 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Elastic energy density

Due to a possible usage of such structures as a light emitter, the strain in the GaN layer where charge carriers
are confined, is or particular interest, i.e. the influence of stain on the conduction and valence band structure
through deformation potentials. Additional, piezoelectric and pyroelectric fields have to be taken into account.
The piezoelectric fields depend on the strain distribution in the sample. Thus, both the piezoelectric field and the
GaN energy gap will vary along the lateral direction.

Figure 4.6.4.8 shows the energy density of the elastic deformation in units of [eV/nm3]. The corresponding data
can be found in the file Strain/elastic_energy_density_2d_slice_middle_along_yz.vtr. The accumulated elastic
energy in the pseudomorphically grown GaN QW is gradually reduced towards the free surface along the lateral
direction. Consequently, the GaN QW center is almost fully strained, whereas towards the lateral surface there is
a continuous relaxation.

Figure 4.6.4.8: Elastic energy density in the 𝑥, 𝑧 plane at 𝑥 = 25.0 nm.

Last update: 17/07/2024

4.7 Quantum Wires

4.7.1 Hexagonal GaAs/AlGaAs nanowires
Input files:

• 2DGaAs_AlGaAs_circle_nnp.in

• 2DGaAs_AlGaAs_hexagon_nnp.in

• 2D_Hexagonal_Nanowire_2DEG_nnp.in

Scope:
In this tutorial we simulate a circular and a hexagonal 𝐺𝑎𝐴𝑠/𝐴𝑙0.33𝐺𝑎0.67𝐴𝑠 core-shell struc-
ture (Part A) and a hexagonal 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 nanowire structure (Part B).

Output files:
• bias_00000\Quantum\probabilities_quantum_region_Gamma_.vtr

Part A: Schrödinger equation of a two-dimensional core-shell structure

In this part of the tutorial, we solve the two-dimensional Schrödinger equation of a circular and a hexagonal
𝐺𝑎𝐴𝑠/𝐴𝑙0.33𝐺𝑎0.67𝐴𝑠 core-shell structure.

4.7. Quantum Wires 225

nextnano++ Documentation, Release 1.25.13

Circular core-shell structure

Input file: 2DGaAs_AlGaAs_circle_nnp.in

Figure 4.7.1.1 shows the probability density of the 6th eigenstate of the circular 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 structure. The
data is contained in the file bias_00000\Quantum\probabilities_quantum_region_Gamma_.vtr. It’s energy level is
higher than the 𝐴𝑙𝐺𝑎𝐴𝑠 barrier energy, i.e. this state is not confined in the circular shaped 𝐺𝑎𝐴𝑠 quantum well.
The horizontal and vertical slices are through the center and show the square of the probability amplitude of this
eigenstate.

Figure 4.7.1.1: Ψ2 of the 6th electron eigenstate.

The 𝐺𝑎𝐴𝑠 core has a radius of 5 nm. (It cannot be recognized on this plot.) The 𝐴𝑙𝐺𝑎𝐴𝑠 shell has a radius of
15 nm. It is surrounded by an infinite barrier which comes from the “band offset” due to the surrounding material
“air”.

Hexagonal core-shell structure

Input file: 2DGaAs_AlGaAs_hexagon_nnp.in

Figure 4.7.1.2 shows the conduction band edge of the hexagonal 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 structure. The 𝐺𝑎𝐴𝑠 region is
indicated in black, the 𝐴𝑙𝐺𝑎𝐴𝑠 region in blue. Horizontal and vertical slices through the center show the energy
of the conduction band edge profile. The data is contained in the file bias_00000\bandedges.fld

The diameter of the hexagonal shaped 𝐺𝑎𝐴𝑠 core is ~8.66 nm (corresponding to an outer radius of the core of 5
nm), and the diameter of the hexagonal shaped 𝐴𝑙𝐺𝑎𝐴𝑠 shell is ~26 nm (corresponding to an outer radius of the
shell of 15 nm).

Figure 4.7.1.3 shows the probability density of the 10th eigenstate of the circular 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 structure. The
data is contained in the file bias_00000\Quantum\probabilities_quantum_region_Gamma_.vtr. It’s energy level is
higher than the𝐴𝑙𝐺𝑎𝐴𝑠 barrier energy, i.e. this state is not confined in the hexagonal shaped𝐺𝑎𝐴𝑠 quantum well.
The horizontal and vertical slices are through the center and show the square of the probability amplitude of this
eigenstate.

The hexagonal 𝐺𝑎𝐴𝑠 core has an outer radius of 5 nm. It cannot be seen on this plot. The 𝐴𝑙𝐺𝑎𝐴𝑠 shell has
a diameter of 26 nm. It is surrounded by an infinite barrier which case comes from the “band offset” due to the

226 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.7.1.2: Conduction band edge profile of the hexagonal core-shell structure.

Figure 4.7.1.3: Ψ2 of 10th electron eigenstate.

4.7. Quantum Wires 227

nextnano++ Documentation, Release 1.25.13

surrounding material “air”.

Alloy sweep

In the following, we vary the alloy content 𝑥 of the ternary 𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 from 0 to 0.33 in 11 steps. For 𝑥 = 0,
we have pure 𝐺𝑎𝐴𝑠. For 𝑥 = 0.33 we have an 𝐴𝑙𝐺𝑎𝐴𝑠/𝐺𝑎𝐴𝑠 conduction band offset of 0.285 eV, and a valence
band offset of -0.168 eV. In the latter case, the quantum confinement is stronger. Even for 𝑥 = 0 we have “quantum
confinement” due to the Dirichlet boundary conditions (corresponding to infinite barriers) at the shell surface that
we use for the Schrödinger equation. Consequently, even for 𝑥 = 0, we get an e1 - h1 transition energy from the
lowest electron state (e1) to the highest heavy hole state (h1) that is larger than the band gap as shown in Figure
4.7.1.4.

Figure 4.7.1.4: Transition energy and spatial overlap of e1 to h1 transition as a function of alloy content 𝑥.

The transition energies (e1 - h1), as well as the spatial overlap integral of
the electron and hole ground state wave functions, are contained in this file:
bias_00000\Quantum\momentum_matrix_elements_quantum_region_Gamma_001.txt

alloy type el-hl[eV] el[eV] hl[eV] ␣
→˓matrix_element
0.330000 |<psi_vb001|psi_cb001_>|^2 1.522777615 2.965889676 1.443112062 0.
→˓936344908
0.300000 |<psi_vb001|psi_cb001_>|^2 1.520316794 2.963669699 1.443352905 0.
→˓931291593
...

The spatial overlap of electron and hole wave functions is always very high. When there is only confinement due
to the shell boundary, the matrix element is very high (99.8 %). The matrix element must be smaller than 1 for 𝑥 =
0 because the electron and hole masses are different. The matrix element must be even smaller (94 %) for 𝑥 = 0.33
(strong confinement) because in addition to the mass difference, the conduction and valence band offsets are not
equivalent. The matrix element has a minimum at around 𝑥 = 0.06 because in this case the electron wave function
penetrates into the barrier much stronger that the hole wave function does. Thus the differences in well and barrier
masses (as well as band offsets) play an important role for the spatial extension of the wave functions.

Part B: Hexagonal 2DEG - Two-dimensional electron gas in a delta-doped hexagonal shaped
𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 nanowire heterostructure

Input file: 2D_Hexagonal_Nanowire_2DEG_nnp.in

The following example deals with a delta-doped 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 2DEG (two-dimensional electron gas) structure.
In this case, the heterostructure consists of a hexagonal 𝐺𝑎𝐴𝑠/𝐴𝑙𝐺𝑎𝐴𝑠 nanowire, see Figure 4.7.1.5.

The self-consistently calculated conduction band edge (bandedges.fld) is shown in Figure 4.7.1.6. The horizontal
and vertical slices through the center indicate the triangular potential well (conduction band minimum) where the
2DEG is located.

The resulting 2DEG electron density (bias_00000\density_electron_fld) is shown Figure 4.7.1.7. At the corners,
the electron density is significantly higher, thus one-dimensional conducting channels are formed. Although the
structure itself has a hexagonal symmetry, our rectangular grid breaks this symmetry. Therefore the density in the
upper/lower corner are different from the density at the left/right corners.

The 2D Poisson equation and the 2D Schrödinger equation have been solved self-consistently. The dimension of
the Schrödinger matrix is 28,625. The CPU time for this calculation was about 18 minutes.

228 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.7.1.5: The material layers of the struture: 𝐺𝑎𝐴𝑠 core (black), 𝐴𝑙𝐺𝑎𝐴𝑠 spacer (blue), Si-doped 𝐴𝑙𝐺𝑎𝐴𝑠
(green), 𝐴𝑙𝐺𝑎𝐴𝑠 (yellow), 𝐺𝑎𝐴𝑠 capping layer (red) and Schottky barrier contact (black) are shown. (The white
layer itself is not included in the calculation. It only serves as a boundary condition)

Figure 4.7.1.6: Conduction band edge profile.

4.7. Quantum Wires 229

nextnano++ Documentation, Release 1.25.13

Figure 4.7.1.7: Charge density profile.

This tutorial also exists for nextnano3.

Last update: 27/05/2025

4.7.2 Electron wave functions in a cylindrical well (2D Quantum Corral)
In this tutorial we demonstrate 2D simulation of a cilindrical quantum well. We will see the electron eigenstates
and their degeneracy.

Input files used in this tutorial are the followings:

• 2DQuantumCorral_nn3.in / *_nnp.in

Structure

• A cylindrical InAs quantum well (diameter 80 nm) is surrounded by a cylindrical GaAs barrier (20 nm)
which is surrounded by air. The whole sample is 160 nm x 160 nm.

• We assume infinite GaAs barriers. This can be achieved by a circular quantum cluster with Dirichlet bound-
ary conditions, i.e. the wave function is forced to be zero in the GaAs barrier.

• The electron mass of InAs is assumed to be isotropic and parabolic (𝑚𝑒 = 0.026𝑚0).

• Strain is not taken into account.

230 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Simulation outcome

Electron wave functions

The size of the quantum cluster is a circle of diameter 2𝑎 = 80 nm.

The following figures shows the square of the electron wave functions (i.e. 𝜓2) of the corresponding eigenstates.
They were calculated within the effective-mass approximation (single-band) on a rectangular finite-differences
grid.

• 1st eigenstate, (𝑛, 𝑙) = (1, 0)

• 2nd eigenstate, (𝑛, 𝑙) = (1, 1)

• 3rd eigenstate, (𝑛, 𝑙) = (1,−1)

• 4th eigenstate, (𝑛, 𝑙) = (1, 2)

• 5th eigenstate, (𝑛, 𝑙) = (1,−2)

• 6th eigenstate, (𝑛, 𝑙) = (2, 0)

• 15th eigenstate, (𝑛, 𝑙) = (3, 0)

4.7. Quantum Wires 231

nextnano++ Documentation, Release 1.25.13

232 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.7. Quantum Wires 233

nextnano++ Documentation, Release 1.25.13

• 20th eigenstate, (𝑛, 𝑙) = (1, 6)

• 22th eigenstate, (𝑛, 𝑙) = (3, 1)

The parameters of the quantum corral are the followings:

• radius: 𝑎 = 40 nm

• 𝑚𝑒 = 0.026𝑚0

• 𝑉 (𝑟) = 0 for 𝑟 < 𝑎

• 𝑉 (𝑟) = ∞ for 𝑟 > 𝑎

234 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The analytical solution of the eigenstates of this quantum well is:

𝜓𝑛,𝑙(𝑟, 𝜃) ∝ 𝐽𝑙

(︂
𝑗𝑙,𝑛𝑟

𝑎

)︂
[𝐴 cos(𝑙𝜃) +𝐵 sin(𝑙𝜃)] (4.7.2.1)

where

• 𝐽𝑙(𝑥) is the Bessel function of the first kind (We cite them for 𝑙 = 0, 1, 2 below.)

• 𝑗𝑙,𝑛 is its zero point i.e. 𝐽𝑙(𝑗𝑙,𝑛) = 0 and 𝑛 = 1, 2, ...

• 𝐴,𝐵 are constant

• 𝑙 = 0,±1,±2, ...

The corresponding eigenenergies are: 𝐸𝑛𝑙 =
ℏ2𝑗2𝑙,𝑛
2𝑚𝑒𝑎2

The Quantum number 𝑛 comes from the boundary condition 𝜓(𝑎, 𝜃) = 0. The requirement that 𝜓 has the same
value at 𝜃 = 0 and 2𝜋 leads to the quantum number 𝑙. In the above figures of the eigenstates, we can know them
through the following relations:

• (the number of zero points in the radial direction) = 𝑛

• (the number of zero points in the circumferential direction)/2 = |𝑙|

Energy spectrum

The following figure shows the energy spectrum of the quantum corral. (The zero of energy corresponds to the
InAs conduction band edge.)

The two-fold degeneracies of the states

• (2, 3), (4, 5), (7, 8), (9, 10), (11, 12), (13, 14), (16, 17), (18, 19), (20, 21), (22, 23), (24, 25), (26, 27), (28,
29), (31, 32), (33, 34), (35, 36), (37, 38), (39, 40)

4.7. Quantum Wires 235

nextnano++ Documentation, Release 1.25.13

Figure 4.7.2.1: Bessel functions of the first kind for 𝑙 = 0, 1, 2 generated by scipy.

236 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

correponds to |𝑙| ≥ 1. On the other hand, the non-degenerate energy eigenvalues corresponds to 𝑙 = 0

The analytical energy values are: 𝐸𝑛𝑙 =
ℏ2𝑗2𝑙,𝑛
2𝑚𝑒𝑎2

.

There is a formula to approximate 𝑗𝑙,𝑛: 𝑗𝑙,𝑛 = (𝑛+ 1
2 |𝑙| −

1
4)𝜋 which is accurate as 𝑛→ ∞.

Here we describe the comparison between the analytical values, approximate values, and nextnano++.

[𝑛, 𝑙] 𝑗𝑙,𝑛 𝑗𝑙,𝑛 (approx.) 𝐸𝑛,𝑙 [eV] 𝐸𝑛,𝑙 [eV] (approx.) 𝐸𝑛,𝑙 [eV] (nextnano++)
1st [1, 0] 2.405 0.75𝜋 ≃2.356 0.00530 0.00508 0.00510
2nd [1, 1] 3.832 1.25𝜋 ≃3.926 0.01345 0.01412 0.01294
3rd [1,-1] 3.832 1.25𝜋 ≃3.926 0.01345 0.01412 0.01294
4th [1, 2] 5.136 1.75𝜋 ≃5.497 0.02416 0.02768 0.02320
5th [1,-2] 5.136 1.75𝜋 ≃5.497 0.02416 0.02768 0.02329
6th [2, 0] 5.520 1.75𝜋 ≃5.497 0.02791 0.02767 0.02685
7th [2, 1] 7.016 2.25𝜋 ≃7.067 0.04508 0.04574 0.03584

Further details about the analytical solution of the cylindrical quantum well with infinite barriers can be found in:

The Physics of Low-Dimensional Semiconductors - An Introduction
John H. Davies
Cambridge University Press (1998)

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.7.3 T-shaped quantum wire grown by cleaved edge overgrowth (CEO): wave
functions without strain

ò Note

The tutorial is related to the PhD Thesis of R. Schuster [SchusterPhD2005]

• Header

• Structure

• Input file

• Results

– Effective mass approximation

– 6-band k.p approximation

– Eigenenergies

• Including anisotropic effects in the effective mass model

Header

Input files:
• examples\quantum_wires\T-QWR_zb_III-V_Schuster_PhD_2005_2D_nnp.in

4.7. Quantum Wires 237

nextnano++ Documentation, Release 1.25.13

Scope:
Electron and hole wave functions of a T-shaped quantum wire (QWR).

Output files:
• \bias_xxxxx\Quantum\probabilities_quantum_region_Gamma.fld

• \bias_xxxxx\Quantum\probabilities_quantum_region_HH.fld

• \bias_xxxxx\Quantum\probabilities_quantum_region_LH.fld

• \bias_xxxxx\Quantum\probabilities_quantum_region_kp6_00000.fld

Structure

Similar to the 1D confinement in a quantum well, it is possible to confine electrons or holes in two dimensions, i.e.
in a quantum wire. In this tutorial we consider the quantum wire, which is formed at the T-shaped intersection of
two 10 nm GaAs type-I quantum wells, surrounded by Al0.35Ga0.65As barriers (see Figure 4.7.3.1). The electrons
and holes are free to move along the 𝑧 direction only, thus the wire is oriented along the [0-11] direction. Such
a heterostructure can be manufactured by growing the layers along two different growth directions with the CEO
(cleaved egde overgrowth) technique. Due to the nearly identical lattice constants of GaAs and AlAs it is possible
to assume this heterostructure as being unstrained.

The wave function is indicated at the T-shaped intersection in yellow. Here, the wave function can extend into a
larger volume (as compared to the quantum well) and thus reduce its energy. Quantum mechanics tells us that the
ground state can be found at this intersection and electrons are only allowed to move one-dimensionally along the
𝑧 direction. Figure 4.7.3.1 b) shows a 60 nm x 60 nm extract of the schematic layout including the dimensions, the
material composition and the orientation of the wire with respect to the crystal coordinate system.

Figure 4.7.3.1: Two-dimensional conduction band edges of the T-shaped quantum wire.

Input file

It is sufficient to describe this heterostructure within a 2D simulation as it is translationally invariant along the 𝑧
direction. The simulation coordinate system is oriented in the following way:

global{
simulate2D{}
crystal_zb{

x_hkl = [1, 0, 0]
y_hkl = [0, 1, 1]

}
}

As we do not have doping and no piezoelectric fields (the structure is assumed to be unstrained) and as the temper-
ature is assumed to be 4 K, we do not have to deal with charge redistributions. Thus, we can refrain from solving
Poisson’s equation, and we also do not have to take care about self-consistency.

238 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Material parameters of relevance are the conduction band and valence band offset between GaAs and
Al0.35Ga0.65As:

CBO = 0.2847 eV

VBO = −0.1926 eV

𝐸gap,Al0.35Ga0.65As = 2.2883 eV

𝐸gap,GaAs = 1.5193 eV

Results

Using the input file T-QWR_GaAs-AlGaAs_Schuster_2005_2D_nnp.in we calculate the electron, heavy hole and
light hole wavefunctions for the T-shaped quantum wire structure.

Effective mass approximation

The electron and hole wave functions can be calculated within the effective mass theory (envelope function approx-
imation) by using position dependent effective masses. In our example, the effective masses are constant within
each material but have discontinuities at the material interfaces. In nextnano++ the effective masses are assumed
to be isotropic. Both, the heavy hole and the light hole band edge energies are degenerate but the effective masses
differ. Thus, we have to solve three Schrödinger equations, namely for the conduction band, heavy hole band and
light hole band. To trigger the 1-band effective mass model for calculating the eigenstates, use the following setting
in the input file T-QWR_GaAs-AlGaAs_Schuster_2005_2D_nnp.in:

$kp6 = 0 # choose 1 (6 band k.p) or 0 (effective mass approximation)␣
→˓(ListOfValues: 1,0)

In Figure 4.7.3.2 we show the normalized probability densities (𝜓2) for the electron, heavy hole and light hole
ground states, which are obtained by the effective mass approximation.

Figure 4.7.3.2: Probability densities of the electron (e), heavy hole (hh) and light hole (lh) state calculated using
the effective mass approximation. The wavefunctions are normalized so that the maxima are equal to one.

In addition to these ground states for 𝑘𝑧 = 0, excited states are possible as well. Similar to the subbands of a
1D quantum well that show a 𝐸(𝑘𝑥, 𝑘𝑦) dispersion one can assign a subband with the energy dispersion 𝐸(𝑘𝑧)
to each quantum wire eigenvalue which describes the free motion along the quantum wire axis (𝑧 axis). A more
advanced treatment would be to use k.p theory to calculate the eigenvalues for different 𝑘𝑧 in order to obtain the
(nonparabolic) energy dispersion 𝐸(𝑘𝑧).

6-band k.p approximation

For the same structure as above we perform the calculations again, but this time using the 6-band k.p model instead
of the single-band effective mass approximation. To trigger the 6-band k.p model for calculating the eigenstates,
the following setting in the input file T-QWR_GaAs-AlGaAs_Schuster_2005_2D_nnp.in can be used:

$kp6 = 1 # choose 1 (6 band k.p) or 0 (effective mass approximation)␣
→˓(ListOfValues: 1,0)

4.7. Quantum Wires 239

nextnano++ Documentation, Release 1.25.13

Figure 4.7.3.3 shows the probability density (𝜓2) for the hole ground state. For the results shown on the left we
used the following Luttinger parameters for GaAs: 𝛾1 = 6.98, 𝛾2 = 2.06, 𝛾3 = 2.93, which corresponds to:
𝐿 = −16.220, 𝑀 = −3.860, 𝑁 = −17.580. For the results shown on the right, we modified the Luttinger
parameters for GaAs to 𝛾1 = 6.98, 𝛾2 = 2.06 = 𝛾3, which corresponds to 𝐿 = −16.220, 𝑀 = −3.860,
𝑁 = −12.36. Choosing 𝛾2 = 𝛾3 corresponds to an isotropic effective mass.

Figure 4.7.3.3: Probability density (𝜓2) for the hole ground state using anisotropic and isotropic k.p parameters.

Eigenenergies

The calculated eigenvalues for the ground states are:

effective-mass 6-band k.p
electron energy (eV) hh energy (eV) lh energy (eV) hole state energy (eV)
3.006 1.455 1.437 1.455

Including anisotropic effects in the effective mass model

The effective mass 𝑚* depends now on the chosen direction, which is described by a tensor. The components of
the effective mass tensor, which are mass along the crystal coordinate axes, can be derived from the 6-band k.p
parameters (or Luttinger parameters). Using the Luttinger parameters 𝛾1, 𝛾2 and 𝛾3, the effective masses for heavy
and light holes along [110] and [010] in units of 𝑚0 can be calculated as follows:

𝑚*
hh,[100] =

1

𝛾1 − 2𝛾2
,

𝑚*
hh,[011] =

1

𝛾1 − 0.5 · (𝛾2 + 3𝛾3)
,

𝑚*
lh,[100] =

1

𝛾1 + 2𝛾2
,

𝑚*
lh,[011] =

1

𝛾1 + 0.5 · (𝛾2 + 3𝛾3)
.

The Luttinger parameters for GaAs are given by: 𝛾1 = 6.98, 𝛾2 = 2.06 and 𝛾3 = 2.93. The relations between the
Luttinger parameters and the isotropic effective masses are

𝑚*
hh,isotropic =

1

𝛾1 − 0.8𝛾2 − 1.2𝛾3
,

𝑚*
lh,isotropic =

1

𝛾1 + 0.8𝛾2 + 1.2𝛾3
.

Usually the database entries for the effective masses assume spherical symmetry for the holes and are specified
with respect to the crystal coordinate system. Their default values (isotropic) and the values which were derived
from the Luttinger parameters are given in this table:

240 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

heavy hole (GaAs) light hole (GaAs)
along [100] direction 0.350 0.090
along [011] direction 0.643 0.081
isotropic 0.551 0.082
nextnano++ database 0.500 0.068

In this tutorial, however, we calculated the effective masses for different directions and, therefore, we do not have
spherical symmetry anymore. Thus, we have to rotate the new eigenvalues of the effective mass tensors that are
given in the 𝑥 = [100], 𝑦 = [011], 𝑧 = [0-11] simulation coordinate system into the crystal coordinate system where
𝑥cr = [100], 𝑦cr = [010], 𝑧cr = [001]. First, we have to overwrite the default entries in the database so that they
contain the eigenvalues of the effective mass tensors in the simulation system:

valence-band-masses = 0.350d0 0.643d0 0.643d0 ! eigenvalues of the heavy hole␣
→˓effective mass tensor [100] [011] [0-11]

0.090d0 0.081d0 0.081d0 ! eigenvalues of the light ␣
→˓hole effective mass tensor [100] [011] [0-11]

To project these eigenvalues onto the crystal coordinate system we need to know the principal axis system which
these eigenvalues refer to (The normalization of these vectors will be done internally by the program):

principal-axes-vb-masses = 1d0 0d0 0d0 ! heavy hole [100]
0d0 1d0 1d0 ! [011]
0d0 -1d0 1d0 ! [0-11]

1d0 0d0 0d0 ! light hole [100]
0d0 1d0 1d0 ! [011]
0d0 -1d0 1d0 ! [0-11]

Figure 4.7.3.4 and Figure 4.7.3.5 show the probability densities (𝜓2) of the ground states of the confined electron,
heavy and light hole eigenstates of the quantum wire. The lowest hole state is the heavy hole state and the second
hole state is the light hole state. No further hole states are confined. Also, in the conduction band only the ground
state is confined. One can clearly see that each ground state wave function is localized at the T-shaped intersection
and shows the T-shaped symmetry. Due to the anisotropy of the heavy hole effective mass, the heavy hole wave
function prefers to extend along the [100] direction and hardly penetrates into the quantum well that is aligned
along the [011] direction. The heavy hole mass along the [100] direction is only half the value as along the [011]
direction. The light hole anisotropy is only minor and thus its symmetry resembles the one of the isotropic electron.

Figure 4.7.3.4: Probability amplitudes of the electron (e), heavy hole (hh) and light hole (lh) envelope functions
at an unstrained T-shaped intersection of two 10 nm wide GaAs quantum wells embedded by Al0.35Ga0.65As
barriers. The wave functions are normalized so that the maxima are equal to one.

These results are in very good qualitative agreement with the heavy hole and light hole wave functions calculated

4.7. Quantum Wires 241

nextnano++ Documentation, Release 1.25.13

Figure 4.7.3.5: Contour diagram of the probability amplitudes of the electron (e), heavy hole (hh) and light hole
(lh) eigenfunctions (same figures as Figure 4.7.3.4, but this time viewed from the top). The wave functions are
normalized so that the maxima are equal to one.

within the 6-band k.p calculation This demonstrates the impact of an isotropic (for electrons and light holes) or
anisotropic (for heavy hole) effective mass on the obtained wavefunctions.

Acknowledgement:
We would like to thank Robert Schuster from the University of Regensburg for providing exper-
imental data and some figures for this tutorial.

This tutorial also exists for nextnano3.

Last update: 27/05/2025

4.7.4 T-shaped quantum wire grown by cleaved edge overgrowth (CEO): wave
functions and strain

ò Note

The tutorial is related to the PhD Thesis of R. Schuster [SchusterPhD2005]

• Header

• Calculation of the strain tensor

• Calculation of the piezoelectric charge density

• Calculation of the conduction and valence band edges

• Electron and heavy hole wave functions

Header

Input files:
• examples\quantum_wires\T-QWR_zb_III-V_Schuster_PhD_2005_1D_nnp_strained-QW.in

• examples\quantum_wires\T-QWR_zb_III-V_Schuster_PhD_2005_2D_nnp_strained.in

Scope:
Strained quantum wires including a discussion of the strain calculation and the strain-induced piezoelectric
fields (Poisson equation).

Output files:
• \Strain\hydrostatic_strain.fld (hydrostatic strain)

242 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• \Strain\strain_*.fld (strain components)

• \Strain\density_piezoelectric_charges.fld (piezoelectric charge density)

• \bias_xxxxx\bandedges.fld (bandedge profiles)

• \bias_xxxxx\Quantum\probabilities_quantum_region_*.fld (wavefunctions)

Similar to the 1D confinement in a quantum well, it is possible to confine electrons or holes in two dimensions, i.e.
in a quantum wire. In this tutorial we consider a quantum wire, which is formed at the T-shaped intersection of a
10 nm GaAs type-I quantum well and a 10 nm In0.16Al0.84As barrier. The T-shaped intersection is surrounded
by Al0.3Ga0.7As which acts as a barrier to GaAs. The In0.16Al0.84As barrier has a larger lattice constant than
Al0.3Ga0.7As and is thus strained. The strain affects the GaAs well and thus produces a local decrease (increase)
in the conduction (valence) band edge energy and thus confines electrons (holes) at the T-shaped intersection. The
electrons and holes are free to move along the 𝑧 direction only, thus, the wire is oriented along the [0-11] direction.
Such a heterostructure can be manufactured by growing the layers along two different growth directions with the
CEO (cleaved edge overgrowth) technique. Figure 4.7.4.1 shows the sample layout.

Figure 4.7.4.1: In (a) the two-dimensional conduction band edges of the T-shaped quantum wire without consid-
ering strain effects is shown. If one inverts the energy arrow then the left picture corresponds to the valence band
edge. The wave function is indicated at the T-shaped intersection in yellow. In (b) a 60 nm x 60 nm extract of the
schematic layout including the dimensions, the material composition and the orientation of the wire with respect
to the crystal coordinate system is shown.

It is useful to compare the structure above with the T-shaped quantum wire tutorial, which consists of two GaAs
quantum wells rather than one GaAs well and one In0.16Al0.84As barrier (see Figure 4.7.4.2), in order to understand
the fundamental difference between these two layouts. As we see in from Figure 4.7.4.2 the wave function can ex-
tend into a larger volume as compared to the quantum well and thus reduces its energy. So quantum mechanics tells
us that the ground state can be found at this intersection and electrons are only allowed to move one-dimensionally
along the z direction. For Figure 4.7.4.1 however this is not true. The confinement only occurs if one takes into
account the strain which decreases (increases) the conduction (valence) band edge energy in GaAs at the T-shaped
intersection.

Calculation of the strain tensor

First, we have to calculate the strain tensor by minimizing the elastic energy within continuum elasticity theory.
Along the translationally invariant 𝑧 direction the lattice commensurability constraint forced the In0.16Al0.84As
layer to adopt the lattice constant of Al0.3Ga0.7As. The model for strain calculations can be specified inside the
strain{ } group, where we choose the model: minimized_strain{ }.

In Figure 4.7.4.3 the calculated hydrostatic strain 𝜖hyd = 𝜖𝑥𝑥 + 𝜖𝑦𝑦 + 𝜖𝑧𝑧 (trace of the strain tensor) inside the
structure is shown. The hydrostatic strain has its maximum at the intersection, where it leads to a reduced band
gap, which is the requirement for confining the charge carriers. Thus, the quantum wire is formed in the GaAs
quantum well due to the tensile strain field induced by the In0.16Al0.84As layer.

Note that in a one-dimensional example, which is provided in the input file T-QWR_zb_III-
V_Schuster_PhD_2005_1D_nnp_strained-QW.in, the strain tensor components of a In0.16Al0.84As layer

4.7. Quantum Wires 243

nextnano++ Documentation, Release 1.25.13

Figure 4.7.4.2: In (a) the two-dimensional conduction band edges of the T-shaped quantum wire (from the T-shaped
quantum wire tutorial) without considering strain effects is shown. The wave function is indicated at the T-shaped
intersection in yellow. In (b) a 60 nm x 60 nm extract of the schematic layout including the dimensions, the material
composition and the orientation of the wire with respect to the crystal coordinate system is shown.

Figure 4.7.4.3: In (a) the hydrostatic strain 𝜖hyd inside the T-shaped quantum wire structure is shown. In (b) a
cross-section of 𝜖hyd along 𝑥 at 𝑦 = 0 is shown.

244 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

that is strained pseudomorphically with respect to an Al0.30Ga0.7As substrate are the following:

𝜖𝑥𝑥 = 10.9 · 10−3

𝜖𝑦𝑦 = 𝜖𝑧𝑧 = −12.4 · 10−3

𝜖𝑥𝑦 = 𝜖𝑥𝑧 = 𝜖𝑦𝑧 = 0

𝜖hyd = Tr(𝜖𝑖𝑗) = −13.9 · 10−3

Here, the growth direction is along the 𝑥 direction, i.e. along [100]. The temperature is assumed to be 40K and
the lattice constants are assumed to be temperature dependent (i.e. we use the 40K lattice constants).

In Figure 4.7.4.4 the individual strain tensor components (𝜖𝑥𝑥, 𝜖𝑦𝑦 , 𝜖𝑥𝑦) with respect to the simulation coordinate
system are presented. In our 2D simulation, the sample layout is homogeneous along the 𝑧 direction, i.e. the lattice
constant of In0.16Al0.84As is forced to have the same lattice constant as Al0.3Ga0.7As along the 𝑧 direction. Then
the strain tensor component must be 𝜖𝑧𝑧 = −12.4 · 10−3, in agreement with our 1D example, i.e. In0.16Al0.84As,
which has a larger lattice constant than Al0.3Ga0.7As is strained compressively along the 𝑧 direction. Similar to
the 1D case, it is also expected that the 𝜖𝑦𝑦 component inside the In0.16Al0.84As barrier has a similar value to 𝜖𝑧𝑧 ,
which is clearly the case. The dark blue area in Figure 4.7.4.4 (c) thus has a value around −12 ·10−3. However, this
value deviates from the ideal 1D value at the T-shaped intersection as expected (see also Figure 4.7.4.5). The same
applies to the value of 𝜖𝑥𝑥, which is similar to the 1D value inside the In0.16Al0.84As barrier: 𝜖𝑥𝑥 = 11 · 10−3.
The strain tensor components 𝜖𝑥𝑧 and 𝜖𝑦𝑧 with respect to the simulation coordinate system are equal to zero as in
our 1D example.

Figure 4.7.4.4: In (a), (c), (e) the strain components 𝜖𝑥𝑥, 𝜖𝑦𝑦 , 𝜖𝑥𝑦 are shown. In (b), (d), (f) a cut through the
structure along 𝑥 at 𝑦 = 0 is shown.

The important difference with respect to the 1D case is the existence of a non-vanishing strain tensor component
𝜖𝑥𝑦 which brakes the symmetry of the sample layout. Usually, the 𝜖𝑥𝑦 component is attributed to be responsible
for piezoelectricity. However, note that in the discussion before all strain tensor components refer to the simulation
coordinate system (and not to the crystal coordinate system). So we have to plot the off-diagonal strain tensor

4.7. Quantum Wires 245

nextnano++ Documentation, Release 1.25.13

Figure 4.7.4.5: Strain tensor component 𝜖𝑥𝑥 along 𝑦 direction at position 𝑥 = 0.

components that are expressed with respect the crystal coordinate system orientation and then check if the off-
diagonal components are non-zero, which is clearly the case as we can see from Figure 4.7.4.6.

Figure 4.7.4.6: Strain tensor components 𝜖�̃��̃�, 𝜖𝑦𝑦 , 𝜖�̃�𝑦 = 𝜖�̃�𝑧 and 𝜖𝑦𝑧 with respect to the crystal coordinate system.
The rotation with respect to the simulation system is a rotation of 45 degrees around the 𝑥 axis, i.e. the [100] axis.

By comparing Figure 4.7.4.4 (a) and Figure 4.7.4.6 (a) we observe that 𝜖�̃��̃� = 𝜖𝑥𝑥, because the 𝑥 coordinate axes
coincide. Symmetry arguments show that the following holds:

𝜖𝑦𝑦 =
1

2
(𝜖𝑦𝑦 + 𝜖𝑧𝑧)

𝜖�̃�𝑦 = 𝜖�̃�𝑧 =
1√
2
𝜖𝑥𝑦

246 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Calculation of the piezoelectric charge density

The off-diagonal strain tensor components 𝜖�̃�𝑦 , 𝜖�̃�𝑧 and 𝜖𝑦𝑧 are responsible for the piezoelectric polarizationPpiezo,
given by

Ppiezo = 𝑒14

⎛⎝2𝜖𝑦𝑧
2𝜖�̃�𝑧
2𝜖�̃�𝑦

⎞⎠ ,

where 𝑒14 is the piezoelectric constant in units of [C/m2]. Once having determined the piezoelectric polarization,
one is able to compute the piezoelectric charge density:

𝜌piezo(𝑥, 𝑦) = −divPpiezo(𝑥, 𝑦).

In Figure 4.7.4.7 the piezo electric charge density inside the quantum wire structure is shown. The strain-induced
piezoelectric fields are then obtained from 𝜌piezo by solving Poisson’s equation.

Figure 4.7.4.7: Piezoelectric charge density 𝜌piezo(𝑥, 𝑦).

Calculation of the conduction and valence band edges

In Figure 4.7.4.8 the conduction and valence band edges of the structure are shown. The conduction and valence
band edges were determined by taking into account the shifts and splittings due to the relevant deformation poten-
tials as well as the changes due to the piezoelectric fields. We observe that the electron feels a conduction band
minimum which is located left with respect to the T-shaped intersection. For the valance bands, we see that the
valence band maximum for the heavy hole is not at the same position as the valence band maximum for the light
hole.

Electron and heavy hole wave functions

Figure 4.7.4.9 shows the square of the electron (e) and heavy hole (hh) wave functions (i.e. 𝜓2). They were
calculated within the effective-mass approximation (single-band).

In Figure 4.7.4.9 (a) the piezoelectric effect was not included. As one can clearly see in Figure 4.7.4.9 (b), the
piezoelectric effect destroys the symmetry of the sample layout. The piezoelectric field results from the 𝜖𝑥𝑦 strain
tensor component which is also not symmetric with respect to the T-shaped geometry.

Acknowledgement:
We would like to thank Robert Schuster from the University of Regensburg for providing exper-
imental data and some figures for this tutorial.

Last update: 13/09/2024

4.7. Quantum Wires 247

nextnano++ Documentation, Release 1.25.13

Figure 4.7.4.8: In (a), (c), (e) a 2D plot of the conduction, heavy hole and light hole band edge energies are shown.
In (b), (d), (f) a cut through the conduction, heavy hole and light hole band edge energies at 𝑦 = 0.

Figure 4.7.4.9: In (a) the contour diagram of the square of the electron (e) and heavy hole (hh) wave functions
(i.e. 𝜓2) for the case where strain is included in the simulations, but piezoelectricity is not. Subplot (b) shows the
same results as in (a), but this time including the piezoelectric effect. Note that in the plot the wave functions are
normalized so that the maximum equals one, respectively.

248 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.8 Quantum Dots

4.8.1 Energy levels in idealistic 3D cubic and cuboidal shaped quantum dots
Input files:

• 3D_wave_functions_cubic_QD_nnp.in

• 3D_wave_functions_cuboid_QD_nnp.in

• 3D_wave_functions_cubic_QD_nn3.in

• 3D_wave_functions_cuboid_QD_nn3.in

Scope:
The energy levels and the wave functions of a cubic and cuboidal quantum dot

Output files:
• bias_00000\Quantum\energy_spectrum_quantum_region_Gamma.dat

• bias_00000\Quantum\probability_quantum_region_Gamma_xxxx.fld

Energy levels in an idealistic 3D cubic quantum dot

Input file: 3D_wave_functions_cubic_QD_nnp.in

Here, we want to calculate the energy levels and the wave functions of a cubic quantum dot with lengths 𝐿𝑥 =
𝐿𝑦 = 𝐿𝑧 = 10 nm. We assume that the barriers at the QD boundaries are infinite. This way we can compare our
numerical calculations to analytical results. The potential inside the QD is assumed to be 0 eV. As effective mass
we take the electron effective mass of 𝐼𝑛𝐴𝑠, i.e. 𝑚𝑒 = 0.026 𝑚0.

A discussion of the analytical solution of the 3D Schrödinger equation of a particle in a box (i.e. quantum dot)
with infinite barriers can be found in e.g. [MitinKochelapStroscio1999]. The solution of the Schrödinger equation
leads to the following eigenvalues:

𝐸𝑛1,𝑛2,𝑛3 =
ℏ2𝜋2

2𝑚𝑒

(︂
𝑛21
𝐿2
𝑥

+
𝑛22
𝐿2
𝑦

+
𝑛23
𝐿2
𝑧

)︂
= 1.4462697 · 10−17 eVm2 ·

(︂
𝑛21
𝐿2
𝑥

+
𝑛22
𝐿2
𝑦

+
𝑛23
𝐿2
𝑧

)︂
= 0.1446269 eV · (𝑛21 + 𝑛22 + 𝑛23)

(4.8.1.1)

where

• 𝐸𝑛1,𝑛2,𝑛3 is the total electron energy,

• 𝑛1, 𝑛2 and 𝑛3 are three discrete quantum numbers(because we have three directions of quantization) and

• 𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 are the lengths along the 𝑥, 𝑦 and 𝑧 directions.

In the last line of eq. (4.8.1.1) we used the fact that 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 and factored out 1/(10 nm)2.

Generally, the energy levels are not degenerate, i.e. all energies are different. However, some energy levels with
different quantum numbers coincide, if the lengths along two or three directions are identical or if their ratios are
integers. In our cubic QD case, all three lengths are identical. Consequently, we expect the following degeneracies:

• 𝐸111 = 0.43388 eV (ground state)

• 𝐸112 = 𝐸121 = 𝐸211 = 0.86776 eV = 2𝐸111

• 𝐸122 = 𝐸212 = 𝐸221 = 1.30164 eV = 3𝐸111

• 𝐸113 = 𝐸131 = 𝐸311 = 1.59090 eV = 11/3𝐸111

• 𝐸222 = 1.73552 eV = 4𝐸111

• 𝐸123 = 𝐸132 = 𝐸213 = 𝐸231 = 𝐸312 = 𝐸321 = 2.02478 eV = 14/3𝐸111

• 𝐸333 = 3.90493 eV = 17/3𝐸111

4.8. Quantum Dots 249

nextnano++ Documentation, Release 1.25.13

The nextnano++ numerical results for a 10 nm cubic quantum dot with 0.50 nm grid spacing (The grid spacing is
rather coarse but has the advantage that the calculation takes only a few seconds.):

num_ev: eigenvalue [eV]:
(0.50 nm grid)

1 0.432989 = E111
2 0.862425 (three-fold degenerate) E112/E121/E211
3 0.862425 (three-fold degenerate) E112/E121/E211
4 0.862425 (three-fold degenerate) E112/E121/E211
5 1.291860 (three-fold degenerate) E122/E212/E221
6 1.291860 (three-fold degenerate) E122/E212/E221
7 1.291860 (three-fold degenerate) E122/E212/E221
8 1.566392 (three-fold degenerate) E113/E131/E311
9 1.566392 (three-fold degenerate) E113/E131/E311
10 1.566392 (three-fold degenerate) E113/E131/E311
11 1.721296 = E222
12 1.995828 (six-fold degenerate) E123/E132/E213/E231/E312/E321
13 1.995828 (six-fold degenerate) E123/E132/E213/E231/E312/E321
14 1.995828 (six-fold degenerate) E123/E132/E213/E231/E312/E321
15 1.995828 (six-fold degenerate) E123/E132/E213/E231/E312/E321
16 1.995828 (six-fold degenerate) E123/E132/E213/E231/E312/E321
17 1.995828 (six-fold degenerate) E123/E132/E213/E231/E312/E321
18 2.425263 (three-fold degenerate) E223/E232/E322
19 2.425263 (three-fold degenerate) E223/E232/E322
20 2.425263 (three-fold degenerate) E223/E232/E322
21 2.527557 (three-fold degenerate) E114/E141/E411
22 2.527557 (three-fold degenerate) E114/E141/E411
23 2.527557 (three-fold degenerate) E114/E141/E411
24 2.699795 (three-fold degenerate) E233/E323/E332
25 2.699795 (three-fold degenerate) E233/E323/E332
26 2.699795 (three-fold degenerate) E233/E323/E332
27 2.956993 (six-fold degenerate) E124/E142/E214/E241/E412/E421
28 2.956993 (six-fold degenerate) E124/E142/E214/E241/E412/E421
29 2.956993 (six-fold degenerate) E124/E142/E214/E241/E412/E421
30 2.956993 (six-fold degenerate) E124/E142/E214/E241/E412/E421
31 2.956993 (six-fold degenerate) E124/E142/E214/E241/E412/E421
32 2.956993 (six-fold degenerate) E124/E142/E214/E241/E412/E421
...
48 3.833198 = E333
...

Figure 4.8.1.1 show the isosurfaces of the electron wave function (Ψ2) of the ground state and the 11th state,
respectively. Both states are nondegenerate.

The 2D slices of the probability density of the states from the figure above is shown in the Figure 4.8.1.2.

Intraband (= intersubband) transitions

quantum{
region{

...
momentum_matrix_elements{

direction = [0,0,1] # along z direction
Gamma{} # Calculates the matrix element < psi_

→˓f* | p_z | psi_i > for electron states at Gamma.
output_oscillator_strengths = yes # Output oscillator strength f_fi

(continues on next page)

250 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.1.1: Isosurfaces of the electron wave function (Ψ2) of a 10 nm cubic quantum dot with infinite barriers
for the ground state𝐸111 (left) and the 11th eigenstate𝐸222 (right). The isosurface is set at the value of 0.005. The
green shadow plane is a slice at (left) and (right).

Figure 4.8.1.2: The probability density of the ground state 𝐸111 at 𝑥 = 0𝑛𝑚 (left) and the 11th eigenstate 𝐸222 at
𝑥 = 2.5𝑛𝑚 (right) of a 10 nm cubic quantum dot with infinite barriers.

4.8. Quantum Dots 251

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
}

}

In this cubic QD with infinite barriers, optical intraband transitions are only allowed between states with odd
difference quantum numbers along the same axes:

𝐸111 ⇔ 𝐸112/ 𝐸121/ 𝐸211 1 ⇔ 2 / 3 / 4
𝐸111 ⇔ 𝐸114/ 𝐸141/ 𝐸411 1 ⇔ 21 / 22 / 23
𝐸211 ⇔ 𝐸311 2 ⇔ 8
𝐸121 ⇔ 𝐸131 3 ⇔ 9
𝐸112 ⇔ 𝐸113 4 ⇔ 10

The following transitions are forbidden:

𝐸111 ⇔ 𝐸113/ 𝐸131/ 𝐸311 1 ⇔ 8 / 9 / 10
𝐸211 ⇔ 𝐸112/ 𝐸121 2 ⇔ 3 / 4
𝐸121 ⇔ 𝐸211/ 𝐸112 3 ⇔ 2 / 4
𝐸112 ⇔ 𝐸211/ 𝐸121 4 ⇔ 2 / 4

Energy levels in an idealistic 3D cuboidal shaped quantum dot with 𝐿𝑥 = 𝐿𝑦 ̸= 𝐿𝑧

Input file: 3D_wave_functions_cuboid_QD_nnp.in

This time we use a similar quantum dot as above, but the lengths are now 𝐿𝑥 = 𝐿𝑦 = 10 nm and 𝐿𝑧 = 5 nm.
Therefore, the degeneracies of the eigenenergies are different. We expect the following:

𝐸𝑛1,𝑛2,𝑛3
=

ℏ2𝜋2

2𝑚𝑒

(︂
𝑛21
𝐿2
𝑥

+
𝑛22
𝐿2
𝑦

+
𝑛23
𝐿2
𝑧

)︂
= 1.4462697 · 10−17 eVm2 ·

(︂
𝑛21
𝐿2
𝑥

+
𝑛22
𝐿2
𝑦

+
𝑛23
𝐿2
𝑧

)︂
= 0.1446269 eV · (𝑛21 + 𝑛22) + 0.5785079 eV · 𝑛23

(4.8.1.2)

Generally, the energy levels are not degenerate, i.e. all energies are different. However, some energy levels with
different quantum numbers coincide, if the lengths along two or three directions are identical or if their ratios are
integers. In our cubic QD case, all three lengths are identical. Consequently, we expect the following degeneracies:

• 𝐸111 = 0.86776 eV (ground state)

• 𝐸121 = 𝐸211 = 1.301642 eV

• 𝐸221 = 1.73552 eV = 2𝐸111 (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have the value 2.)

• 𝐸131 = 𝐸311 = 2.02478 eV

• 𝐸231 = 𝐸321 = 2.45866 eV

• 𝐸112 = 2.60329 eV = 2𝐸121 (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have the value 2.)

• 𝐸122 = 𝐸212 = 𝐸141 = 𝐸411 = 3.03717 eV (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have the
value 2.)

• 𝐸331 = 3.18180 eV

• 𝐸222 = 2𝐸221 = 𝐸241 = 𝐸421 = 3.47105 eV (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have
the value 2.)

• 𝐸132 = 𝐸312 = 3.76030 eV

• 𝐸341 = 𝐸431 = 𝐸232 = 𝐸322 = 4.19418 eV (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have the
value 2.)

252 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• 𝐸151 = 𝐸511 = 4.33881 eV

• 𝐸142 = 𝐸412 = 𝐸251 = 𝐸521 = 4.77269 eV (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have the
value 2.)

• 𝐸332 = 4.91731 eV

• 𝐸441 = 𝐸242 = 𝐸422 = 5.20657 eV (This is a coincidence because 𝐿𝑥,𝑦 / 𝐿𝑧 are integers and have the value
2.)

• 𝐸113 = 5.49582 eV

• 𝐸123 = 5.92971 eV

The nextnano++ numerical results for a 10 nm cubic quantum dot with 0.50 nm grid spacing (left column) and
0.25 nm grid spacing (right column). (The grid spacing is rather coarse (for 0.50 nm) but has the advantage that
the calculation takes only a few seconds.)

num_ev: eigenvalue [eV]:
(0.50 nm grid) (0.25 nm grid)

1 0.862425 0.866424 = E111
2 1.291860 1.299191 (two-fold degenerate) = E121/E211
3 1.291860 1.299191 (two-fold degenerate) = E121/E211
4 1.721296 1.731958 = E221
5 1.995828 2.017504 (two-fold degenerate) = E131/E311
6 1.995828 2.017504 (two-fold degenerate) = E131/E311
7 2.425263 2.450270 (two-fold degenerate) = E231/E321
8 2.425263 2.450270 (two-fold degenerate) = E231/E321
9 2.527557 2.584167 = E112
10 2.956993 3.016933 (four-fold degenerate) = E122/E212/E141/
→˓E411
11 2.956993 3.016933 (four-fold degenerate) = E122/E212/E141/
→˓E411
12 2.956993 3.016933 (four-fold degenerate) = E122/E212/E141/
→˓E411
13 2.956993 3.016933 (four-fold degenerate) = E122/E212/E141/
→˓E411
14 3.129231 3.168583 = E331
15 3.386428 3.449700 (three-fold degenerate) = E222/E241/E421
16 3.386428 3.449700 (three-fold degenerate) = E222/E241/E421
17 3.386428 3.449700 (three-fold degenerate) = E222/E241/E421
18 3.660960 3.735246 (two-fold degenerate) = E132/E312
19 3.660960 3.735246 (two-fold degenerate) = E132/E312
20 4.090396 4.168013 (four-fold degenerate) = E341/E431/E232/
→˓E322
21 4.090396 4.168013 (four-fold degenerate) = E341/E431/E232/
→˓E322
22 4.090396 4.168013 (four-fold degenerate) = E341/E431/E232/
→˓E322
23 4.090396 4.168013 (four-fold degenerate) = E341/E431/E232/
→˓E322
24 4.151688 4.291319 (two-fold degenerate) = E151/E511
25 4.151688 4.291319 (two-fold degenerate) = E151/E511
26 4.581124 4.724086 (four-fold degenerate in theory) = E142/
→˓E412/E251/E521
27 4.581124 4.724086 (four-fold degenerate in theory) = E142/
→˓E412/E251/E521
28 4.622125 4.734676 (four-fold degenerate in theory) = E142/
→˓E412/E251/E521
29 4.622125 4.734676 (four-fold degenerate in theory) = E142/
→˓E412/E251/E521

(continues on next page)

4.8. Quantum Dots 253

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

30 4.794363 4.886326 = E332
...
34 5.121061 5.400036 = E441

The Figure 4.8.1.3 show the isosurfaces of the electron wave function (𝜓2) of the 1st, 4th, 9th and 14th, respectively.
All these states are nondegenerate.

Figure 4.8.1.3: Isosurfaces of the electron wave function (Ψ2) of a 10 nm by 10 nm by 5 nm cuboidal shaped
quantum dot with infinite barriers for the state 𝐸111, 𝐸221, 𝐸112, 𝐸331.

Last update: 19/06/2025

4.8.2 Hole energy levels of an “artificial atom” - Spherical Si Quantum Dot (6-
band k.p)

Input files:
• 3DsphericSiQD_d5nm_6bandkp_nnp.in

Scope:
In this tutorial, we calculate the energy spectrum of a spherical Si quantum dot of radius 2.5 nm.

Output Files:
• bias_00000\Quantum\energy_spectrum_qr_6band_kp6_00000.dat

Introduction

We assume that the barriers at the QD boundaries are infinite. The potential inside the QD is assumed to be 0 eV.
We use a grid resolution of 0.25 nm. We solve the 6-band k.p Schrödinger equation for the hole eigenstates.

The following 6-band k.p parameters are used:

254 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.1.4: The 2D slices of probability density of the 𝐸111, 𝐸221, 𝐸112, 𝐸331 states of a 10 nm by 10 nm by
5 nm cuboidal shaped quantum dot with infinite barriers.

kp_6_bands{
L = -6.8 # [Burdov] V.A. Burdov, JETP 94, 411 (2002)
M = -4.43 # [Burdov]
N = -8.61 # [Burdov]

}

These L, M, N parameters correspond to the following Luttinger parameters:

• 𝛾1 = 4.22

• 𝛾2 = 0.395

• 𝛾3‘ = 1.435

Results

Figure 4.8.2.1 shows the the isosurfaces of the probability density of the first six hole eigenstates of a spherical Si
quantum dot.

Figure 4.8.2.2 shows the hole eigenenergy spectrum of the Si QD (diameter = 5 nm) calculated with a 6-band k.p
Hamiltonian.

For comparison, we also display the energy spectrum where we assumed zero spin-orbit splitting energy. In this
case there is a six-fold symmetry. Spin-orbit splitting reduces this degeneracy to 4 and 2. In general, each state is
two-fold degenerate due to spin.

ò Note

The nextnano++ tool only allows a cuboidal shaped quantum region, thus we can’t employ a spherical quantum
region that would reduce the dimension of the 6-band k.p Hamiltonian matrix and thus the overall execution
time.

Following the paper of [Burdov2002], one can calculate the ground state energy for this particular system from the
L and M parameters:

𝐸1 = − ℏ2𝜋2

2𝑚ℎ𝑅2
= −0.314𝑒𝑉

using 𝑚ℎ = 0.192 𝑚0 as [Burdov2002], where he uses incorrect k.p parameters: In his definition L must be -5.8

4.8. Quantum Dots 255

nextnano++ Documentation, Release 1.25.13

Figure 4.8.2.1: Isosurfaces of the first six hole eigenstates in a spherical Si QD calculated with a 6-band k.p
Hamiltonian.

Figure 4.8.2.2: Energy spectrum of the 6-band k.p hole states in a spherical Si QD.

256 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

and M = -3.43.

𝐸1 = − ℏ2𝜋2

2𝑚ℎ𝑅2
= −0.254𝑒𝑉

using 𝑚ℎ = 0.237 𝑚0 as [BelyakovBurdov2008]. The latter is in much better agreement to our calculations. 𝑚ℎ

is given by:

𝑚ℎ =
3𝑚0

𝐿+ 2𝑀
=

3𝑚0

−6.8 + 2 · (−4.43)
= −0.192𝑚0

in [Burdov2002] and

𝑚ℎ =
3𝑚0

(𝐿+ 1) + 2(𝑀 + 1)
=

3𝑚0

−5.8 + 2 * (−3.43)
= −0.237𝑚0

in [BelyakovBurdov2008]. The latter definition is consistent to our implementation of the k.p Hamiltonian. The
discrepancy of these equations arises because there are two different definitions of the L, M parameters available
in the literature.

Comparison of nextnano3 and nextnano++

Figure 4.8.2.3 compares the nextnano3 results with the nextnano++ results. The results of both simulators are in
excellent agreement.

Figure 4.8.2.3: Energy spectrum of the 6-band k.p hole states in a spherical Si QD (Comparison nextnano++ and
nextnano3).

Additional comment for experts

For this particular geometry, the eigenvalues are highly degenerate, not only due to spin, but also due to geometry.
This might cause problems for certain eigenvalue solvers as they might miss some of these degenerate eigenvalues.
So the tool should be used with care. In our case, the ‘chearn’ eigenvalue solver (Arnoldi method that uses Cheby-
shev polynomials as preconditioner) missed some degenerate eigenvalues. So probably one has to adjust some
eigenvalue solver parameters to increase the accuracy. For this reason it is of great advantage if any numerical
software has redundancy in terms of several eigensolvers where one can choose from in order to check results for
consistency and accuracy, as well as performance.

This tutorial also exists for nextnano3.

Last update: 2025/06/25

4.8. Quantum Dots 257

nextnano++ Documentation, Release 1.25.13

4.8.3 Quantum Dot Molecule
In this tutorial, we study two coupled quantum dots (QDs), i.e. two “artificial atoms” that form an “artificial
molecule”. The two QDs are asymmetric and differ with respect to their height (4 nm and 6 nm).

With no electric field, the groundstates of both elcectron and hole are localized at the larger QD. By applying
the electric field and increasing its strength, the hole groundstate becomes bonding state and then localizes at the
smaller QD. At the same time the electron groundstate is still localized at the larger QD because of the weaker
coupling between the two QDs due to the heigher barrier height. We will see this leads to the change from an
direct exciton to indirect exciton.

The relevant input files are as followings:

• 3DQD_molecule_cuboid_asymmetric_nn3.in / *_nnp.in

Some of the material parameters that are used in this tutorial are based on the paper of

M. Grundmann, D. Bimberg
Formation of quantum dots in twofold cleaved edge overgrowth
Phys. Rev. B 55 (7), 4054 (1997).

Simulation

This simulation has the following features:

• We keep things simple by using cuboidal shaped GaAs QDs surrounded by Al0.35Ga0.65As barriers, i.e. we
neglect strain and piezoelectric effects which is reasonable as the two materials GaAs and Al0.35Ga0.65As
have pretty similar lattice constants.

• We also neglect the wetting layers and excitonic effects.

• In order to keep the CPU time to a minimum, we do not use the k.p approximation, i.e. we use for both elec-
trons and the heavy hole a single-band effective mass approximation for the Schrödinger equation (parabolic
and isotropic effective mass tensor). Nevertheless, this is sufficient to show some basic quantum physical
effects of this QD molecule.

• We use different electron and hole masses in the barrier and well material, respectively.

• The left QD has the dimensions 10 nm x 10 nm x 4 nm (smaller dot). The right QD has the dimensions 10
nm x 10 nm x 6 nm (larger dot).

• The two QDs are separated by a 2 nm Al0.35Ga0.65As barrier.

• The grid resolution is 0.5 nm (rectangular tensor grid). This leads to a 3D Schrödinger matrix of dimension
50,225.

• We apply Dirichlet boundary conditions to the Schrödinger equation, i.e. the wave functions are allowed to
penetrate the following distances into the barrier material (on each side): - along the x and y directions: 4
nm - along the z direction: 4.5 nm

• We vary the electric field along the growth direction (z axis) in steps of 2.5 kV/cm, i.e. from 0 kV/cm to 40
kV/cm. Note that the direction of the electric field is opposite to the z-direction.

Results

Electron and heavy hole ground states

The following figure show the square of the first electron (el1, top) and heavy hole (h1, bottom) wave functions
(isosurfaces at 𝜓2 = 0.0015) for different applied electric fields (0 kV/cm, 17.5 kV/cm, 40 kV/cm).

The following figure shows the electron (el1, top) and heavy hole (h1, bottom) probabilities from the 2D slices
defined in Figure 4.8.3.1 at different electric fields.

258 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.3.1: Probabilities of first electron and first heavy hole states at different electric fields. The green
wireframe shows the quantum region, the grey shaded areas are the quantum dots. The shown isosurfaces are at
𝜓2 = 0.0015. The shaded green slice is at 𝑦 = 0, i.e. through the center of the QDs.

Figure 4.8.3.2: 2D slices at 𝑦 = 0 of probabilities of first electron and first heavy hole states at different electric
fields.

4.8. Quantum Dots 259

nextnano++ Documentation, Release 1.25.13

At zero applied electric field, both electron and heavy hole are located in the larger dot and form a direct (bright)
exciton.

At an electric field of 17.5 kV/cm, the electron is still located in the larger dot on the right side, whereas the heavy
hole located in both wells (strong coupling). The heavy hole states at the field of 17.5 kV/cm are discussed further
below. The exciton that is formed is something in between a direct and an indirect exciton.

At an electric field of 40 kV/cm, the electron is still located in the larger dot on the right side, whereas the heavy
hole ground state is now located in the left QD. An indirect (dark) exciton is formed. The exciton is called dark
because the electron-hole overlap is much smaller and thus its oscillator strength (probability of optical transition)
is much weaker (see Figure 4.8.3.6 below on spatial electron-hole overlap integrals).

Electron and heavy hole energies

Figure 4.8.3.3 shows the electron (left) energies of the ground state (e1) and the first excited electron state (e2) of
the QD molecule, as well as the heavy hole (right) energies of the ground state (h1) and the excited hole states (h2-
h5) of the QD molecule. The electron ground state (e1) is always located in the larger QD (right side) whereas the
first excited electron state (e2) is always located in the smaller QD (left side). The third and the forth eigenstate (e3,
e4) are degenerate (not shown) because our QD molecule has a symmetry with respect to the x and y coordinates.
They are always located in the right QD. In contrast to the electrons, the hole coupling between the two QDs is
much stronger due to the smaller barrier height. At 17.5 kV/cm anticrossing between the states occur due to the
formation of bonding and antibonding states.

Figure 4.8.3.3: Electron (left) and heavy hole (right) energies

Bonding and antibonding heavy hole state at anticrossing point

The following figure shows the envelopes of the first six hole wave functions (isosurfaces 𝜓 = ±0.015) at an
electric field of 17.5 kV/cm.

The following figure shows hole envelopes from the 2D slices defined in Figure 4.8.3.4.

Electron-hole transition energies and overlap

To understand the strength of the optical transitions we have to evaluate the matrix elements of the envelope func-
tions, i.e. the spatial overlap integral over the electron and hole wave functions.

∫︁
𝜓*
𝑒𝑙,𝑖(𝑥)𝜓ℎ𝑙,𝑗𝑑𝑥

The following figure shows the five lowest electron-hole transition energies of the QD molecule as a function of
electric field (left) and the overlap between the first electron (el1) and the first and second heavy hole (h1 and h2)
wave functions (right).

260 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.3.4: Envelope of the first 6 hole states at electric field of 17.5 kV/cm (some are bonding and some are
antibonding states). The green wireframe shows the quantum region, the grey shaded areas are the quantum dots.
The shown isosurfaces are at 𝜓 = ±0.015. The shaded green slice is at 𝑦 = 0, i.e. through the center of the QDs.

Figure 4.8.3.5: 2D slices at 𝑦 = 0 of envelopes of the first 6 hole states at electric field of 17.5 kV/cm (some are
bonding and some are antibonding states).

4.8. Quantum Dots 261

nextnano++ Documentation, Release 1.25.13

For fields smaller than 17.5 kV/cm a direct (bright) exciton is the ground state (both electron and hole wave function
are located in the larger QD (right side), whereas for fields larger than 17.5 kV/cm an indirect (dark) exciton is the
ground state where the electron is located in the larger QD (right side) and the hole is located in the smaller QD
(left side). Therefore, the nature of the QD molecule ground state changes from direct to indirect.

Figure 4.8.3.6: Electron-hole transition energies (left) and overlap (right) as a function of electric field.

This tutorial also exists for nextnano3.

Last update: 2025/06/25

4.8.4 Energy levels in a pyramidal shaped InAs/GaAs quantum dot including
strain and piezoelectric fields

Input files:
• 3DInAsGaAsQDPyramid_PryorPRB1998_10nm_nnp.in

Scope:
In this tutorial we calculate the energy levels in a pyramidal shaped quantum dot. This tutorial is
based on [Pryor1998]. We use identical material parameters with respect to this paper in order
to make it possible to reproduce Pryor’s results. We note that meanwhile more realistic material
parameters are available and that for the simulation of realistic quantum dots the inclusion of the
wetting layer and an appropriate nonlinear 𝐼𝑛𝐺𝑎𝐴𝑠 alloy profile is recommended.

Output files:
• bias_00000\bandedges_1d_x.dat

• bias_00000\bandedges_1d_z.dat

• bias_00000\Quantum\probability_shift_dot_Gamma_0001.avs.fld

• bias_00000\Qunatum\energy_spectrum_dot_Gamma_00000.dat

• bias_00000\Qunatum\energy_spectrum_dot_HH_00000.dat

Introduction

We make the following simplifications in order to be consistent with [Pryor1998]:

• The wetting layer is omitted for simplicity.

• The QD material is purely 𝐼𝑛𝐴𝑠.

• The barrier material is purely 𝐺𝑎𝐴𝑠.

• The dielectric constant in the barrier material (𝐺𝑎𝐴𝑠) is the one for 𝐼𝑛𝐴𝑠.

• Periodic boundary conditions are assumed in all three directions for the strain equation.

• The QD shape is a pyramid with a square base (base length = 10 nm) and a height of 5 nm.

• The four side walls of the pyramid are oriented in the (011), (0-11), (101) and (-101) planes, respectively.

262 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• The whole simulation area has the dimensions 44 nm x 44 nm x 40 nm.

Figure 4.8.4.1 shows the structure of the simulation region with the pyramidal shaped quantum dot in the center.

Figure 4.8.4.1: The material structure of the simulation region with the zoom of the quantum region on the right
side.

Conduction and valence band profiles

The following figures show the conduction and valence band edges (heavy hole, light hole and split-off hole) for a
10 nm pyramidal shaped QD along two different line scans. Figure 4.8.4.2 shows the band profile along the z axis
through the center of the QD (x = y = 0 nm), and Figure 4.8.4.3 shows the band profile along the x axis through
the base of the QD (y = z = 0 nm).

The energies of the bands have been obtained by diagonalizing the 8-band k.p Hamiltonian at 𝑘 = 0 (including
the Bir-Pikus strain Hamiltonian) for each grid point, taking into account the local strain tensor and deformation
potentials. Note that piezoelectric effects are not included yet in this band profile.

Figure 4.8.4.2: Calculated band edge profile along z axis.

The figures compare well with Figs. 2(a) and 2(b) of [Pryor1998]. However, there are some differences: Due to

4.8. Quantum Dots 263

nextnano++ Documentation, Release 1.25.13

Figure 4.8.4.3: Calculated band edge profile along x axis.

valence band mixing of the states in the k.p Hamiltonian, we do not have pure heavy and light hole eigenstates
anymore. Thus there is some arbitrariness to assign the labels “heavy” and “light” to the relevant eigenstates h1
and h2. Obviously, when solving the full 6-band or 8-band k.p Hamiltonian, this labelling becomes irrelevant
because all three hole band edges enter the Hamiltonian simultaneously (in contrast to a single-band effective mass
approach where only individual “heavy” hole or “light” hole band edges would be considered).

Electron wave functions (single-band effective-mass approximation)

Figure 4.8.4.4 shows the envelopes of the electron wave function Ψ2 of the first 9 electron eigenstates inside of the
quantum dot.

Figure 4.8.4.4: Envelope function of the first 9 electron states of the quantum dot. The isosurfaces shown are at
Ψ = ±0.03. The green wireframe shows the quantum region, the grey shaded area is the quantum dot. THe shaded
green slice is at 𝑥 = 0, i.e. through the center of the QD.

Figure 4.8.4.5 shows the 2D slices of electron wave function from the slices defined in Figure 4.8.4.4.

ò Note

The following sections are preliminary and yet to be updated.

264 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.4.5: 2D slices of the envelope function of the first 9 electron states of the quantum dot at 𝑥 = 0

10 nm quantum dot

(Note: Pryor’s Fig. 7 shows the energies for a 14 nm quantum dot). The band gap is 1.519 eV.

Electron energies

(i) effective mass (me = 0.023 m0) => 0.7000983 eV (only one confined electron␣
→˓state)
(ii) effective mass (me = 0.04 m0) => eV
(iii) effective mass (me(r) = ... m0) => not implemented in nextnano3

(iv) 8-band k.p => eV

Hole energies

() effective mass (mhh = 0.41 m0) => hh1 = -0.585198481 eV
=> hh1 = -0.61776 eV
=> hh1 = -0.62275 eV

(i) 6-band k.p => 1.0081402 eV (?) (bad eigenvalues using 6-band k.p␣
→˓with finite-differences)
(ii) 8-band k.p => eV

Transition energy electron - hole

- (i) - (): exciton correction 2.9 meV (Pryor: 27 meV)
E_ex [eV] E_el - E_hl E_el0 - E_hl0 Delta_Ex REAL(inter_matV(1))
1.28238 1.27958 1.28530 0.00291947 0.428169

14 nm quantum dot (Pryor’s Fig. 7)

(i) effective mass (me = 0.023 m0) => 0.6458949 eV (only one confined electron␣
→˓state) + (1.519 - 0.752916) eV = 1.412 eV (in substrate layer below QD)
(i) effective mass (me = 0.023 m0) => 0.6458949 eV (only one confined electron␣
→˓state) + (1.519 - 0.765522) eV = 1.399 eV (in substrate layer at corner)
(i) effective mass (me = 0.04 m0) => 0.6248762 eV (only one confined electron␣
→˓state) + (1.519 - 0.765522) eV = 1.378 eV (in substrate layer at corner

14 nm, 6x6k.p, box, nonsym:
-0.56607270

(continues on next page)

4.8. Quantum Dots 265

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

-0.58734305
-0.59621434
-0.60757551
-0.62802221
-0.63650764

Last update: nnnn/nn/nn

4.8.5 Hexagonal shaped GaN quantum dot embedded in AlN (wurtzite)

. Attention

They differ from results obtained with nextnano++ as these input file has been improved, including change of
simulation domain and boundary conditions, to represent results from the cited publication more accurately.
However, qualitative tendencies are preserved.

• Header

• Conduction and valence band alignment in AlN/GaN QWs (unstrained)

• Conduction and valence band alignment in AlN/GaN QWs (pseudomorphically strained)

• Conduction and valence band edges in AlN/GaN QWs (pseudomorphically strained, including piezo-
and pyroelectric fields)

• Electron and hole wave functions in AlN/GaN QWs

• Hexagonal shaped GaN quantum dot embedded in AlN (wurtzite)

Header

ò Note

The tutorial is based on [Andreev2000].

Input files in examples\quantum_dots\:
• QD_GaN_Andreev_PRB_2000_1D_nnp_band-offsets.in

• QD_GaN_Andreev_PRB_2000_1D_nnp_strain.in

• QD_GaN_Andreev_PRB_2000_1D_nnp_strain-PzPr-poisson-1b.in

• QD_GaN_Andreev_PRB_2000_1D_nnp_strain-PzPr-poisson-6kp.in

• QD_GaN_Andreev_PRB_2000_3D_nnp.in

Scope:
The influence of strain and pyro-/ piezoelectric fields on the electronic structure of hexagonal shaped GaN/
AlN quantum dots.

266 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Conduction and valence band alignment in AlN/GaN QWs (unstrained)

In this section the input file QD_GaN_Andreev_PRB_2000_1D_nnp_band-offsets.in is used to compute band off-
sets.

Figure 4.8.5.1 shows the conduction and valence band edge alignment in AlN/GaN structures (unstrained). In AlN,
the light hole (LH) is the highest valence band whereas in GaN, this is the heavy hole (HH). We assumed a valence
band offset of VBO = 0.5 eV, the conduction band offset is much larger (CBO = 2.3 eV). All material parameters
are based on [Andreev2000] although meanwhile better parameters are available.

Figure 4.8.5.1: Conduction band edge (CB) and valance band edges (HH, LH, CH) of the 1D AlN/ GaN QD
(unstrained).

Conduction and valence band alignment in AlN/GaN QWs (pseudomorphically strained)

In this section the input file QD_GaN_Andreev_PRB_2000_1D_nnp_strain.in is used to show impact of the strain
on the band edges without piezo effects.

Figure 4.8.5.2 shows the conduction and valence band edge alignment in the AlN/GaN structure, which is strained
with respect to the AlN substrate. The lattice constants in GaN are larger than in AlN, thus GaN is compressively
strained. The AlN band edges are the same as in Figure 4.8.5.1, only the GaN edges have changed:

• The band gap of GaN has increased (compressive strain increases the band gap).

• Now the crystal-field split-hole (CH) in GaN lies above the light hole (LH) and close to the heavy hole (HH).

• The valence band offset has decreased to VBO = 0.46 eV.

• The conduction band offset has decreased to CBO = 2.15 eV.

Conduction and valence band edges in AlN/GaN QWs (pseudomorphically strained, including
piezo- and pyroelectric fields)

In this section the input file QD_GaN_Andreev_PRB_2000_1D_nnp_strain-PzPr-poisson-1b.in or
QD_GaN_Andreev_PRB_2000_1D_nnp_strain-PzPr-poisson-6kp.in can be used to observe piezo effect on
the design.

In Figure 4.8.5.3 the effect of piezo- and pyroelectric fields on the band edge is shown. The band edge gets tilted
due to the additional electric potential arising from the piezo- and pyroelectric charges. The electrostatic potential
which is the solution to the Poisson equation is also shown in Figure 4.8.5.3.

4.8. Quantum Dots 267

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.2: Conduction band edge (CB) and valance band edges (HH, LH, CH) of the 1D AlN/GaN QD
(strained on AlN substrate).

Figure 4.8.5.3: Conduction band edge (CB) and valance band edges (HH, LH, CH) of the 1D AlN/GaN QD
(strained on AlN substrate) including piezo- and pyroelectric fields.

268 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Electron and hole wave functions in AlN/GaN QWs

Figure 4.8.5.4 shows the electron and hole wavefunctions (Ψ2) in a 5.1 nm AlN/GaN/AlN quantum well. For
the electrons, the single-band effective-mass approximation was used whereas for the holes the 6-band k.p model
was used. The figure shows the four lowest electron eigenstates and the 6 highest valence band eigenstates. All
eigenstates are two-fold degenerate due to spin.

Figure 4.8.5.4: Electron and hole wavefunctions Ψ2 of a 5.1 mm AlN/GaN/AlN quantum well.

Hexagonal shaped GaN quantum dot embedded in AlN (wurtzite)

The simulated hexagonal GaN quantum dot (height = 4.1 nm) is embedded in an AlN matrix, input file
QD_GaN_Andreev_PRB_2000_3D_nnp.in. The wetting layer is 1 nm thick and consists of GaN. The structure
and a cross-section of the structure along x-y are shown in Figure 4.8.5.5 and Figure 4.8.5.6, respectively.

Figure 4.8.5.5: 3D AlN/GaN quantum dot.

The strain tensor components of a line through the center of the quantum dot along the z axis are shown in Figure
4.8.5.7. This figure is related to Fig. 2 (a) in [Andreev2000].

4.8. Quantum Dots 269

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.6: Cross-section of the hexagonal shaped AlN/GaN quantum dot.

Figure 4.8.5.7: Strain tensor along the z-axis through the points (x, y) = (12.75, 12.75) nm and (x, y) = (12.75, 0)
nm.

270 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.8 and Figure 4.8.5.9 show the strain tensor components along the [10-10] direction (y direction) for a
line through the bottom of the quantum dot and for a line through the wetting layer, respectively. These figures are
related to Fig. 2 (b) in [Andreev2000].

Figure 4.8.5.8: Strain tensor along the y-axis through the quantum dot (QD).

Figure 4.8.5.9: Strain tensor along the y-axis through the wetting layer (WL).

The strain induced piezoelectric fields and the pyroelectric fields lead to the electrostatic potential which is shown
in Figure 4.8.5.10 and Figure 4.8.5.11. The figures of the potential are related to Fig. 4 in [Andreev2000]. In
Figure 4.8.5.10 one can clearly see that the electrostatic potential has its maximum at the top of the QD and its
minimum in the wetting layer area just below the QD. Figure 4.8.5.11 shows a cut of the electrostatic potential
through the wetting layer plane.

The conduction and valence band edges are shown in Figure 4.8.5.12 and Figure 4.8.5.13. One can clearly see
that the conduction band minimum is located in the top of the quantum dot whereas the maximum for the valence
band is located inside the wetting layer (WL) (which is equivalent to the bottom of the quantum dot). Thus, one
expects the electrons, which are located in the top area of the QD, to be spatially separated from the holes, which
are located in the WL (bottom of the QD). The energy scale is in units of [eV]. The figures of the conduction and
valence band edges are related to Figs. 5 and 6 in [Andreev2000].

The electron states are located near the top of the quantum dot where the conduction band has a minimum. Figure
4.8.5.14 shows the electron ground state.

The following figures show the six lowest electron states of the quantum dot. The 2nd and 3rd eigenstates are

4.8. Quantum Dots 271

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.10: Electrostatic potential inside the quantum dot.

Figure 4.8.5.11: Electrostatic potential inside the wetting layer.

272 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.12: Conduction band edge of the QD.

Figure 4.8.5.13: Valence band edge of the QD.

4.8. Quantum Dots 273

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.14: Electron ground state of the QD.

degenerate, as well as the 4th, 5th and 6th. The figures of the wave functions (Ψ2) are related to Fig. 7 in [An-
dreev2000].

This tutorial also exists for nextnano3.

Last update: 11/07/2024

4.8.6 — DEV — Energy levels of an “artificial atom” - Spherical and ellipsoidal
CdSe Quantum Dot

. Attention

This tutorial is under construction

Input files:
• QDArtificialAtom_CdSe_3D_spherical_nnp.in

• QDArtificialAtom_CdSe_3D_ellipsoidal_nnp.in

• ParabolicQW_GaAs_2D_nnp.in

Scope:
• In this tutorial we calculate the eigenenergies of a spherical and ellipsoidal CdSe quantum dot (“artifi-

cial atom”). The tutorial is based on [Ferreira2006].

Output files:
• bias00000\Quantum\energy_spectrum_quantum_region_Gamma_00000.dat

• bias00000\Quantum\overlap_integrals_quantum_region_HH_Gamma.txt

274 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.15: Probability density Ψ2 of the 1st electron state in the QD.

Figure 4.8.5.16: Probability density Ψ2 of the 2nd electron state in the QD.

4.8. Quantum Dots 275

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.17: Probability density Ψ2 of the 3rd electron state in the QD.

Figure 4.8.5.18: Probability density Ψ2 of the 4th electron state in the QD.

276 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.5.19: Probability density Ψ2 of the 5th electron state in the QD.

Figure 4.8.5.20: Probability density Ψ2 of the 6th electron state in the QD.

4.8. Quantum Dots 277

nextnano++ Documentation, Release 1.25.13

Energy levels of an “artificial atom” - Spherical CdSe Quantum Dot

Here, we want to calculate the energy levels and the wave functions of a spherical CdSe quantum dot of radius
𝑟 = 5 nm shown in Figure 4.8.6.1.

Figure 4.8.6.1: Spherical quantum dot.

We assume that the barriers at the QD boundaries are infinite. The potential inside the QD is assumed to be 0
eV. We use a grid resolution of 0.5 nm. We solve the single-band Schrödinger equation within the effective-mass
approximation. The electron effective mass of CdSe is assumed to be 𝑚𝑒 = 0.112𝑚0.

A spherically symmetric potential leads to an energy spectrum where some eigenvalues are degenerate. We want
to study the “shell structure” (degeneracy scheme) of a CdSe quantum dot of radius 5 nm. Figure 4.8.6.2 shows the
calculated energy spectrum for the lowest 20 electron eigenvalues. One can clearly identify the shell structure 1s,
2p, 3d, 2s, 4f and 3p which is similar to the shell structure of the periodic table. This is the reason why quantum
dots are often called “artificial atoms”. Note that each eigenstate is two-fold degenerate due to spin. Thus, the
s states are two-fold degenerate, the p states are six-fold degenerate, the d states are ten-fold degenerate and the
degeneracy of the f states is 14.

Figure 4.8.6.2: Eigenenergies of the lowest 20 states in the QD.

278 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

We have also solved the single-band Schrödinger equation for the holes assuming an isotropic effective mass for
simplicity. Obviously, this is a crude approximation. From the electron and hole wave functions, we calculate their
spatial overlap matrix elements (overlap integrals). In this simple model, due to symmetry arguments, only the
following transitions are allowed: 1s - 1s, 2p - 2p, 3d - 3d, 2s - 2s, 4f - 4f, . . .

Figure 4.8.6.3 shows the calculated overlap integrals as a function of energy. (Note: The figure has to be updated:
Now we output the square of this matrix element.)

Figure 4.8.6.3: Overlap integrals.

Both figures are in reasonable agreement with Fig. 1 and Fig. 2 (inset) in [Ferreira2006].

Energy levels of an “artificial atom” - Ellipsoidal, cigar-shaped CdSe quantum dot

For an ellipsoidal, cigar-shaped CdSe quantum dot (𝑟𝑥 = 5 nm, 𝑟𝑦 = 5 nm, 𝑟𝑧 = 10nm), we calculate the lowest
30 eigenvalues.

The energy spectrum (degeneracy spectrum) looks very different from the spherical QD spectrum (c.f. Figure
4.8.6.5)

The overlap integrals are shown in Figure 4.8.6.6 (Note: The figure has to be updated: Now we output the square
of this matrix element.)

Energy levels of an “artificial atom” - 2D harmonic potential

The following figure shows the energy spectrum of a “two-dimensional disc” which we approximate as a cylin-
drically symmetric parabolic (harmonic) potential. We solve the 2D Schrödinger equation for this system. The
harmonic potential is assumed to be ℏ𝜔 = 3 meV. Each shell is thus separated by 3 meV. From the energy spec-
trum of this two-dimensional shell structure, one can derive “magic numbers”. (They include spin degeneracy.)

This tutorial also exists for nextnano3.

Last update: 27/05/2025

4.9 Electronic Band Structures

4.9.1 k.p dispersion in bulk GaAs (strained / unstrained)
Input files:

• bulk_kp_dispersion_GaAs_nnp.in

4.9. Electronic Band Structures 279

nextnano++ Documentation, Release 1.25.13

Figure 4.8.6.4: Ellipsoidal quantum dot.

Figure 4.8.6.5: Eigenenergies of the lowest 30 states in the QD.

280 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.8.6.6: Overlap integrals.

Figure 4.8.6.7: Eigenenergies of the lowest 30 states in a harmonic potential.

4.9. Electronic Band Structures 281

nextnano++ Documentation, Release 1.25.13

• bulk_kp_dispersion_GaAs_nnp_strained.in

Scope:
We calculate 𝐸(𝑘) of strained and unstrained 𝐺𝑎𝐴𝑠.

Band structure of bulk 𝐺𝑎𝐴𝑠

Input file: bulk_kp_dispersion_GaAs_nnp.in

We want to calculate the dispersion 𝐸(𝑘) from |𝑘| = 0 nm-1 to |𝑘| = 1.0 nm-1 along the following directions in k
space:

• [000] to [110]

• [000] to [100]

We compare 6-band and 8-band k.p theory results. We calculate 𝐸(𝑘) for bulk 𝐺𝑎𝐴𝑠 at a temperature of 300 K.

Bulk dispersion along [100] and along [110]

quantum{
region{

...
bulk_dispersion{

lines{ # set of dispersion lines along crystal directions of high symmetry
name = "lines"
position{ x = 5.0 }
k_max = 1.0
spacing = 0.01
shift_holes_to_zero = yes

}

path{ # dispersion along arbitrary path in k-space
name = "user_defined_path"
position{ x = 5.0 }
point{ k = [0.7071, 0.7071, 0.0] }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [1.0, 0.0, 0.0] }
spacing = 0.01
shift_holes_to_zero = yes

}
}

}
}

We calculate the pure bulk dispersion at position x = 5 nm. In our case this is 𝐺𝑎𝐴𝑠, but it could be any strained
alloy. In the latter case, the k.p Bir-Pikus strain Hamiltonian will be diagonalized. The grid point at position{ x
= 5.0 } must be located inside a quantum region. shift_holes_to_zero = yes forces the top of the valence
band to be located at 0 eV. How often the bulk k.p Hamiltonian should be solved can be specified via spacing.
To increase the resolution, just increase this number. We use two direction in k space, i.e. from [000] to [110] and
from [000] to [100]. In the latter case the maximum value of |𝑘| is

𝑘max =
√︀

0.70712 + 0.70712 = 1.0

Note that for values of |𝑘| larger than 1.0 nm-1, k.p theory might not be a good approximation anymore.

The results of the calculation can be found in the folder bias_00000\Quantum\Bulk_dispersions. Figure 4.9.1.1
visualizes the results.

The split-off energy of 0.341 eV is identical to the split-off energy as defined in the database:

282 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.1.1: Bulk k.p dispersion in 𝐺𝑎𝐴𝑠: 𝐸(𝑘) along [100] and [110].

...
valence_bands{ delta_SO = 0.341 } # [eV] Vurgaftman1
...

If one zooms into the holes and compares 6-band vs. 8-band k.p, one can see that 6-band and 8-band coincide for
|𝑘| < 1.0 nm-1 for the heavy and light hole but differ for the split-off hole at larger |𝑘| values, see Figure 4.9.1.2.

Figure 4.9.1.2: Bulk k.p dispersion in GaAs: 𝐸(𝑘) along [100] and [110] - Comparision between 6x6 and 8x8 k.p

8-band k.p vs. effective-mass approximation

Now we want to compare the 8-band k.p dispersion with the effective-mass approximation. The effective mass
approximation is a simple parabolic dispersion which is isotropic (i.e. no dependence on the k vector direction).
For low values of k (|𝑘| < 0.4 nm-1) it is in good agreement with k.p theory, see Figure 4.9.1.3.

4.9. Electronic Band Structures 283

nextnano++ Documentation, Release 1.25.13

Figure 4.9.1.3: Bulk k.p dispersion in 𝐺𝑎𝐴𝑠: 𝐸(𝑘) along [100] and [110] - Comparision between 8x8 k.p and
effective-mass approximation

Band structure of strained 𝐺𝑎𝐴𝑠

Input file: bulk_kp_dispersion_GaAs_nnp_strained.in

Now we perform these calculations again for 𝐺𝑎𝐴𝑠 that is strained with respect to 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠. The 𝐼𝑛𝐺𝑎𝐴𝑠
lattice constant is larger than the 𝐺𝑎𝐴𝑠 one, thus 𝐺𝑎𝐴𝑠 is strained tensely. The changes that we have to make in
the input file are the following:

strain{
pseudomorphic_strain{ }

}

run{
strain{ }

}

As substrate material we take 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠 and assume that 𝐺𝑎𝐴𝑠 is strained pseudomorphically
(pseudomorphic_strain{ }) with respect to this substrate, i.e. 𝐺𝑎𝐴𝑠 is subject to a biaxial strain. Due to
the positive hydrostatic strain (i.e. increase in volume or negative hydrostatic pressure) we obtain a reduced
band gap with respect to the unstrained 𝐺𝑎𝐴𝑠. Furthermore, the degeneracy of the heavy and light hole at
𝑘‘ = 0𝑖𝑠𝑙𝑖𝑓𝑡𝑒𝑑, 𝑠𝑒𝑒 : 𝑛𝑢𝑚𝑟𝑒𝑓 : ‘𝑓𝑖𝑔− 1𝐷− 𝑘𝑝− 𝑑𝑖𝑠𝑝𝑒𝑟𝑠𝑖𝑜𝑛− 𝑏𝑢𝑙𝑘−𝐺𝑎𝐴𝑠− 𝑘𝑝− 𝑏𝑎𝑛𝑑𝑒𝑑𝑔𝑒𝑠− 𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑.
Now, the anisotropy of the holes along the different directions [100] and [110] is very pronounced. There is even a
band anti-crossing along [100]. (Actually, the anti-crossing looks like a “crossing” of the bands but if one zooms
into it (not shown in this tutorial), one can easily see it.) Note: If biaxial strain is present, the directions along 𝑥, 𝑦
or 𝑧 are not equivalent anymore. This means that the dispersion is also different in these directions ([100], [010],
[001]).

If one zooms into the holes and compares 6-band vs. 8-band k.p, one can see that the agreement between heavy and
light holes is not as good as in the unstrained case where 6-band and 8-band k.p lead to almost identical dispersions,
compare Figure 4.9.1.5.

Note that in the strained case, the effective-mass approximation is very poor.

284 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.1.4: Bulk k.p dispersion in𝐺𝑎𝐴𝑠 strained with respect to 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠 : 𝐸(𝑘) along [100] and [110].

Figure 4.9.1.5: Bulk valence band k.p dispersion in 𝐺𝑎𝐴𝑠 strained with respect to 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠 : 𝐸(𝑘) along
[100] and [110] - Comparision between 6x6 and 8x8 k.p approximation.

4.9. Electronic Band Structures 285

nextnano++ Documentation, Release 1.25.13

Analysis of eigenvectors

(preliminary)

Using the Voon-Willatzen-Bastard-Foreman k.p basis one obtains the following output for the eigenvectors at the
Gamma point, 𝑘 = (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) = 0.

Example: The x_up component contains a complex number. Here, we show the square of X_up. This gives us
information on the strength of the coupling of the mixed states.

eigenvalue S+ S- HH LH LH LH SO SO
1 0 1.0 0 0 0 0 0 0
2 1.0 0 0 0 0 0 0 0
3 0 0 0 1.0 0 0 0 0
4 0 0 0 0 1.0 0 0 0
5 0 0 0 0 0 1.0 0 0
6 0 0 1.0 0 0 0 0 0
7 0 0 0 0 0 0 0 1.0
8 0 0 0 0 0 0 1.0 0

eigenvalue S+ S- X+ Y+ Z+ X- Y-
→˓ Z-
1 1.0 0 0 0 0 0 0␣
→˓ 0
2 0 1.0 0 0 0 0 0␣
→˓ 0
3 0 0 0 0 0.5 0.5 0␣
→˓ 0
4 0 0 0 0 0.166 0.166 0.
→˓666 0
5 0 0 0.5 0 0 0 0␣
→˓ 0.5
6 0 0 0.166 0.666 0 0 0␣
→˓ 0.166
7 0 0 0 0 0.333 0.333 0.
→˓333 0
8 0 0 0.333 0.333 0 0 0␣
→˓ 0.333

+: spin up, -: spin down

• The electron eigenstates are 2-fold degenerate, i.e. have the same energy, and are decoupled from the holes.

1 |𝑆 ↓ ⟩
2 |𝑆 ↑ ⟩

• The hole eigenstates are 4-fold (heavy and light holes) and 2-fold degenerate (split-off holes).

3
⃒⃒
3
2 ,

3
2

⟩︀
hh spin up 1√

2
|(𝑋 + 𝑖𝑌) ↑ ⟩

4
⃒⃒
3
2 ,

1
2

⟩︀
lh 1√

6
|(𝑋 + 𝑖𝑌) ↓ ⟩ −

√︁
2
3 |𝑍 ↑ ⟩

5
⃒⃒
3
2 ,−

1
2

⟩︀
lh 1√

6
|(𝑋 − 𝑖𝑌) ↑ ⟩ −

√︁
2
3 |𝑍 ↓ ⟩

6
⃒⃒
3
2 ,−

3
2

⟩︀
hh spin down 1√

2
|(𝑋 − 𝑖𝑌) ↓ ⟩

7
⃒⃒
1
2 ,

1
2

⟩︀
s/o split 1√

3
|(𝑋 + 𝑖𝑌) ↓ ⟩ − 1√

3
|𝑍 ↑ ⟩

8
⃒⃒
1
2 ,−

1
2

⟩︀
s/o split 1√

3
|(𝑋 − 𝑖𝑌) ↓ ⟩ − 1√

3
|𝑍 ↓ ⟩

1√
2

= 0.707 →
(︀
1
2

)︀2 = 0.5

286 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

1√
3

= 0.577 →
(︀
1
3

)︀2 = 0.333
1√
6

= 0.408 →
(︀
1
6

)︀2 = 0.166

Last update: nnnn/nn/nn

4.9.2 k.p dispersion in bulk unstrained, compressively and tensely strained GaN
(wurtzite)

Input files:
• bulk_kp_dispersion_GaN_unstrained_0_nnp.in

• bulk_kp_dispersion_GaN_unstrained_90_nnp.in

• bulk_kp_dispersion_GaN_strained_compressive_0_nnp.in

• bulk_kp_dispersion_GaN_strained_compressive_90_nnp.in

• bulk_kp_dispersion_GaN_strained_tensile_0_nnp.in

• bulk_kp_dispersion_GaN_strained_tensile_90_nnp.in

• bulk_kp_dispersion_GaN_strained_tensile_90_3D_nnp.in

Scope:
We calculate𝐸(𝑘) for bulk𝐺𝑎𝑁 (unstrained), with compressive and tensile strain, along two dif-
ferent growth directions. In this tutorial we aim to reproduce results of [ParkChuangPRB1999]
and [KumagaiChuangAndoPRB1998].

k.p dispersion in bulk unstrained 𝐺𝑎𝑁 (wurtzite)

We want to calculate the dispersion𝐸(𝑘) from |𝑘| = 0 to |𝑘| = 1.0 [1/nm] along the following directions in k space:

• [010] to [100]

• [011] to [100]

• [111] to [100]

We compare 6-band k.p theory results vs. single-band (effective-mass) results for unstrained GaN. Material pa-
rameters used in the calculations are taken from [KumagaiChuangAndoPRB1998].

Calculating the bulk k.p dispersion

quantum{
region{

...
bulk_dispersion{

path{ # dispersion along arbitrary path in k-space
name = "user_defined_path"
position{ x = 2.0 }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [1.2, 0.0, 0.0] }
spacing = 0.012 # [1/nm]
shift_holes_to_zero = no

}
}

}
}

4.9. Electronic Band Structures 287

nextnano++ Documentation, Release 1.25.13

The maximum value of |𝑘| is 1.2 nm-1. Note that for values of |𝑘| larger than 1.0 nm-1, k.p theory might not be
a good approximation anymore. We calculate the pure bulk dispersion at 𝑥 = 2.0, i.e. for the material located at
the grid point at 2 nm. In our case this is 𝐺𝑎𝑁 , but it could be any strained alloy. If strain is present (see below),
the k.p Bir-Pikus strain Hamiltonian will be diagonalized at each k point. The grid point at grid-position must be
located inside a quantum region. shift_holes_to_zero = yes forces the top of the valence band to be located
at 0 eV. In this tutorial, however, we use no. The “average” energy of all three valence bands is set to the zero
point of energy. Here, “average” means without taking crystal field and spin-orbit splitting into account. This
is added afterwards to get the energies of heavy hole (HH), light hole (LH) and crystal-field split-off hole (CH).
How often the bulk k.p Hamiltonian should be solved can be specified via spacing. To increase the resolution,
just increase this number. The results can be found in the folder bias_00000\Quantum\Bulk_dispersions. Figure
4.9.2.1 shows the bulk k.p dispersion of unstrained 𝐺𝑎𝑁 (wurtzite). The results are in excellent agreement to Fig.
4 (b) of [KumagaiChuangAndoPRB1998].

Figure 4.9.2.1: Calculated 1-band and k.p dispersion of HH, LH and CH valence bands (unstrained). The 𝑘𝑥
direction corresponds to the c axis [0001]. The dispersion along 𝑘𝑦 and 𝑘𝑧 is identical (only 𝑘𝑦 is shown), i.e. the
dispersion in the (100) plane is isotropic.

The dispersion along the hexagonal c axis is substantially different.

If the average of the three valence band edges (without taking crystal-field and spin-orbit splitting into account) is
defined to be at zero, i.e. 𝐸𝑣,𝑎𝑣 = 0 eV, then the energies 𝐸1, 𝐸2 and 𝐸3 are defined as follows for the unstrained
case:

𝐸1 = ∆1 +∆2

𝐸2 = 𝐵 +𝐴

𝐸3 = 𝐵 −𝐴

where ∆1 is the crystal field split energy ∆𝑐𝑟, and ∆2 and ∆3 are related to the spin-orbit split off-energy ∆𝑠𝑜 as
follows:

∆2 = ∆3 = 1/3∆𝑠𝑜

𝐵 = (∆1 −∆2)/2

𝐴 =
√︀
𝐵2 + 2(∆3)2

The Delta parameters are defined in the database

valence_bands{
defpotentials = [-1.70, 6.30, 8.00, -4.00, -4.0, -5.5]
delta = [0.0220, 0.005, 0.005] # Delta1(cr), Delta2␣

→˓= Delta_so/3, Delta3 = Delta_so/3
}

leading to:

𝐵 = 0.0085

𝐴 = 0.01106

𝐸1 = ∆1 +∆2 = 0.027𝑒𝑉

288 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

𝐸2 = 𝐵 +𝐴 = 0.0085𝑒𝑉 + 0.01106𝑒𝑉 = 0.01956𝑒𝑉

𝐸3 = 𝐵 −𝐴 = 0.0085− 0.01106 = −0.00256𝑒𝑉

In contrast to zincblende materials, even in the unstrained case, the heavy and light hole are not degenerate at 𝑘 =
0. For comparison, we also show the dispersion using the single-band effective mass approximation (dotted lines).
We used the following values for the effective hole masses, according to reference http://www.ioffe.rssi.ru/SVA/
NSM/Semicond/GaN/bandstr.html.

𝑚𝐻𝐻,𝑎 = 1.6 [𝑚0], 𝑚𝐻𝐻,𝑐 = 1.1 [𝑚0]

𝑚𝐿𝐻,𝑎 = 0.15 [𝑚0], 𝑚𝐿𝐻,𝑐 = 1.1 [𝑚0]

𝑚𝐶𝐻,𝑎 = 1.1 [𝑚0], 𝑚𝐶𝐻,𝑐 = 0.15 [𝑚0]

The effective mass approximation is a simple parabolic dispersion which is isotropic in zincblende materials (i.e.
no dependence on the k vector direction) but is anisotropic for wurtzite materials due to the different effective
masses parallel and perpendicular to the c axis.

k.p dispersion in compressively and tensilely strained GaN (wurtzite)

We compare two different orientations of the crystal coordinate system with respect to the simulation coordinate
system.

• Case a) Default orientation: hexagonal c axis oriented along the x direction [100]

• Case b) Rotation of hexagonal c axis by 90 degrees so that it oriented along the default y direction [010]

The orientation of the z axis remains the same.

The following figures compare the 6-band k.p valence band dispersion relation of compressively (-0.5%, Figure
4.9.2.2) vs. tensely (+0.5%, Figure 4.9.2.3) strained 𝐺𝑎𝑁 . Assuming that the substrate material is 𝐴𝑙𝑥𝐼𝑛1−𝑥𝑁 ,

• a compressive strain of -0.5% corresponds to 𝐴𝑙0.785𝐼𝑛0.215𝑁 (𝑒𝑦𝑦 = 𝑒𝑧𝑧 = -0.005)

• a tensile strain of 0.5% corresponds to 𝐴𝑙0.859𝐼𝑛0.141𝑁 (𝑒𝑦𝑦 = 𝑒𝑧𝑧‘ = 0.005)

using the lattice constants given [ParkChuangPRB1999], [KumagaiChuangAndoPRB1998]. The results for tensile
strain indicate that the light hole (LH) band is higher in energy than the heavy hole (HH) band.

Figure 4.9.2.2: Calculated k.p dispersion of HH, LH and CH valence bands (compressive strain)

Figure 4.9.2.3: Calculated k.p dispersion of HH, LH and CH valence bands (tensile strain)

4.9. Electronic Band Structures 289

http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN/bandstr.html
http://www.ioffe.rssi.ru/SVA/NSM/Semicond/GaN/bandstr.html

nextnano++ Documentation, Release 1.25.13

The results of these two figures can be found in this file: bulk_dispersion_qr_6band_kp6_010_to_100.dat, where
010 represents the 𝑘𝑦 direction, 000 the Gamma point and 100 the 𝑘𝑥 direction, i.e. the plotted dispersion is a
cut through the 3D Brillouin zone along these lines. We only plotted the result for 𝑘𝑦 . The dispersion along 𝑘𝑧 is
identical in this case, also the dispersion along [011], i.e. the dispersion is isotropic with respect to the (100) plane.

Once the c axis is oriented along the 𝑥 axis of the simulation coordinate system (rotation by 90° around the z axis),
the corresponding results look as follows.

Figure 4.9.2.4: Calculated k.p dispersion of HH, LH and CH valence bands (compressive strain)

Figure 4.9.2.5: Calculated k.p dispersion of HH, LH and CH valence bands (compressive strain)

The results of Figure 4.9.2.4 and Figure 4.9.2.6 can be found in this file:
bulk_dispersion_qr_6band_kp6_010_to_100.dat, where 010 represents the 𝑘𝑦 direction, 000 the Gamma
point and 100 the 𝑘𝑥 direction, i.e. the plotted dispersion is a cut through the 3D Brillouin zone along these
lines. The results for the dispersion along 𝑘𝑧 is now different from the dispersion along 𝑘𝑦 . The results for 𝑘𝑧 are
contained in this file bulk_dispersion_qr_6band_kp6_010_to_001.dat, because here we specified in the input file
to calculate the dispersion from the Gamma point (0,0,0) to (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) = (0, 0, 1.0 nm-1).

bulk_dispersion{
path{

name = "010_to_001"
position{ x = 5.0 }
point{ k = [0.0, 1.0, 0.0] }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [0.0, 0.0, 1.0] }
spacing = 0.01
shift_holes_to_zero = yes

}
}

Note: For 𝜃 = 90°, we have rotated the crystal (cr) coordinate system with respect to the simulation (sim) coordinate
system. Therefore, for our new orientation it holds 𝑒𝑧𝑧,𝑐𝑟 = 𝑒𝑧𝑧,𝑠𝑖𝑚 = ± 0.005 and 𝑒𝑦𝑦 ̸= 𝑒𝑧𝑧 .

The results of our figures are in excellent agreement to figures 5 and 6 of the paper [ParkChuangPRB1999].

Note that for the case of tensile strain and orientation of the c axis along the [10-10] orientation, the strain tensor
component along the z direction of the simulation system is tensilely strained, whereas the component along the y
direction is compressively (!) strained.

For a discussion of the figures please refer to [ParkChuangPRB1999].

290 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.2.6: Calculated k.p dispersion of HH, LH and CH valence bands (tensile strain)

Figure 4.9.2.7: Calculated k.p dispersion of HH, LH and CH valence bands (tensile strain)

4.9. Electronic Band Structures 291

nextnano++ Documentation, Release 1.25.13

Energy dispersion E(k) in three dimensions

Alternatively one can print out the 3D data field of the bulk 𝐸(k) = 𝐸(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) dispersion.

full{ # 3D dispersion on rectilinear grid in k-space
name = "3D"
position{ x = 5.0 }
kxgrid {

line{ pos = -1 spacing = 0.04 }
line{ pos = 1 spacing = 0.04 }

}
kygrid {

line{ pos = -1 spacing = 0.04 }
line{ pos = 1 spacing = 0.04 }

}
kzgrid {

line{ pos = -1 spacing = 0.04 }
line{ pos = 1 spacing = 0.04 }

}
shift_holes_to_zero = yes
}

}

The grid in k space is determined by spacing and pos.

Figure 4.9.2.8 shows a 2D slice in the (𝑘𝑦, 𝑘𝑧) plane for 𝑘𝑥 = 0 of the highest lying hole state for the tensely strained
𝐺𝑎𝑁 (oriented along 90°, i.e. x is oriented along [10-10]) is shown in this figure. Right: Horizontal and vertical
slice through the center coordinate at (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) = (0, 0, 0).

Figure 4.9.2.8: 2D slice at 𝑘𝑥 = 0 of calculated 3D dispersion.

292 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: nnnn/nn/nn

4.9.3 k.p dispersion in bulk unstrained ZnS, CdS, CdSe and ZnO (wurtzite)
Input files:

• bulk_6x6kp_dispersion_ZnS_nnp.in

• bulk_6x6kp_dispersion_CdS_nnp.in

• bulk_6x6kp_dispersion_CdSe_nnp.in

• bulk_6x6kp_dispersion_ZnO_nnp.in

Scope:
We calculate 𝐸(𝑘) for bulk 𝑍𝑛𝑆, 𝐶𝑑𝑆, 𝐶𝑑𝑆𝑒 and 𝑍𝑛0 (unstrained). In this tutorial we aim to
reproduce results of [Jeon1996].

Introduction

We want to calculate the dispersion 𝐸(𝑘) from |𝑘| = 0 [1/nm] to |𝑘| = 1.0 [1/nm] along the following directions in
k space:

• [000] to [0001], i.e. parallel to the c axis (Note: The c axis is parallel to the z axis.)

• [000] to [110], i.e. perpendicular to the c axis (Note: The (𝑥, 𝑦) plane is perpendicular to the c axis.)

We compare 6-band k.p theory results vs. single-band (effective-mass) results.

Bulk dispersion along [0001] and [110]

quantum{
region{

...
bulk_dispersion{

path{ # dispersion along arbitrary path in k-space
name = "user_defined_path"
position{ x = 5.0 }
point{ k = [0.7071, 0.7071, 0.0] }
point{ k = [0.0, 0.0, 1.0] }
spacing = 0.01 # [1/nm]
shift_holes_to_zero = yes

}
}

}
}

We calculate the pure bulk dispersion at grid position x = 5.0, i.e. for the material located at the grid point
at 5 nm. In our case this is ZnS but it could be any strained alloy. In the latter case, the k.p Bir-Pikus strain
Hamiltonian will be diagonalized. The grid point inside position{} must be located inside a quantum region.
shift_holes_to_zero = yes forces the top of the valence band to be located at 0 eV. How often the bulk k.p
Hamiltonian should be solved can be specified via spacing. To increase the resolution, just increase this number.
The maximum value of |𝑘| is 1.0 [1/nm]. Note that for values of |𝑘| larger than 1.0 [1/nm], k.p theory might not be
a good approximation any more. This depends on the material system, of course. Start the calculation. The results
can be found in the folder bias_00000\Quantum\Bulk_dispersions.

The files bulk_6x6kp_dispersion_as_in_inputfile_kxkykz_000_kxkykz.dat for instance contain 6-band k.p disper-
sions: The first column contains the |𝑘| vector in unitsHere we visualize the results. The final figures will look
like this (left: dispersion along [0001], right: dispersion along [110]): of [1/nm], the next six columns the six
eigenvalues of the 6-band k.p Hamiltonian for this 𝑘 = (𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) point.

The resulting energy dispersion in 6-band k.p theory is usually discussed in terms of a nonparabolic and anisotropic
energy dispersion of heavy, light and split-off holes, including valence band mixing.

4.9. Electronic Band Structures 293

nextnano++ Documentation, Release 1.25.13

The single-band effective mass dispersion is parabolic and depends on a single parameter: The effective mass𝑚*.
Note that in wurtzite materials, the mass tensor is usually anisotropic with a mass 𝑚𝑧𝑧 parallel to the c axis, and
two masses perpendicular to it 𝑚𝑥𝑥 = 𝑚𝑦𝑦 .

Results

We visualize now the results in Figure 4.9.3.1, Figure 4.9.3.2 and Figure 4.9.3.3. The final figures will look like
this (left: dispersion along [0001], right: dispersion along [110]):

Figure 4.9.3.1: Calculated 1-band (dotted gray) and k.p dispersion of HH (A, black), LH (B, red) and CH (C, blue)
valence bands (unstrained).

Figure 4.9.3.2: Calculated 1-band (dotted gray) and k.p dispersion of HH (A, black), LH (B, red) and CH (C, blue)
valence bands (unstrained).

These three figures are in excellent agreement to Fig. 1 of the paper by [Jeon1996]. The dispersion along the
hexagonal c axis is substantially different from the dispersion in the plane perpendicular to the c axis. The ef-
fective mass approximation is indicated by the dashed, gray lines. For the heavy holes (A), the effective mass
approximation is very good for the dispersion along the c axis, even at large k vectors.

For comparison, the single-band (effective-mass) dispersion is also shown. For ZnS, it corresponds to the following
effective hole masses:

valence_bands{
HH{ mass_l = 2.23 mass_t = 0.35} # [m0] heavy hole A (2.23 along c axis)
LH{ mass_l = 0.53 mass_t = 0.485} # [m0] light hole B (0.53 along c axis)
SO{ mass_l = 0.32 mass_t = 0.75} # [m0] crystal hole C (0.32 along c axis)

}

294 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.3.3: Calculated 1-band (dotted gray) and k.p dispersion of HH (A, black), LH (B, red) and CH (C, blue)
valence bands (unstrained).

The effective mass approximation is a simple parabolic dispersion which is anisotropic if the mass tensor is
anisotropic (i.e. it also depends on the k vector direction).

One can see that for |𝑘| < 0.5 [1/nm] the single-band approximation is in excellent agreement with 6-band k.p, but
differs at larger |𝑘| values substantially.

Plotting 𝐸(𝑘) in three dimensions

Alternatively one can print out the 3D data field of the bulk 𝐸(𝑘) = 𝐸(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) dispersion.

full{ # 3D dispersion on rectilinear grid in k-space
name = "3D"
position{ x = 5.0 }
kxgrid {

line{ pos = -1 spacing = 0.04 }
line{ pos = 1 spacing = 0.04 }

}
kygrid {

line{ pos = -1 spacing = 0.04 }
line{ pos = 1 spacing = 0.04 }

}
kzgrid {

line{ pos = -1 spacing = 0.04 }
line{ pos = 1 spacing = 0.04 }

}
shift_holes_to_zero = yes
}

}

k.p dispersion in bulk unstrained ZnO

Figure 4.9.3.4 shows the bulk 6-band k.p energy dispersion for 𝑍𝑛𝑂. The gray lines are the dispersions assuming
a parabolic effective mass.

The following files are plotted:

• bulk_6x6kp_dispersion_as_in_inputfile_kxkykz_000_kxkykz.dat

• bulk_sg_dispersion.dat

The files

4.9. Electronic Band Structures 295

nextnano++ Documentation, Release 1.25.13

Figure 4.9.3.4: Calculated parabolic effective mass (dotted, gray) and k.p dispersion of HH (A, black), LH (B, red)
and CH (C, blue) valence bands (unstrained).

• bulk_6x6kp_dispersion_axis_-100_000_100.dat and

• bulk_6x6kp_dispersion_diagonal_-110_000_1-10.dat

contain the same data because for a wurtzite crystal due to symmetry. The dispersion in the plane perpendicular to
the 𝑘𝑧 direction (corresponding to [0001]) is isotropic.

Last update: nnnn/nn/nn

4.9.4 Energy dispersion of holes in a quantum well
Input files:

• 1Dwell_GaAs_AlAs_nnp.in

• 1Dwell_GaSb_AlSb_nnp.in

• 1Dwell_InGaAs_InP_nnp.in

Scope:
In this tutorial we aim to reproduce results of [FranceschiJancuBeltram1999] and [Holleit-
ner2007].

a) Unstrained 𝐺𝑎𝐴𝑠/𝐴𝑙𝐴𝑠 quantum well

Input file: 1Dwell_GaAs_AlAs_nnp.in

This input file simulates a 𝐺𝑎𝐴𝑠 (well)/ 𝐴𝑙𝐴𝑠 (barrier) structure - The well is 17 molecular layers thick (4.8 nm),
located between 𝑥 = 20 nm and 𝑥 = 24.8 nm.

Figure 4.9.4.1 shows the valence band edges of the quantum well structure together with three quantized states.
The heavy and light hole band edges are degenerate. The red band is the split-off hole band edge. Note that these
artificial band edges correspond to the bulk band edges. Also shown are the probability densities of the three
uppermost subbands (Ψ2). Note that each eigenstate is twofold spin-degenerate at 𝑘|| = 0. These eigenfunctions
are plotted as positions on the energy scale that correspond to their eigenenergies, i.e. Ψ2 + eigenvalue (eV). The
energy scale is shifted by -1.45967 eV to refer to the bulk valence band edge of the quantum well material, i.e. the
𝐺𝑎𝐴𝑠 valence band edge (hh, lh) is at 0 eV.

We use a 6-band k.p model for the holes.

quantum {
region{

name = "quantum_region"
x = [10, 34.8]
no_density = yes
boundary{ x = dirichlet }
kp_6band{ # 6-band k.p model

(continues on next page)

296 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.4.1: Calculated valence band edges with Ψ2 of the lowest hole states.

(continued from previous page)

num_ev = 10 # number of hole states
dispersion{

...
}
k_integration{

...
}

}
output_wavefunctions{ # k.p output

max_num = 9999
all_k_points = yes
amplitudes = no
probabilities = yes

}
}

}

Database: We used the Luttinger parameters (𝛾1, 𝛾2, 𝛾3) given in [FranceschiJancuBeltram1999] and also their
valence band offset (0.5 eV). The conversion from Luttinger parameters to Dresselhaus parameters (L, M, N) is
described here. For details on the bandoffset see here. So the changes to the database_nnp.in file are as follows:

database{
binary_zb{

name = AlAs
valence = III_V

valence_bands{
bandoffset = 0.86633 # Ev,av [eV]

}

(continues on next page)

4.9. Electronic Band Structures 297

https://www.nextnano.com/nextnano3/input_parser/database/docu/How-to-add-material-parameters.htm#Dresselhaus

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

kp_6_bands{ # Dresselhaus parameters
L = -7.64 # [hbar^2/2m]
M = -3.50 # [hbar^2/2m]
N = -8.76 # [hbar^2/2m]

}
}

binary_zb{
name = GaAs
valence = III_V

valence_bands{
bandoffset = 1.346 # Ev,av [eV]

}

kp_6_bands{ # Dresselhaus parameters
L = -16.050 # [hbar^2/2m]
M = -4.050 # [hbar^2/2m]
N = -18.000 # [hbar^2/2m]

}
}

}

The valence band offset between 𝐼𝑛𝐴𝑠 and 𝐺𝑎𝐴𝑠 is 0.5 eV ([FranceschiJancuBeltram1999]) and calculated as
follows: (︀

𝐸𝐺𝑎𝐴𝑠𝑣,𝑎𝑣 +∆𝐺𝑎𝐴𝑠
𝑆𝑂 /3

)︀
−
(︀
𝐸𝐼𝑛𝐴𝑠𝑣,𝑎𝑣 +∆𝐼𝑛𝐴𝑠

𝑆𝑂 /3
)︀

= (1.346 + 0.341/3)− (0.86633 + 0.28/3) = 0.5𝑒𝑉

𝑘|| dispersion for the three uppermost subbands

The eigenvalues are twofold degenerate due to spin (and because the quantum well is symmetric). Thus, eigenvalue
1 and 2 correspond to Figure 4.9.4.2, 3 and 4 to Figure 4.9.4.3 and 5 and 6 to Figure 4.9.4.4. For the following
three pictures, the energy is referred to the bulk valence band edge of the quantum well material, i.e. hh/lh(𝐺𝑎𝐴𝑠)
= 0 eV. The colors and the color bar correspond to the energy given in eV. The 𝑥 and 𝑦 coordinate axes refer to the
in-plane wave vector. The units are in 1/Angstrom.

Now we will plot a cut through the above three pictures from [010] to the zone center and from the
zone center to [011], see Figure 4.9.4.5. This plot was obtained by plotting the following file: disper-
sion_quantum_region_kp6_kpar_10_00_11.dat.

The value of the abscissa is found as follows:

• From [10] to zero we just take −𝑘𝑥.

• From zero to [11] we take
√︁
𝑘2𝑥 + 𝑘2𝑦 .

The above figure shows the eigenvalues as a function of 𝑘|| vector. The three lines correspond to the upper three
eigenvalues (which are two-fold spin-degenerate) as shown in the above QW figure. The thick lines are for the
nonsymmetrized k.p Hamiltonian (which is closer to the more accurate tight-binding results), the thin lines are
for the symmetrized k.p Hamiltonian. The two sets of k.p subbands coincide at the Brillouin-zone center (i.e. at
𝑘|| = 0). They do not show pronounced discrepancies at nonzero in-plane 𝑘 vectors. This follows from the rather
small difference between the effective-mass parameters of 𝐺𝑎𝐴𝑠 and 𝐴𝑙𝐴𝑠. Obviously, for larger 𝑘 values, the
discrepancies are more significant.

298 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.4.2: Subband 1 (eigenvalue 1 and 2)

4.9. Electronic Band Structures 299

nextnano++ Documentation, Release 1.25.13

Figure 4.9.4.3: Subband 2 (eigenvalue 3 and 4)

300 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.4.4: Subband 3 (eigenvalue 5 and 6)

Figure 4.9.4.5: Calculated valence band structure of a 𝐺𝑎𝐴𝑠/𝐴𝑙𝐴𝑠 QW.

4.9. Electronic Band Structures 301

nextnano++ Documentation, Release 1.25.13

b) Tensely strained 𝐺𝑎𝑆𝑏/𝐴𝑙𝑆𝑏 quantum wells

Input file: 1Dwell_GaSb_AlSb_nnp.in

Figure 4.9.4.6 reproduces Fig. 2 of [FranceschiJancuBeltram1999] very well. It is a tensely strained 5.1 nm𝐺𝑎𝑆𝑏
quantum well embedded between unstrained𝐴𝑙𝑆𝑏 barriers. The biaxial strain is 0.65 % and breaks the degeneracy
of the bulk heavy and light hole band edge. Now the light hole band edge lies above the heavy hole band edge.

The figure shows that the first two subbands are nearly degenerate at the Brillouin zone center and show strong
coupling.

Figure 4.9.4.6: Calculated valence band structure of a tensely strained 𝐺𝑎𝑆𝑏/𝐴𝑙𝑆𝑏 QW.

A large discrepancy between the nonsymmetrized and the symmetrized k.p Hamiltonian can be seen. (See also
the discussion in [FranceschiJancuBeltram1999] and their tight-binding results.)

c) Tensely strained 𝐼𝑛0.43𝐺𝑎0.57𝐴𝑠/𝐼𝑛𝑃 quantum wells

Input file: 1Dwell_InGaAs_InP_nnp.in

The following figure reproduces Fig. 3 of [FranceschiJancuBeltram1999] very well. It is a tensely strained 5.7
nm 𝐼𝑛0.43𝐺𝑎0.57𝐴𝑠 quantum well embedded between unstrained 𝐼𝑛𝑃 barriers. The biaxial strain is 0.73 % and
breaks the degeneracy of the bulk heavy and light hole band edge. Now the light hole band edge lies above the
heavy hole band edge.

Figure 4.9.4.7: Calculated valence band structure of a tensely strained 𝐼𝑛0.43𝐺𝑎0.57𝐴𝑠/𝐼𝑛𝑃 QW.

Again, a large discrepancy between the nonsymmetrized and the symmetrized k.p Hamiltonian can be seen. (See
also the discussion in [FranceschiJancuBeltram1999] and their tight-binding results.)

302 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

d) Strained 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠/𝐺𝑎𝐴𝑠 quantum well

Input files:

• 1DIn20Ga80AsQW_75nm_sg.in

• 1DIn20Ga80AsQW_75nm_kp.in

• 1DIn20Ga80AsQW_75nm_kp_dispersion.in

These input files have been used for Fig. 8 in the following paper: [Holleitner2007].

1DIn20Ga80AsQW_75nm_sg.in

A 7.5 nm 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠 quantum well is sandwiched between two 𝐺𝑎𝐴𝑠 layers. The quantum well is grown
pseudomorphically on a 𝐺𝑎𝐴𝑠 substrate and is thus strained compressively with respect to the 𝐺𝑎𝐴𝑠 substrate.

The 𝐺𝑎𝐴𝑠 is n-type doped with Si with a concentration of 3 · 1017 cm-3 in the regions between 𝑥 = 50 nm and 𝑥
= 80 nm and between 𝑥 = 127.5 nm and 𝑥 = 137.5 nm.

Consequently, we first have to solve the single-band Schrödinger equation together with the Poisson equation self-
consistently, in order to obtain the electrostatic potential. The electron ground state is below the Fermi level.

Figure 4.9.4.8: Calculated band edge profile of a compressively strained 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠/𝐺𝑎𝐴𝑠 QW (single-band
Schrödinger equation).

1DIn20Ga80AsQW_75nm_kp.in

The calculated electrostatic potential is read in and then the 8-band k.p equation is solved to get the eigenstates for
𝑘|| = 0. The calculated transition energy between the ground state electron and the ground state (heavy) hole is
1.340 eV. (Note: The exciton correction has not been considered and is of the order 4 meV.)

For 𝑘|| = 0, the three highest hole states have heavy hole character whereas the forth state has light hole character.
No further states are confined. The split-off hole band edge is far away from the heavy and light hole band edges
(~ 0.3 eV).

4.9. Electronic Band Structures 303

nextnano++ Documentation, Release 1.25.13

Figure 4.9.4.9: Calculated band edge profile of a compressively strained 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠/𝐺𝑎𝐴𝑠 QW (8-band k.p).

Figure 4.9.4.10: Calculated valence band structure and lowest hole states of a compressively strained
𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠/𝐺𝑎𝐴𝑠 QW (8-band k.p).

304 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

1DIn20Ga80AsQW_75nm_kp_dispersion.in

We read in the electrostatic potential again and calculate the 8-band k.p dispersion for 𝑘|| ̸= 0. This time the
calculation is more time-consuming as the Schrödinger equation has to be solved for 250 different 𝑘|| points, i.e.
the CPU time is 250 times larger than for 𝑘|| = 0 only.

For |𝑘||| <= 0.02 1/Angstrom, the directions [10] and [11] are practically identical for the uppermost hole level, see
Figure 4.9.4.11.

Figure 4.9.4.11: Calculated subband dispersions in 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠/𝐺𝑎𝐴𝑠 QW.

Figure 4.9.4.12 shows the 𝑘|| dispersion of the highest hole state (h1). The 𝑥 axis shows the kx value between
-0.10 [1/Angstrom] and 0.10 [1/Angstrom], the 𝑦 axis shows 𝑘𝑦 . The maximum energy of the hole state occurs at
-1.3603 eV at (𝑘𝑥, 𝑘𝑦) = (0, 0), i.e. in the center of the figure (Gamma point).

Last update: nnnn/nn/nn

4.9.5 k.p dispersion of an unstrained GaN QW embedded between strained Al-
GaN layers

Input files:
• 1DGaN_AlGaN_QW_k_zero_nnp.in

• 1DGaN_AlGaN_QW_k_parallel_nnp.in

• 1DGaN_AlGaN_QW_k_zero_10m10_nnp.in

• 1DGaN_AlGaN_QW_k_parallel_10m10_nnp.in

• 1DGaN_AlGaN_QW_k_parallel_10m10_whole_nnp.in

Scope:
In this tutorial we aim to reproduce results of [Park2000]. The material parameters are taken
from [ParkChunag2000], except those listed in Table 1 of [Park2000].

[0001] growth direction

Calculation of electron and hole energies and wave functions for 𝑘|| = 0

Input file: 1DGaN_AlGaN_QW_k_zero_nnp.in

The structure consists of a 3 nm unstrained𝐺𝑎𝑁 quantum well, embedded between 8.4 nm strained 𝐴𝑙0.2𝐺𝑎0.8𝑁
barriers. The 𝐴𝑙𝐺𝑎𝑁 layers are strained with respect to the 𝐺𝑎𝑁 substrate. The 𝐺𝑎𝑁 quantum well is assumed
to be unstrained.

4.9. Electronic Band Structures 305

nextnano++ Documentation, Release 1.25.13

Figure 4.9.4.12: Calculated dispersion of h1 state in a 𝐼𝑛0.2𝐺𝑎0.8𝐴𝑠/𝐺𝑎𝐴𝑠 QW.

306 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The structure is modeled as a superlattice (or multi quantum well, MQW), i.e. we apply periodic boundary condi-
tions to the Poisson equation.

The growth direction is along the hexagonal axis, i.e. along [0001].

Conduction and valence band profile
Figure 4.9.5.1 shows the conduction and valence (heavy hole, light hole and crystal-field split-off hole) band edges
of our structure, including the effects of strain, piezo- and pyroelectricity. The ground state electron and the ground
state heavy hole wave functions (Ψ2) are shown. Due to the built-in piezo- and pyroelectric fields, the electron
wave function are shifted to the right and the hole wave function to the left (Quantum Confined Stark Effect, QCSE)

Figure 4.9.5.1: Calculated band edge profile.

Strain
The strain inside the 𝐺𝑎𝑁 quantum well layer is zero. The tensile strain in the 𝐴𝑙0.2𝐺𝑎0.8𝑁 barriers has been
calculated to be

𝑒𝑥𝑥 = 𝑒𝑦𝑦 =
𝑎substrate − 𝑎

𝑎
= 0.486.

[Park2000] gives a value of 0.484.

The output of the strain tensor can be found in this file: strain\strain_crystal.dat

Piezoelectric polarization
The piezoelectric polarization for the [0001] growth direction is zero inside the GaN QW, because the strain is zero
in the QW. In the 𝐴𝑙0.2𝐺𝑎0.8𝑁 barriers, the piezoelectric polarization has been calculated to be 0.0081 C/m2 in
agreement with Fig. 1(a) of [Park2000] for angle 𝜃 = 0. The resulting piezoelectric polarization

• at the 𝐴𝑙0.2𝐺𝑎0.8𝑁/𝐺𝑎𝑁 interface -0.0081 C/m2 and

• at the 𝐺𝑎𝑁/𝐴𝑙0.2𝐺𝑎0.8𝑁 interface is 0.0081 C/m2.

Pyroelectric polarization
The pyroelectric polarization for the [0001] growth direction is -0.029 C/m2 inside the 𝐺𝑎𝑁 QW. In the
𝐴𝑙0.2𝐺𝑎0.8𝑁 barriers, the pyroelectric polarization has been calculated to be -0.0394 C/m2. The resulting py-
roelectric polarization

• at the 𝐴𝑙0.2𝐺𝑎0.8𝑁/𝐺𝑎𝑁 interface is -0.0104 C/m2 and

• at the 𝐺𝑎𝑁/𝐴𝑙0.2𝐺𝑎0.8𝑁 interface is 0.0104 C/m2.

These results are in excellent agreement with Fig. 1(a) of [Park2000] for angle 𝜃 = 0.

Poisson equation
Solving the Poisson equation with periodic boundary conditions (to mimic the superlattice) leads to the following
electric fields: Inside the𝐺𝑎𝑁 QW the electric field has been calculated to be -1.551 MV/cm. [Park2000] reports

4.9. Electronic Band Structures 307

nextnano++ Documentation, Release 1.25.13

an electric field of -1.55 MV/cm inside the QW. The electric field in the𝐴𝑙𝐺𝑎𝑁 barrier has been found to be 0.554
MV/cm.

The output of the electrostatic potential (units [V]) and the electric field (units [kV/cm]) can be found in these files:

• bias_00000\potential

• bias_00000\electric_filed.dat

Schrödinger equation
Figure 4.9.5.2 shows the electron and hole wave functions (Ψ2) of the 𝐺𝑎𝑁/𝐴𝑙𝐺𝑎𝑁 structure for 𝑘|| = 0. The
heavy and light hole wave functions are very similar in shape.

In agreement with [Park2000], we calculated the electron levels within the single-band effective mass approxima-
tion and the hole levels within the 6-band k.p approximation.

Figure 4.9.5.2: Calculated wave functions of lowest eigenstates.

𝑘|| dispersion: Calculation of the electron and hole energies and wave functions for 𝑘|| ̸= 0.

Input file: 1DGaN_AlGaN_QW_k_parallel_nnp.in

The grid has a spacing of 0.1 nm leading to a sparse matrix of dimension 1050 which has to be solved for each 𝑘||
point for the eigenvalues (and wave functions).

We chose as input:

calculate_dispersion{
num_points = 1849 # This corresponds to 1849 k|| points in the 2D (kx,ky) plane,␣

→˓i.e. (2 * 21 + 1) * (2 * 21 + 1) = 1849.
}

Due to symmetry arguments, we solved the Schrödinger equation only for the 𝑘|| points along the line (𝑘𝑥 > 0, 𝑘𝑦
= 0), i.e. we had to solve the Schrödinger equation 22 times (i.e. to calculate the eigenvalues of a 1050 x 1050
matrix 22 times).

The energy dispersion 𝐸(𝑘||) = 𝐸(𝑘𝑦, 𝑘𝑧) displayed in Figure 4.9.5.3 is contained in this folder:
bias_00000\Quantum\Dispersion

Because our quantum well is not symmetric (due to the piezo- and pyroelectric fields), the eigenvalues for spin
up and spin down are not degenerate anymore. They are only degenerate at 𝑘|| = 0. This lifting of the so-called
Kramer’s degeneracy in the in-plane dispersion relations is because of the field-induced asymmetry. In Fig. 3 (a) of

308 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.5.3: Calculated energy dispersion 𝐸(𝑘||) = 𝐸(𝑘𝑦, 𝑘𝑧).

[Park2000] only the spin-up eigenstates are plotted because the splitting of the Kramer’s degeneracy was assumed
to be very small.

[10-10] growth direction (m-plane)

Input file: 1DGaN_AlGaN_QW_k_zero_10m10_nnp.in

If one grows the quantum well along the [10-10] growth direction, then the pyroelectric and piezoelectric fields
along the [10-10] direction are zero. In this case, the quantum well (i.e. the conduction and valence band profile)
is symmetric.

Figure 4.9.5.4 shows the electron and hole wave functions (𝜓2) of the (10-10)-oriented𝐺𝑎𝑁/𝐴𝑙𝐺𝑎𝑁𝑄𝑊 for 𝑘|| =
0. Obviously, the interband transition matrix elements (i.e. the probability for electron-hole transitions) are much
larger than for the [0001] growth direction.

In agreement with [Park2000], we calculated the electron levels within the single-band effective mass approxima-
tion and the hole levels within the 6-band k.p approximation.

Figure 4.9.5.4: Calculated wave functions of lowest eigenstates.

4.9. Electronic Band Structures 309

nextnano++ Documentation, Release 1.25.13

𝑘|| dispersion: Calculation of the electron and hole energies and wave functions for 𝑘|| ̸= 0.

Input file: 1DGaN_AlGaN_QW_k_parallel_10m10_nnp.in

Due to the symmetry of the quantum well, we expect degenerate eigenvalues for the in-plane dispersion relation
(Kramer’s degeneracy). Our results, depicted in Figure 4.9.5.5, compare well with Fig. 3(c) of [Park2000].

Figure 4.9.5.5: Calculated energy dispersion 𝐸(𝑘||) = 𝐸(𝑘𝑦, 𝑘𝑧).

Last update: nnnn/nn/nn

4.9.6 Energy dispersion of a cylindrical shaped GaN nanowire
Input files:

• 2DGaN_nanowire_nnp.in

Scope:
In this tutorial we study the electron and hole energy levels of a two-dimensional freestanding
𝐺𝑎𝑁 nanowire of cylindrical shape. We aim to reproduce results of [ZhangXia2006].

Output files:
• bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp6_path_as_in_input_file.dat

• bias_00000\Quantum\probabilities_quantum_region_kp6_00000.fld

Introduction

We assume a cylindrical shaped𝐺𝑎𝑁 nanowire (wurtzite structure) that has a radius of 2 nm with infinite barriers
so that the wave functions are zero at the nanowire boundary. This assumption is consistent to [ZhangXia2006].
The 𝐺𝑎𝑁 nanowire is shown in red in Figure 4.9.6.1. The 𝐺𝑎𝑁 nanowire is discretized on a mesh with a grid
resolution of 0.05 nm.

Electrons

Figure 4.9.6.2 shows the electron states as a function of 𝑘 of the 𝐺𝑎𝑁 nanowire. It is in excellent agreement with
Fig. 1 of [ZhangXia2006]. All states are two-fold degenerate due to spin. In addition, the 2nd and 3rd state are
degenerate, as well as the 4th and the 5th. The ground state has quantum number 𝐿 = 0. For 𝐿 ̸= 0, the states
are degenerate due to 𝐿 = ± 1. The energy levels increase with increasing 𝑘 as quadratic terms of 𝑘 (parabolic
dispersion).

310 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.6.1: 𝐺𝑎𝑁 nanowire structure.

4.9. Electronic Band Structures 311

nextnano++ Documentation, Release 1.25.13

Technical details: We calculated the electron energy levels at 𝑘𝑥 = 0 with nextnano++ numerically by solving the
2D single-band Schrödinger equation. The parabolic dispersion for 𝑘𝑥 ̸= 0 has been calculated analytically using

𝐸𝑖(𝑘𝑥) = 𝐸𝑖 +
ℏ2𝑘2𝑥
2𝑚*

i.e. not with nextnano++. The eigenvalues for 𝑘𝑥 = 0 can be found in the following file:
bias_00000\Quantum\energy_spectrum_quantum_region_Gamma_00000.dat

Figure 4.9.6.2: Energy dispersion 𝐸(𝑘) of electron states.

The wave function (Ψ2) of the electron ground state at 𝑘 = 0 is shown in Figure 4.9.6.3.

Holes

The following figures show the ground state wave function (psi^2) of the hole (Figure 4.9.6.4) and the 1st excited
hole state (Figure 4.9.6.5) as calculated within the 6-band k.p approximation at 𝑘 = 0. According to the above cited
paper, the right figure would be the ground state for𝐺𝑎𝑁 nanowires with a radius 𝑟 < 0.7 nm. Because our nanowire
has a radius of 2 nm, the ground state wave function is according to the left figure. Following [ZhangXia2006],
this means that the probability for electron-hole transitions (e1 - h1) is not very high at a radius of 2 nm because
the wave functions do not have much overlap and the electron ground state has 𝐿 = 0, whereas the hole ground
state has 𝐿 = ± 1 (dark exciton effect).

Figure 4.9.6.6 shows the hole states as a function of 𝑘 of the𝐺𝑎𝑁 nanowire as calculated with 6-band k.p theory. It
corresponds to Fig. 2 and Fig. 3 of the paper of [ZhangXia2006]. Note that the authors assumed the hole energies
to be positive. All states are two-fold degenerate, i.e. h1 = h2, h3 = h4, h5 = h6, . . .

The nextnano++ results are a bit different. Several reasons could explain this:

• The authors use the “cylindrical approximation” for the k.p parameters. However, the parameters that they
are citing are not exactly cylindrical. Thus, for our calculations, we had to employ the parameters that they
were citing (without making use of the cylindrical approximation).

• Our cylinder does not have exactly cylindrical symmetry. It is approximated to be cylindrical by a rectangular
grid with a grid resolution of 0.05 nm.

• For the k.p parameters that are given in [ZhangXia2006], it must hold that

𝐴5 =
1

2
(𝐿1 −𝑀1)

is equal to

𝐴5 =
1

2
𝑁1.

However, they differ by 0.0064.

312 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.6.3: Ψ2 of electron ground state.

4.9. Electronic Band Structures 313

nextnano++ Documentation, Release 1.25.13

Figure 4.9.6.4: Ψ2 of hole ground state.

314 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.6.5: Ψ2 of 1st excited hole state.

Figure 4.9.6.6: Energy dispersion 𝐸(𝑘) of hole states.

4.9. Electronic Band Structures 315

nextnano++ Documentation, Release 1.25.13

The data that has been plotted in Figure 4.9.6.6 is contained in this file:
bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp6_lines_type1_00-1_001.dat

In the input file, one can specify the number of 𝑘|| = 𝑘𝑥 points.

quantum{
region{

...
kp_6band{

dispersion{
line{

name = "lines"
spacing = 2 * $k_max / $number_of_k_parallel_points # Unit: [nm-

→˓1].
k_max = $k_max # specifies a␣

→˓maximum absolute value (radius) for the k-vector. Unit: [nm-1].
}

}
}

}
}

Note that e.g. $number_of_k_parallel_points = 41means 14 minutes CPU time (Intel i5, 2015). If one uses
only 1, then one only calculates the k.p states at 𝑘𝑥 = 0 and the calculation takes less than a minute.

[ZhangXia2006] used the following 6-band k.p parameters:

• Crystal field and spin-orbit splitting energies:

∆𝑐𝑟 = 0.021

∆𝑠𝑜 = 0.018

• “Dresselhaus” parameters:

[ZhangXia2006] nextnano++
𝐿 = 6.3055 𝐿1 = -6.3055 - 1 = -7.3055 ⇒ The definition of the k.p Hamiltonians differs.
𝑀 = 0.1956 𝑀1 = -0.1956 - 1 = -1.1956 ⇒ The definition of the k.p Hamiltonians differs.
𝑁 = 0.3813 𝑀2 = -0.3813 - 1 = -1.3813 ⇒ The definition of the k.p Hamiltonians differs.
𝑅 = 6.1227 𝑁1 = -0.3813 - 1 = -6.1227
𝑆 = 0.4335 𝑀3 = -0.4335 - 1 = -1.4335 ⇒ The definition of the k.p Hamiltonians differs
𝑇 = 7.3308 𝐿2 = -7.3308 - 1 = -8.3308 ⇒ The definition of the k.p Hamiltonians differs
𝑄 = 4.0200 𝑁2 = -4.0200

• Conversion to “Luttinger” parameters:

𝐴1 = 𝐿2 + 1 = -8.3308 + 1 = -7.3308 ⇒ The definition of the k.p Hamiltonians differs.
𝐴2 = 𝑀3 + 1 = -1.4335 + 1 = -0.4335 ⇒ The definition of the k.p Hamiltonians differs.
𝐴3 = 𝑀2 - 𝐿2 = -0.3813 + 7.3308 = 6.9495
𝐴4 = 1/2 (𝐿1 + 𝑀1 - 2 𝑀3) = -2.81705
𝐴5 = 1/2 (𝐿1 - 𝑀1) = -3.05495 ⇒ inconsistent to -3.06135
𝐴5 = 1/2 (𝑁1) = -3.06135 ⇒ inconsistent to -3.05495
𝐴6 =

√
2/2𝑁2 = -2.84256926

Cylindrical (axial) approximation:

316 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• [ZhangXia2006]:

𝐿−𝑀 −𝑅 = 0

• nextnano++:

𝐿1 −𝑀1 −𝑁1 = 0

⇒ (𝐴2 +𝐴4 +𝐴5 − 1)− (𝐴2 +𝐴4 −𝐴5 − 1)− 2𝐴5 = 0.

𝐴1 −𝐴2 = −𝐴3 = 2𝐴4

𝐴3 + 4𝐴5 =
√
2𝐴6

∆2 = ∆3 =
1

3
∆𝑠𝑜

Last update: nnnn/nn/nn

4.9.7 Electronic band structure of 2DHG in Silicon inversion layers under pseu-
domorphic strain | 1D

Input files in examples\electronic_band_structures\:
• band-structure-kp_inv-layer-Si_Fischetti_2003_1D_(001)_nnp.in

• band-structure-kp_inv-layer-Si_Fischetti_2003_1D_(011)_nnp

• band-structure-kp_inv-layer-Si_Fischetti_2003_1D_(111)_nnp

• band-structure-kp_inv-layer-Si_Fischetti_2003_1D_(001)_tensile_nnp

• band-structure-kp_inv-layer-Si_Fischetti_2003_1D_(001)_compressive_nnp

Relevant output files:
• bias_00000\Quantum\probabilities_shift_quantum_region_kp6_00000.dat

• bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp6_XXXX.fld

This tutorial aims to reproduce the figures presented in [FischettiJAP2003] Note that the crystal growth direction
is along the z axis although it becomes along x axis in nextnano++.

Unstrained silicon inversion layer with (001) surface orientation

kpdispersion_Si_Fischetti_2003_1D_(001)_nnp is used in this section.

The figures below (Figure 4.9.7.1) aim to reproduce Fig.1(a), and Fig.4(a) of [FischettiJAP2003].

Figure 4.9.7.1 (a) shows the valence edges (where the heavy and light hole band edges are degenerate) and the six
lowest hole wave functions of a Si inversion layer (triangular-well approximation) for k = 0 (i.e. 𝑘𝑥 = 𝑘𝑦 = 0)
where the z axis is oriented along the [001] direction.

The potential energy of the well is given by

𝑉 (𝑧′) = 𝑒𝐹𝑠𝑧
′

4.9. Electronic Band Structures 317

nextnano++ Documentation, Release 1.25.13

Figure 4.9.7.1: Some characteristics of the unstrained silicon inversion layer with (001) surface orientation.

where 𝐹𝑠 is the surface field. In the figure, the electric field is 𝐹𝑠 = −1000 kV/cm. Note that in the figure z is
shifted by 1 nm: 𝑉 (𝑧 = 1) = 𝑉 (𝑧′ = 0). One can clearly distinguish the holes by their characters (heavy-hole-like,
light-hole-like, split-off-hole-like).

The energies of the six lowest-lying hole subbands for the (001) surface of the unstrained Si inversion layer are
plotted as a function of the applied electric field (i.e. as a function of the triangular-well potential) in Figure 4.9.7.1
(b). The subband energies are measured from the surface potential. Our results are in excellent agreement with
Fischetti’s results. The symbols are calculated values, the connecting lines are added as a guide to the eye. The
hole energies are taken to be positive, in contrast to the figure above (Figure 4.9.7.1 (a)) The labels of the curves
(hh, lh, and so) are taken from Fischetti’s paper. We do not perform this analysis within nextnano++ because it is
not important for quantitative results.

Figure 4.9.7.1 (c), (d), and (e) show the equienergy lines of the lowest lying heavy hole, light hole, and split-off
hole subbands for the (001) surface of the unstrained silicon, respectively. Only one spin state is plotted for clarity.
The x axis points along the [100], the y axis along the [010] direction of the crystal coordinate system.

The eigenvalues are spin-degenerate only at k = (𝑘𝑥, 𝑘𝑦) = 0, but differ for non-zero k. The plots show the
𝑘|| dispersions of the lowest heavy hole (1st eigenstate, (c)), the lowest light hole (3rd eigenstate, (d)), and the
lowest split-off hole (5th eigenstate, (e)).

Unstrained silicon inversion layer with (011) surface orientation

kpdispersion_Si_Fischetti_2003_1D_(011)_nnp is used in this section.

The figures below (Figure 4.9.7.2) aim to reproduce Fig.2(a), and Fig.4(b) of [FischettiJAP2003].

Figure 4.9.7.2 (a) shows the valence edges (where the heavy and light hole band edges are degenerate) and the six
lowest hole wave functions of a Si inversion layer (triangular-well approximation) for k = 0 (i.e. 𝑘𝑥 = 𝑘𝑦 = 0)
where the z axis is oriented along the [011] direction. The potential energy of the well is given in the same way
as in Figure 4.9.7.1, with a magnitude of −1000 kV/cm. One can clearly distinguish the holes by their characters
(heavy-hole-like, light-hole-like, split-off-hole-like).

The energies of the six lowest-lying hole subbands for the (011) surface of the unstrained Si inversion layer are
plotted as a function of the applied electric field in Figure 4.9.7.2 (b). The subband energies are measured from the
surface potential. Our results are in excellent agreement with Fischetti’s results. The plotting method is the same
as in Figure 4.9.7.1 (b), and we also do not perform an analysis on the labels (hh, lh, and so) of each curve.

Figure 4.9.7.2 (c), (d), and (e) show the equienergy lines of the lowest lying heavy hole, light hole, and split-off
hole subbands for the (011) surface of unstrained silicon, respectively. Only one spin state is plotted for clarity.
The x axis points along the [100], the y axis along the [011̄] direction of the crystal coordinate system.

318 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.9.7.2: Some characteristics of the unstrained silicon inversion layer with (011) surface orientation.

The eigenvalues are spin-degenerate only at k = (𝑘𝑥, 𝑘𝑦) = 0, but differ for non-zero k. The plots show the 𝑘||
dispersions of the lowest heavy hole (1st eigenstate, (c)), the lowest light hole (5th eigenstate, (d)), and the lowest
split-off hole (9th eigenstate, (e)).

Unstrained silicon inversion layer with (111) surface orientation

kpdispersion_Si_Fischetti_2003_1D_(111)_nnp is used in this section.

The figures below (Figure 4.9.7.3) aim to reproduce Fig.3(a), and Fig.4(c) of [FischettiJAP2003].

Figure 4.9.7.3: Some characteristics of the unstrained silicon inversion layer with (111) surface orientation.

Figure 4.9.7.3 (a) shows the valence edges (where the heavy and light hole band edges are degenerate) and the six
lowest hole wave functions of a Si inversion layer (triangular-well approximation) for k = 0 (i.e. 𝑘𝑥 = 𝑘𝑦 = 0)
where the z axis is oriented along the [111] direction. The potential energy of the well is given in the same way as
in Figure 4.9.7.1, with a magnitude of −1000 kV/cm.

The energies of the six lowest-lying hole subbands for the (111) surface of the unstrained Si inversion layer are
plotted as a function of the applied electric field in Figure 4.9.7.3 (b). The subband energies are measured from the

4.9. Electronic Band Structures 319

nextnano++ Documentation, Release 1.25.13

surface potential. Our results are in excellent agreement with Fischetti’s results. The plotting method is the same
as in Figure 4.9.7.1 (b), and we also do not perform an analysis on the labels (hh, lh, and so) of each curve.

Figure 4.9.7.3 (c), (d), and (e) show the equienergy lines of the lowest lying heavy hole, light hole, and split-off
hole subbands for the (111) surface of unstrained silicon, respectively. Only one spin state is plotted for clarity.
The x axis points along the [112̄], the y axis along the [1̄10] direction of the crystal coordinate system.

The eigenvalues are spin-degenerate only at k = (𝑘𝑥, 𝑘𝑦) = 0, but differ for non-zero k. The plots show the
𝑘|| dispersions of the lowest heavy hole (1st eigenstate, (c)), the lowest light hole (3rd eigenstate, (d)), and the
lowest split-off hole (9th eigenstate, (e)).

1% tensilely strained silicon inversion layer with (001) surface orientation

kpdispersion_Si_Fischetti_2003_1D_(001)_tensile_nnp is used in this section.

The figures below (Figure 4.9.7.4) aim to reproduce Fig.5(a), and Fig.7(a) of [FischettiJAP2003].

Figure 4.9.7.4: Some characteristics of the 1 % tensilely strained silicon inversion layer with (001) surface orien-
tation.

Figure 4.9.7.4 (a) shows the valence edges (where the heavy and light hole band edges are no longer degenerate)
and the six lowest hole wave functions of a tensilely strained Si inversion layer (triangular-well approximation) for
k = 0 (i.e. 𝑘𝑥 = 𝑘𝑦 = 0) where the z axis is oriented along the [001] direction. The tensile in-plane strain in the
(𝑥, 𝑦) plane is 1 %. The potential energy of the well is given in the same way as in Figure 4.9.7.1, with a magnitude
of −1000 kV/cm.

The energies of the six lowest-lying hole subbands for the (001) surface of the tensilely strained Si inversion layer
are plotted as a function of the applied electric field in Figure 4.9.7.4 (b). The subband energies are measured
from the surface potential which is assumed to be at 0 eV for the unstrained valence band edges. After application
of strain, the highest valence band edge is the light hole band edge at 96.72 meV. Our results are in excellent
agreement with Fischetti’s results.

At low electric fields (−300 kV/cm and −400 kV/cm), the third hole eigenstate is the second light hole state
(lh2), whereas for higher fields this is the split-off hole state (so1).
The plotting method is the same as in Figure 4.9.7.1 (b), and we also do not perform an analysis on the labels (hh,
lh, and so) of each curve.

Figure 4.9.7.4 (c), (d), and (e) show the equienergy lines of the lowest lying heavy hole, light hole, and split-off
hole subbands for the (001) surface of 1 % tensilely strained silicon, respectively. Only one spin state is plotted for
clarity. The x axis points along the [100], the y axis along the [010] direction of the crystal coordinate system.

The eigenvalues are spin-degenerate only at k = (𝑘𝑥, 𝑘𝑦) = 0, but differ for non-zero k. The plots show the

320 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

𝑘|| dispersions of the lowest light hole (1st eigenstate, (d)), the lowest heavy hole (3rd eigenstate, (c)), and the
lowest split-off hole (5th eigenstate, (e)).

1% compressively strained silicon inversion layer with (001) surface orientation

kpdispersion_Si_Fischetti_2003_1D_(001)_compressive_nnp is used in this section.

The figures below (Figure 4.9.7.5) aim to reproduce Fig.6(a), and Fig.7(b) of [FischettiJAP2003].

Figure 4.9.7.5: Some characteristics of the 1 % compressively strained silicon inversion layer with (001) surface
orientation.

Figure 4.9.7.5 (a) shows the valence edges (where the heavy and light hole band edges are no longer degenerate) and
the six lowest hole wave functions of a compressively strained Si inversion layer (triangular-well approximation)
for k = 0 (i.e. 𝑘𝑥 = 𝑘𝑦 = 0) where the z axis is oriented along the [001] direction. The compressive in-plane
strain in the (𝑥, 𝑦) plane is 1 %. The potential energy of the well is given in the same way as in Figure 4.9.7.1,
with a magnitude of −1000 kV/cm.

The energies of the six lowest-lying hole subbands for the (001) surface of the compressively strained Si inversion
layer are plotted as a function of the applied electric field in Figure 4.9.7.5 (b). The subband energies are measured
from the surface potential which is assumed to be at 0 eV for the unstrained valence band edges. After application
of strain, the highest valence band edge is the heavy hole band edge at 15.47 meV. Our results are in excellent
agreement with Fischetti’s results.

Again, we have crossings of the subbands. At small confining fields, the effect of confinement is compensated by
the effect of strain.

The plotting method is the same as in Figure 4.9.7.1 (b), and we also do not perform an analysis on the labels (hh,
lh, and so) of each curve.

Figure 4.9.7.5 (c), (d), and (e) show the equienergy lines of the lowewst lying heavy hole, light hole, and split-off
hole subbands for the (001) surface of 1 % compressively strained silicon, respectively. Only one spin state is
plotted for clarity. The x axis points along the [100], the y axis along the [010] direction of the crystal coordinate
system.

The eigenvalues are spin-degenerate only at k = (𝑘𝑥, 𝑘𝑦) = 0, but differ for non-zero k. The plots show the
𝑘|| dispersions of the lowest heavy hole (1st eigenstate, (c)), the lowest light hole (3rd eigenstate, (d)), and the
lowest split-off hole (5th eigenstate, (e)).

4.9. Electronic Band Structures 321

nextnano++ Documentation, Release 1.25.13

Unstrained silicon inversion layer with (001) surface orientation with different 𝑘|| points

kpdispersion_Si_Fischetti_2003_1D_(001)_nnp is used in this section. However, the number of 𝑘|| points in
dispersion is different from the result above.

The figure below (Figure 4.9.7.6) show how the number of 𝑘|| points affects the simulation results. The system is
the same as the one we use in Figure 4.9.7.1, however, with different 𝑘|| points. The equienergy lines are plotted
for 𝐸 − 𝐸0 = −25 meV where 𝐸0 is the eigenvalue of corresponding subbands at k = (𝑘𝑥, 𝑘𝑦) = 0.

Figure 4.9.7.6: The dispersion for 441 𝑘|| points ((a)), and for 1681 𝑘|| points ((b)) for the (001) surface of the
unstrained silicon under the electric field (𝐹𝑠 = −1000 kV/cm).

The grid points on the Figure 4.9.7.6 correspond to the 𝑘|| points in the simulation. The figure shows that a smaller
number of 𝑘|| points is sufficient to obtain accurate results in this system.

Last update: 10/07/2024

4.9.8 Electronic band structure of 2DHG in Si inversion layers under arbitrary
stress | 1D

• Header

• Introduction

• Coordinate systems

• Defining the strain tensor

– Uniaxial stress along [110]

– Biaxial compressive stress along [100] and [010]

– Biaxial tensile stress along [100] and [010]

• Simulation results

– No stress applied

Header

Files for the tutorial located in nextnano++\examples\electronic_band_structures

• band-structure-2DHG_Si_Wang_2004_1D_nnp.in - the input file

322 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• band-structure-2DHG_Si_Wang_2004_1D_nnp_uniax_strain.dat - strain tensor for importing

• band-structure-2DHG_Si_Wang_2004_1D_nnp_biax_tens_strain.dat - strain tensor for importing

• band-structure-2DHG_Si_Wang_2004_1D_nnp_biax_comp_strain.dat - strain tensor for importing

Scope of the tutorial:
• strain effects

• anisotropy of electronic band structure

Main adjustable parameters in the input file:
• $include_strain - turn on and off computation of the strain

• $strain_file - name of the file with strain tensor to import

• $electric_field - choosing electric field

Relevant output files:
• bias_00000\Quantum\probabilities_shift_quantum_region_kp6_00000.dat

• bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp6_XXXX.fld

Introduction

This tutorial aims at reproducing figures Fig. 2, Fig. 3., and Fig. 5 of [Wang2004]. These figures are presenting
first subband energy contours of 2D hole gas (2DHG) in Si inversion layer with an effective field of 0.5 MV/cm
and under several types of stress conditions:

• without any stress applied,

• with an uniaxial 1 GPa stress applied along [110],

• with a biaxial 1.7 GPa compressive stress applied along [100] and [010],

• with a biaxial 1.7 GPa tensile stress applied along [100] and [010].

Coordinate systems

As the growth direction [001] is set along the 𝑧-axis in [Wang2004], the electronic band structures are spanned
by [100] and [010] corresponding to 𝑥-axis and 𝑦-axis, respectively. Therefore, the wave-vector coordinates for
electronic band structures 𝑘𝑥 and 𝑘𝑦 correspond to [100] and [010], repectively, as well.

Differently, the growth direction in the simulations presented in this tutorial is always set along the 𝑥-axis with
[001] set along it. The remaining directions [100] and [010] are permutated accordingly to align with 𝑦-axis and
𝑧-axis, respectively. Therefore, the wave-vector coordinates for electronic band structures in the simulations 𝑘𝑦
and 𝑘𝑧 correspond to [100] and [010], repectively, as well.

As a result, crystallographic directions in the simulations of this tutorial are exactly aligned with the [Wang2004]
while the simulation coordinate system is defined differently.

Defining the strain tensor

Here, we introduce how to calculate strain and import it to the simulation.

The relationship between the stress tensor (𝜎𝑖𝑗) and the strain tensor (𝑒𝑖𝑗) for the crystals with zincblende symmetry
is expressed as (4.9.8.1). ⎡⎢⎢⎢⎢⎢⎢⎣

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑧𝑧
𝜎𝑦𝑧
𝜎𝑧𝑥
𝜎𝑥𝑦

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣
𝐶11 𝐶12 𝐶12

𝐶12 𝐶11 𝐶12

𝐶12 𝐶12 𝐶11

𝐶44

𝐶44

𝐶44

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑧𝑧
2𝜀𝑦𝑧
2𝜀𝑧𝑥
2𝜀𝑥𝑦

⎤⎥⎥⎥⎥⎥⎥⎦ (4.9.8.1)

4.9. Electronic Band Structures 323

nextnano++ Documentation, Release 1.25.13

� Hint

See Introduction to strain calculation for further reference.

Uniaxial stress along [110]

First, we consider 1 GPa of uniaxial stress along the [110] direction. Uniaxial stress in the orthogonal coordinate
system can be calculated using the method shown in uniaxial stress. Then, related stress tensor in GPa units is

𝜎[110] =

⎡⎣𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑧𝑥
* 𝜎𝑦𝑦 𝜎𝑦𝑧
* * 𝜎𝑧𝑧

⎤⎦ =

⎡⎣0 0 0
0 −0.5 −0.5
0 −0.5 −0.5

⎤⎦ .
Thus, you can solve the following simultaneous equations to obtain the strain components.

𝜎𝑥𝑥 = 𝐶11𝜀𝑥𝑥 + 𝐶12𝜀𝑦𝑦 + 𝐶12𝜀𝑧𝑧 = 165.77 · 𝜀𝑥𝑥 + 63.93 · 𝜀𝑦𝑦 + 63.93 · 𝜀𝑦𝑦 = 0

𝜎𝑦𝑦 = 𝐶12𝜀𝑥𝑥 + 𝐶11𝜀𝑦𝑦 + 𝐶12𝜀𝑧𝑧 = 63.93 · 𝜀𝑥𝑥 + 165.77 · 𝜀𝑦𝑦 + 63.93 · 𝜀𝑧𝑧 = −0.5

𝜎𝑧𝑧 = 𝐶12𝜀𝑥𝑥 + 𝐶12𝜀𝑦𝑦 + 𝐶11𝜀𝑧𝑧 = 63.93 · 𝜀𝑥𝑥 + 63.93 · 𝜀𝑦𝑦 + 165.77 · 𝜀𝑧𝑧 = −0.5

𝜎𝑦𝑧 = 2𝐶44𝜀𝑦𝑧 = 2 · 79.62 · 𝜀𝑦𝑧 = −0.5

𝜎𝑧𝑥 = 2𝐶44𝜀𝑧𝑥 = 2 · 79.62 · 𝜀𝑧𝑥 = 0

𝜎𝑥𝑦 = 2𝐶44𝜀𝑥𝑦 = 2 · 79.62 · 𝜀𝑥𝑦 = 0

As a result,

𝜀𝑥𝑥 = 0.00214

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = −0.00277

𝜀𝑦𝑧 = −0.00314

𝜀𝑧𝑥 = 𝜀𝑥𝑦 = 0

This data is contained at 2DHG-strained-bands_Si_Wang_2004_1D_nnp_uniax_strain.dat.

� Hint

For guidance on importing strain to simulation follow Importing files.

Biaxial compressive stress along [100] and [010]

Next, we consider 1.7 GPa of biaxial compressive stress along [100] and [010]. Related stress tensor in GPa units
is

𝜎[110] =

⎡⎣𝜎𝑥𝑥 𝜎𝑥𝑦 𝜎𝑧𝑥
* 𝜎𝑦𝑦 𝜎𝑦𝑧
* * 𝜎𝑧𝑧

⎤⎦ =

⎡⎣0 0 0
0 −1.7 0
0 0 −1.7

⎤⎦ .
Thus, you can solve the following simultaneous equations to obtain the strain components as well as in the case of
uniaxial stress.

𝜎𝑥𝑥 = 𝐶11𝜀𝑥𝑥 + 𝐶12𝜀𝑦𝑦 + 𝐶12𝜀𝑧𝑧 = 165.77 · 𝜀𝑥𝑥 + 63.93 · 𝜀𝑦𝑦 + 63.93 · 𝜀𝑦𝑦 = 0

𝜎𝑦𝑦 = 𝐶12𝜀𝑥𝑥 + 𝐶11𝜀𝑦𝑦 + 𝐶12𝜀𝑧𝑧 = 63.93 · 𝜀𝑥𝑥 + 165.77 · 𝜀𝑦𝑦 + 63.93 · 𝜀𝑧𝑧 = −1.7

𝜎𝑧𝑧 = 𝐶12𝜀𝑥𝑥 + 𝐶12𝜀𝑦𝑦 + 𝐶11𝜀𝑧𝑧 = 63.93 · 𝜀𝑥𝑥 + 63.93 · 𝜀𝑦𝑦 + 165.77 · 𝜀𝑧𝑧 = −1.7

𝜎𝑦𝑧 = 2𝐶44𝜀𝑦𝑧 = 2 · 79.62 · 𝜀𝑦𝑧 = 0

𝜎𝑧𝑥 = 2𝐶44𝜀𝑧𝑥 = 2 · 79.62 · 𝜀𝑧𝑥 = 0

𝜎𝑥𝑦 = 2𝐶44𝜀𝑥𝑦 = 2 · 79.62 · 𝜀𝑥𝑦 = 0

As a result,

𝜀𝑥𝑥 = 0.00727

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = −0.00277

𝜀𝑦𝑧 = 𝜀𝑧𝑥 = 𝜀𝑥𝑦 = 0

324 Chapter 4. Tutorials

https://www.iue.tuwien.ac.at/phd/ungersboeck/node25.html

nextnano++ Documentation, Release 1.25.13

This data is contained at band-structure-2DHG_Si_Wang_2004_1D_nnp_biax_comp_strain.dat.

Biaxial tensile stress along [100] and [010]

Next, we consider 1.7 GPa of biaxial tensile stress along [100] and [010]. You just need to change the signs of the
strain components in the previous section.

Therefore,

𝜀𝑥𝑥 = −0.00727

𝜀𝑦𝑦 = 𝜀𝑧𝑧 = 0.00277

𝜀𝑦𝑧 = 𝜀𝑧𝑥 = 𝜀𝑥𝑦 = 0

This data is contained at band-structure-2DHG_Si_Wang_2004_1D_nnp_biax_tens_strain.dat.

Simulation results

No stress applied

Figure 4.9.8.1: The calculated equienergy lines under no strain (a), under uniaxial strain (b), under biaxial com-
pressive strain (c), and under biaxial tensile strain (d) are shown. Only one spin state is plotted for clarity. The axes
represent 𝑘𝑦 and 𝑘𝑧 in units of [1/nm].

First, Figure 4.9.8.1 (a) shows the energy dispersion under no strain. This corresponds to Fig.2 in [Wang2004].
The electric field is applied to model a triangular well potential, which causes the inversion layer. The magnitude
is 0.5 MV/cm along the crystal growth direction.

4.9. Electronic Band Structures 325

nextnano++ Documentation, Release 1.25.13

The energy dispersion is in Dispersions\dispersion_quantum_region_kp6_XXXX.fld.

Next, Figure 4.9.8.1 (b) shows the energy dispersion under uniaxial compressive strain. This is equivalent to
Fig.3 in [Wang2004]. Note that the uniaxial stress is 1.0 GPa and the direction is [110]. Furthermore, the same
magnitude of the electric field is applied as well as in under no strain.

Next, Figure 4.9.8.1 (c), (d) shows the energy dispersion under compressive / tensile biaxial strain, respectively.
This corresponds to Fig.5 in [Wang2004]. Note that the biaxial stress is 1.7 GPa and the direction is in-plane. The
same magnitude of the electric field is applied as well as in under no strain. Here, the lowest subband is composed
by heavy hole in (a), whereas light hole composes the lowest subband in (b).

Overall, our simulation results match very well with the results in [Wang2004].

Last update: 07/03/2024

4.10 Superlattices

4.10.1 Dispersion in infinite superlattices: Minibands (Kronig-Penney model)
Input files:

• 1Dsuperlattice_dispersion_4nm_nnpp.in

• 1Dsuperlattice_dispersion_6nm_nnpp.in

• 1Dsuperlattice_dispersion_bulk_GaAs_nnpp.in

• Superlattice_1D_nnpp.in

Scope:
This tutorial aims to reproduce two figures (Figs. 2.27, 2.28, p. 56f) of [HarrisonQWWD2005],
thus the following description is based on the explanations made therein.

Superlattice 1: 4 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 4 nm 𝐺𝑎𝐴𝑠

Input file: 1Dsuperlattice_dispersion_4nm_nnpp.in

Our infinite superlattice consists of a 4 nm 𝐺𝑎𝐴𝑠 quantum well surrounded by 2 nm 𝐴𝑙0.4𝐺𝑎0.6𝐴𝑠 barriers on
each side. The choice of periodic boundary conditions leads to the following sequence of identical quantum wells:
4 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 4 nm 𝐺𝑎𝐴𝑠 / 4 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 4 nm 𝐺𝑎𝐴𝑠 / So our superlattice period has the length 𝐿 = 8
nm. (Actually it has the length L = 8.25 due to the grid point resolution of 0.25 nm.)

Figure 4.10.1.1 shows the conduction band edge and the first eigenstate that is confined inside the well and its
corresponding charge density (Ψ2) for the superlattice vector 𝑘𝑧 = 0. Note that periodic boundary conditions
are employed for solving the Schrödinger equation. The second eigenstate is not confined inside the well and is
therefore not shown here. (Note that the energies were shifted so that the conduction band edge of 𝐺𝑎𝐴𝑠 equals 0
eV.)

In a superlattice the electrons (and holes) see a periodic potential which is similar to the periodic potential in bulk
crystals. This means that the particle wave functions are no longer localized in one quantum well. They extend
to infinity, and they are equally likely to be found in any of the quantum wells. The eigenstates are called Bloch
states (as in bulk) and the wave functions are periodic:

Ψ(𝑥) = Ψ(𝑥+ 𝐿)

For a travelling wave of the form 𝑒𝑥𝑝(𝑖𝑘𝑥𝑥) it holds that

Ψ(𝑥+ 𝐿) = 𝑒𝑖𝑘𝑥(𝑥+𝐿) = 𝑒𝑖𝑘𝑥𝑥𝑒𝑖𝑘𝑥𝐿

⇔ Ψ(𝑥+ 𝐿) = Ψ(𝑥)𝑒𝑖𝑘𝑥𝐿

326 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.1.1: Calculated conduction band edge profile of single 4 nm GaAs QW with periodic boundary con-
ditions.

𝑘𝑥 is the wave vector of the electron (or hole) along the growth direction of the infinite superlattice. In Figure
4.10.1.2 we plot the dispersion curve, i.e. the energy of the electron as a function of its superlattice wave vector
𝑘𝑥 for the lowest eigenstate. As the energy is a periodic function of 𝑘𝑥 with period 2𝜋/𝐿, we plot only the interval
[−𝜋/𝐿, 𝜋/𝐿].

Figure 4.10.1.2: Calculated subband dispersion (= miniband)

The plot is in excellent agreement with Fig. 2.27 (page 56) of [HarrisonQWWD2005]. When the electron is at
rest (𝑘𝑥 = 0), the dispersion curve shows a minimum. As the electron momentum 𝑘𝑥 increases, its energy also
increases and reaches a maximum at 𝑘𝑥 = −𝜋/𝐿 and 𝑘𝑥 = +𝜋/𝐿. Thus, the electron within the superlattice
occupies a continuum of energies. This continuum that is bound by a maximum and a minimum of energy is called
miniband. Due to the similarity with the energy bands of a bulk crystal, the point in the superlattice Brillouin zone
for 𝑘𝑥 = 0 is called Gamma and for 𝑘𝑥 = 𝜋/𝐿 it is called X.

Superlattice 2: 6 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 6 nm 𝐺𝑎𝐴𝑠

Input file: 1Dsuperlattice_dispersion_6nm_nnpp.in

Our second infinite superlattice consists of a 6 nm𝐺𝑎𝐴𝑠 quantum well surrounded by 3 nm𝐴𝑙0.4𝐺𝑎0.6𝐴𝑠 barriers
on each side. The choice of periodic boundary conditions leads to the following sequence of identical quantum
wells: 6 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 6 nm 𝐺𝑎𝐴𝑠 / 6 nm 𝐴𝑙𝐺𝑎𝐴𝑠 / 6 nm 𝐺𝑎𝐴𝑠 / So our superlattice period has the length
𝐿 = 12 nm. (Actually it has the length 𝐿 = 12.25 due to the grid point resolution of 0.25 nm.)

Figure 4.10.1.3 shows the conduction band edge and the two lowest eigenstates that are confined inside the well
and their corresponding probailiy density (Ψ2) for the superlattice vector 𝑘𝑥 = 0. Note that periodic boundary
conditions are employed for solving the Schrödinger equation. The third eigenstate is not confined inside the well

4.10. Superlattices 327

nextnano++ Documentation, Release 1.25.13

and is therefore not shown here. In contrast to the 4 nm quantum well superlattice described above, two confined
electron states exist. (Note that the energies were shifted so that the conduction band edge of 𝐺𝑎𝐴𝑠 equals 0 eV.)

Figure 4.10.1.3: Calculated conduction band edge profile of single 6 nm 𝐺𝑎𝐴𝑠 QW with periodic boundary con-
ditions.

The following figure (Figure 4.10.1.4) shows the first two minibands for this superlattice. They arise from the first
and the second eigenstate. Note that due to the scale of this figure the first miniband looks almost flat. It is also
interesting that for the second miniband the minimum is not at the center (i.e. at Gamma) but at the edges of the
superlattice Brillouin zone at X (and -X).

Figure 4.10.1.4: Calculated subband dispersion (= miniband)

Again, the plot is in excellent agreement with Fig. 2.28 (page 57) of [HarrisonQWWD2005].

Technical details

The resolution of the miniband plot has to be specified within the group quantum{ region{ dispersion{} }
}:

quantum{
region{

...
dispersion{

output_dispersions{}
path{

name = "superlattice_dispersion"
point{ k = [$left_dispersion, 0.0, 0.0] }
point{ k = [$right_dispersion, 0.0, 0.0] }

(continues on next page)

328 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

num_points = $num_points_dispersion # number of superlattice␣
→˓vectors along x direction

}
}

}
}

For each superlattice vector 𝑘𝑥, the Schrödinger equation has to be solved. The 11th superlattice vector corresponds
to 𝑘𝑥 = 0 which is obviously identical to the case when no superlattice is specified at all. The miniband dispersion
is written to this file: dispersion_quantum_region_Gamma_superlattice_dispersion.dat.

Dispersion in bulk 𝐺𝑎𝐴𝑠

Input file: 1Dsuperlattice_dispersion_bulk_GaAs_nnpp.in

The input file is basically equivalent to 1Dsuperlattice_dispersion_6nm_nnpp.in, except that we replace the
𝐴𝑙𝐺𝑎𝐴𝑠 barrier with 𝐺𝑎𝐴𝑠 so that we have only pure bulk 𝐺𝑎𝐴𝑠 with a length of 12 nm. So our superlat-
tice period has the length 𝐿 = 12 nm. (Actually it has the length 𝐿 = 12.25 due to the grid point resolution of 0.25
nm.) At the boundaries we apply periodic boundary conditions and the same superlattice options (number of 𝑘
values and direction in 𝑘 space) as above.

Figure 4.10.1.5 shows the conduction band edge and the three lowest eigenstates and their corresponding probability
density (Ψ2) for the superlattice vector 𝑘𝑥 = 0. Note that periodic boundary conditions are employed for solving
the Schrödinger equation.

• The ground state wave function is constant with its energy equal to the conduction band edge energy.

• The energies of the second and third eigenstate are degenerate.

(Note that the energies were shifted so that the conduction band edge of 𝐺𝑎𝐴𝑠 equals 0 eV.)

Figure 4.10.1.5: Calculated conduction band edge profile of bulk 𝐺𝑎𝐴𝑠 and Ψ2 of lowest electron eigenstates
(periodic boundary conditions were used).

The following figure (Figure 4.10.1.6) shows the first three minibands for this superlattice. They arise from the
first, second and third eigenstate. The second and third eigenstate are degenerate at 𝑘𝑥 = 0 as can be seen also in
the figure above. Also at 𝑘𝑥 = -1 and 𝑘𝑥 = 1, the first and second eigenstate are degenerate. This is as expected
because the dispersion should look like the parabolic dispersion 𝐸(𝑘) of bulk 𝐺𝑎𝐴𝑠.

4.10. Superlattices 329

nextnano++ Documentation, Release 1.25.13

Figure 4.10.1.6: Calculated subband dispersion (= miniband)

Template

Input file: Superlattice_1D_nnpp.in

We want to study the energy levels of a superlattice in order to understand how they form bands in a periodic
structure. One can easily see this by calculating the energy levels for various barrier heights, i.e. we automatically
generate input files for the variable “Barrier_Height”. Once done, we visualize the subband dispersions contained
in the file dispersion_quantum_region_Gamma_superlattice_dispersion.dat.

Figure 4.10.1.7 compares the dispersion of a superlattice for two different QW barrier heights.

Last update: nnnn/nn/nn

330 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.1.7: The left figure contains a quantum well superlattice with a barrier height of 0 eV, i.e. a bulk
semiconductor, while the figure on the right shows the dispersion for a barrier height of 0.06 eV.

4.10.2 InAs / In0.4Ga0.6Sb superlattice dispersion with 8-band k.p (type-II band
alignment)

Authors: Stefan Birner, Michael Povolotskyi

Input Files:
• T2SL_InAs-GaInSb_Grein_JAP_1995_1D_nnp

This tutorial aims to reproduce Fig. 2(a) of “Long wavelength InAs/InGaSb infrared detectors: Optimization of
carrier lifetimes” by Grein and Young.

Conduction and valence band edges

The heterostructure is a superlattice with 3.98 nm InAs and 1.5 nm In0.4Ga0.6Sb, where both constituents are
strained with respect to the GaSb substrate.

The structure has a type-II band alignment, i.e. the electrons are confined in the InAs layer, whereas the holes are
confined in the In0.4Ga0.6Sb layer.

The In0.4Ga0.6Sb layer is strained pseudomorphically with respect to the GaSb substrate, leading to a compressive
strain (-2.5%) which splits the degeneracy of the heavy and light hole band edges in this layer. Thus, the heavy
hole band edge lies above the light hole band edge.

The InAs layer is also strained pseudomorphically with respect to the GaSb substrate, and is thus under slight
biaxial tension (+0.6 %). The splitting of the hole band edges is the opposite as in InGaSb, i.e. the light hole band
edge is above the heavy hole band edge.

The following figure shows the electron and hole band edges.

Note that the origin of the energy scale is set to the GaSb valence band edge energy.

Electron and hole wave function for 𝑘|| = 0

We simulate one period only (i.e. from 0 nm to 5.48 nm) and solve the Schrödinger equation with periodic
boundary conditions to mimic an infinite superlattice.

The following figure shows the conduction band edge and the heavy, light and split-off hole valence band edges in
this superlattice structure together with the electron (c1), heavy hole (hh1) and light hole (lh1) energies and wave
functions (𝜓2), calculated within 8-band k.p theory.

4.10. Superlattices 331

nextnano++ Documentation, Release 1.25.13

One can clearly see that the electron state (c1) is confined in the InAs layer (right part of the figure), whereas the
heavy (hh1) and light hole (lh1) states are confined in the In0.4Ga0.6Sb layer (left part of the figure).

We used the same material parameters as given in the above cited paper by Grein et al., apart from the k · p
parameters.

Electron and hole energies for 𝑘|| ̸= 0

The following figure shows the E(k||) dispersion of the electron ground state and the two highest hole states along
two different directions in (𝑘𝑥, 𝑘𝑦) space.

This data is contained in this file: Schroedinger_kp/par1D_disp_01_00_11_hl_8x8kp_ev_min001_ev_max010.
dat. Note that the band gap is not determined by the band gap of one individual layer. It is determined by the
electron ground state in the InAs layer, and the hole ground state in the InGaSb layer. This means more freedom
for band gap engineering.

Electron and hole energies for 𝑘𝑧 ̸= 0

The input file used is 1DInAs_InGaSb_k_superlattice_nnp.in

The right part of the following figure shows the E(𝑘𝑧) superlattice dispersion of the electron ground state and the
two highest hole states. 𝑘𝑧 is the superlattice vector between 0 and 1 𝜋

𝐿 where L = 5.48 nm is the length of one
superlattice period. (1 𝜋𝐿 = 0.05731/Å)

This data is contained in this file: Schroedinger_kp/8x8kp_dispSL_hl_qc001_evmin001_evmax016.dat

332 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The left part of the figure shows the E(𝑘||) dispersion along [10], i.e. from (𝑘𝑥, 𝑘𝑦) = (0,0) to (𝑘𝑥, 𝑘𝑦) = (-0.1,0)
which is shown in the figure above already.

One can clearly see that these heterostructure bands are highly nonparabolic.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.10.3 Multiple quantum wells and finite superlattices
Author: Brandon Loke

This tutorial simulates a real layered structure with a finite number of quantum wells. The transition between a
finite superlattice and a multiple quantum well system is also observed. This tutorial aims to reproduce the figures
in Paul Harrison’s book “Quantum Wells, Wires and Dots” (Section 3.10, “Multiple Quantum Wells and Finite
Superlattices”)

The input file used for this tutorial is

• Superlattice_N_wells_nnp.in

The corresponding Jupyter Notebook for this tutorial can be found over here: MQW_Superlattices.ipynb.

Structure

The structure consists of N repeats of 4 nm GaAs wells and 4 nm Ga0.8Al0.2As quantum wells. This superlattice
structure is sandwiched between 20 nm Ga0.8Al0.2As barriers.

We first define key variables, such as the well width, the right and left wall width, and the number of wells.

4.10. Superlattices 333

https://nbviewer.org/github/nextnanopy/nextnanopy/blob/master/templates/MQW_Superlattices.ipynb

nextnano++ Documentation, Release 1.25.13

Global constants
$TEMPERATURE = 300 # Temperature␣
→˓(DisplayUnit:K)(ListOfValues:270, 280, 290, 300, 310, 320, 330)

Structure

$WELL_WIDTH = 10.0 # Width of the quantum well␣
→˓(DisplayUnit:nm)(HighlightInUserInterface)(ListOfValues:5.0, 6.0, 7.0, 8.0, 9.0) ␣
→˓(RangeOfValues:From=5.0,To=9.0,Step=1.0)
$BARRIER_WIDTH = 10.0 # Width of the barrier ␣
→˓(DisplayUnit:nm)(HighlightInUserInterface)(ListOfValues:7.0, 8.0, 9.0, 10.0, 11.
→˓0)(RangeOfValues:From=57.0,To=11.0,Step=1.0)
$NUMBER_OF_WELLS = 4 # number of quantum wells ␣
→˓(DisplayUnit:)(HighlightInUserInterface)(ListOfValues:4, 5, 6, 7,␣
→˓8)(RangeOfValues:From=3,To=10,Step=1)

$SUPERLATTICE_WIDTH = $NUMBER_OF_WELLS * ($BARRIER_WIDTH + $WELL_
→˓WIDTH) - $BARRIER_WIDTH # (DisplayUnit:nm)(DoNotShowInUserInterface)

$LEFT_BARRIER_WIDTH = 10 # Width of the Separate␣
→˓Confinement Heterostructure (SCH) (on the left) (DisplayUnit:nm)
$RIGHT_BARRIER_WIDTH = 10 # Width of the Separate␣
→˓Confinement Heterostructure (SCH) (on the right)(DisplayUnit:nm)

$FINE_GRID_SPACING = 0.1 #␣
→˓(DisplayUnit:nm)(ListOfValues:0.1, 0.5, 1.0)(DoNotShowInUserInterface)
$COARSE_GRID_SPACING = 1.0 #␣
→˓(DisplayUnit:nm)(ListOfValues:0.5, 1.0, 5.0)(DoNotShowInUserInterface)

Materials and doping
$ALLOY_X = 0.8

Following this, we are able to generate the structure of the GaAs/Ga0.8Al0.2As superlattice under structure{ }.
The keywords array_x{} duplicate the structure in the x-direction to give us the number of wells required.

region{ # LEFT WALL
line{
x = [-$LEFT_BARRIER_WIDTH, 0]

}
ternary_constant{
name = "Ga(x)Al(1-x)As" # Ga0.8Al0.2As
alloy_x = $ALLOY_X

}
}

SUPERLATTICE

region{ # Barrier
array_x{
shift = $BARRIER_WIDTH + $WELL_WIDTH
max = $NUMBER_OF_WELLS - 1

}
line{
x = [0, $BARRIER_WIDTH]

}
binary{
name = "GaAs"

(continues on next page)

334 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
}
region{ # Quantum well
array_x{
shift = $BARRIER_WIDTH + $WELL_WIDTH
max = $NUMBER_OF_WELLS - 2

}
line{
x = [$BARRIER_WIDTH, $BARRIER_WIDTH + $WELL_WIDTH]

}
ternary_constant{
name = "Ga(x)Al(1-x)As"
alloy_x = $ALLOY_X

}
}
region{ # RIGHT WALL
line{
x = [$SUPERLATTICE_WIDTH, $SUPERLATTICE_WIDTH + $RIGHT_BARRIER_WIDTH]

}
ternary_constant{
name = "Ga(x)Al(1-x)As"
alloy_x = $ALLOY_X

}
}

Simulation Settings

Under quantum{ }, we specify

quantum {
region{

name = "quantum_region"
x = [- $LEFT_BARRIER_WIDTH, $SUPERLATTICE_WIDTH +

→˓$RIGHT_BARRIER_WIDTH] # Schrödinger equation is solved␣
→˓only in region of LEFT WALL + SUPERLATTICE + RIGHT WALL

boundary{
x = dirichlet # Dirichlet boundary␣

→˓condition for the Schrödinger equation, psi = 0
x = neumann # Neumann boundary␣

→˓condition for the Schrödinger equation, dpsi/dx = 0
}

Gamma{
num_ev = 70

70 eigenvalues have to be calculated
}

HH{
num_ev = 250 # 150 eigenvalues have to␣

→˓be calculated
}

LH{
num_ev = 70 # 70 eigenvalues have to be␣

→˓calculated
(continues on next page)

4.10. Superlattices 335

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

SO{
num_ev = 100 # 100 eigenvalues have to␣

→˓be calculated
}

output_wavefunctions{
max_num = 20 # only 20 eigenfunctions␣

→˓from 100 calculated are shown in output
amplitudes = yes
probabilities = yes

}
}

}

We want to obtain the energies and the amplitudes of the wave functions outputted.

Ground state energies

After generating the input file, we are able to run the simulation for a variable number of quantum wells using the
variable sweep functionality in nextnanomat. One can go to “Template” on the tabs at the top, under “Sweep”,
select the variable of interest and the range or list of values to iterate over. Click on “Create input file” at the bottom
and run the simulations in the “Simulation” tab.

The reference potential energy used in Harrison’s book and nextnano++ is different. Thus, post-processing was
done in Python to match the reference energy levels.

Wave function in a superlattice

The wave functions can also be plotted. The first example in Harrison’s book has the following parameters:

• 10 wells

• 4 nm Ga0.8Al0.2As barrier

• 4 nm Ga0.8Al0.2As quantum well width

• 20 nm left and right Ga0.8Al0.2As walls

This figure is in agreement with Harrison’s result. It is observed that the system functions as a superlattice as the
wave function in each well overlaps with the wave function of the adjacent wells.

Wave function in a multiple quantum well system

Harrison’s final figure uses the following parameters:

• 4 wells

• 10 nm Ga0.6Al0.4As barriers

• 10 nm Ga0.6Al0.4As quantum wells

• 10 nm Ga0.6Al0.4As left and right walls

This figure is also in good agreement with Harrison’s results. It is observed from the figure that this system functions
as a multiple quantum well because the wave function reaches zero between the wells.

Last update: nnnn/nn/nn

336 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.3.1: Ground state energies plotted as a function of N. Convergence at higher number of wells is ob-
served.

4.10. Superlattices 337

nextnano++ Documentation, Release 1.25.13

Figure 4.10.3.2: The wave function for a superlattice system

338 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.3.3: The wave function for a multiple quantum well system

4.10. Superlattices 339

nextnano++ Documentation, Release 1.25.13

4.10.4 — NEW — Modeling type-II superlattice using interface Hamiltonian within
8-band k · p method

Contents

• Introduction

• Results

Files for the tutorial located in nextnano++\examples

• T2SL_H-if_zb_III-V_Livneh_PRB_2012_1D_bandstructure.in (Figure 4.10.4.1)

• T2SL_H-if_zb_III-V_Livneh_PRB_2012_1D_absorption.in (Figure 4.10.4.2)

Parameters
• $if_interface: 1 or 0, switches on and off the interface Hamiltonian

• $Nperiods: Number of periods in the superlattice.

Output files
• bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp8_inplane_11_00_10.dat (Figure

4.10.4.1)

• bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp8_superlattice.dat (Figure
4.10.4.1)

• bias_00000\OpticsQuantum\absorption_quantum_region_TE_y_nm.dat (Figure 4.10.4.2)

Introduction

This tutorial validates nextnano++ interface Hamiltonoian implementation with the results from [Livneh-
PRB2012]. The model and the implementation are described in detail in the Interface Hamiltonian 8-band Zinc-
Blende section.

The objective is to calculate dispersion and optical properties of type-II InAs/GaSb superlattice.

The samples modeled are described in the table below, The thickness of the layers is expressed in monolayers (ML).
In the original paper, the dispersion relation of sample 1 is given in figure 4, and the optical absorption of sample
2 is given in figure 6.

Parameter Sample 1 Sample 2
InAs thickness, ML 13.8 8.7
GaSb thickness, ML 7.8 10.6
Temperature, K 77 77

Results

The disperson relation of the sample one is computed using the input file T2SL_H-if_zb_III-
V_Livneh_PRB_2012_1D_bandstructure.in. For calculating dispersion, it is enough to include single period in
the simulation. The dispersion relation is plotted in the figure below.

The optical absorption of the sample two is computed using the input file T2SL_H-if_zb_III-
V_Livneh_PRB_2012_1D_absorption.in. For adequat computation of the absorption in superlattice, few
periods has to be included. In the figure below, 20 periods were fused in the computation.

340 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.4.1: Dispersion relation of the sample 1, k-parallel dispersion on the left and superlattice dispersion
on the right. Solid lines are nextnano++ results, dots represent data from [LivnehPRB2012].

Figure 4.10.4.2: Absorption coefficient calculated for the sample 2 with and without the interface (IF) Hamiltonian.

4.10. Superlattices 341

nextnano++ Documentation, Release 1.25.13

In the figure Figure 4.10.4.2, one can see the blue shift of the absorption edge with inclusion of the interface
Hamiltonian.

Last update: 31/01/2025

4.10.5 — DEV — Artificial quantum dot crystal - Superlattice dispersion (mini-
bands)

. Attention

This tutorial is under construction

Input files:
• QDSL_Ge-Si_Lazarenkova_JAP_2001_3D_cubic_nnp.in

• QDSL_Ge-Si_Lazarenkova_JAP_2001_3D_tetragonal_nnp.in

Scope:
• In this tutorial, the superlattice energy dispersion for artificial crystals consisting of quantum dots (QDs)

are calculated. The QDs are made of Ge embedded in Si. The simulations are performed for cubic and
tetragonal QDs.

• This tutorial aims to reproduce figure 2 and 6 in [Lazarenkova2001].

Output files:
• bias_00000\Quantum\Dispersion\dispersion_quantum_region_HH_along_100.dat

• bias_00000\Quantum\Dispersion\dispersion_quantum_region_HH_along_110.dat

• bias_00000\Quantum\Dispersion\dispersion_quantum_region_HH_along_111.dat

Cubic Quantum Dots

The QDs have a cubic shape with 𝐿𝑥 = 𝐿𝑦 = 𝐿𝑧 = 6.5 nm and are separated by a distance of𝐻𝑥 = 𝐻𝑦 = 𝐻𝑧 =
1.5 nm. We model only one QD and assume periodic boundary conditions along the x, y and z direction giving a
superlattice period of 𝑑𝑥 = 𝑑𝑦 = 𝑑𝑧 = 8 nm (𝑑𝑖 = 𝐿𝑖 +𝐻𝑖).

global{
...
periodic{

x = yes
y = yes
z = yes

}
}

The single-band Schrödinger equation is solved for the valence band only (heavy hole). The valence band offset is
assumed to be VBO = 0.45 eV, i.e. assuming the valence band edge of the QD is at +0.45 eV, the valence band edge
of the barrier is at 0 eV. The energy dispersion relation is calculated along the [100], [110] and [111] direction.

quantum{
...
HH{

num_ev = $num_states
dispersion{
output_dispersions{}

(continues on next page)

342 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

path{
name = "along_100"
point{ k = [0.0, 0.0, 0.0] }
point{ k = [1.0, 0.0, 0.0] }
num_points = $num_k_points

}
path{
name = "along_110"
point{ k = [0.0, 0.0, 0.0] }
point{ k = [1.0, 1.0, 0.0] }
num_points = $num_k_points

}
path{
name = "along_111"
point{ k = [0.0, 0.0, 0.0] }
point{ k = [1.0, 1.0, 1.0] }
num_points = $num_k_points

}
}

}
}

Results

Figure 4.10.5.1 shows the calculated dispersion relation along the [100] direction. The figure agrees very well with
Fig. 2(a) of the paper by Lazarenkova et.al.[Lazarenkova2001] in the energy region where the confinement inside
the QD is strong. For the higher lying states inside the QD and above the QD, our results differ because we use the
correct 3D QD confinement potential whereas Lazarenkova et.al.[Lazarenkova2001] approximated the potential
landscape with an analytical ansatz that allows for the separation of the x, y and z variables. (This ansatz is only
justified for states confined deep inside the QD.) The right part of the figure shows schematically the valence band
edge of the QD with the energy levels of the single, uncoupled QD.

Figure 4.10.5.1: (left) Superlattice dispersion along [100] for heavy-hole states in an artificial cubic Ge quantum
dot crystal and (right) valence-band profile through the center of the QD and eigenstates of the lowest heavy-hole
states.

4.10. Superlattices 343

nextnano++ Documentation, Release 1.25.13

In all figures, the eigenstates are labeled with the quantum numbers 𝑛𝑥, 𝑛𝑦, 𝑛𝑧 , e.g. 111. The superscript refers to
their degeneracy. At 𝐾SL = 0, the degeneracy is higher than at nonzero KSL vectors where the symmetry in the
Brillouin zone is lower. (The superlattice vector 𝐾SL = 0 is often denoted as 𝑞.)

The following figures (Figure 4.10.5.2 and Figure 4.10.5.3) show the calculated dispersion relations along the [110]
and [111] directions, resepectively. The agreement to Fig. 2(b) and 2(c) of [Lazarenkova2001] is again very good
for the states that lie deep inside the QD (see also comments above). Note that the eigenstates along the [111]
direction show a higher degree of degeneracy throughout the superlattice Brillouin zone as compared to [100] and
[110].

Both, the QD itself and the QD superlattice have the same cubic symmetry in this example. Thus the degeneracy
of the 123 (incl. permutations) energy band is sixfold throughout the Brillouin zone along the [111] directions (as
shown in Figure 4.10.5.3).

Figure 4.10.5.2: Superlattice dispersion along [110] for heavy-hole states in an artificial cubic Ge quantum dot
crystal.

Tetragonal Quantum Dot

The QD has a tetragonal shape with 𝐿𝑥 = 𝐿𝑦 = 5 nm and 𝐿𝑧 = 2.5 nm and are separated by a distance of
𝐻𝑥 = 𝐻𝑦 = 2.5 nm and 𝐻𝑧 = 1.25 nm. This gives a superlattice period (𝑑𝑖 = 𝐿𝑖 +𝐻𝑖) of 𝑑𝑥 = 𝑑𝑦 = 7.5 nm
and 𝑑𝑧 = 3.75 nm. The grid spacing was chosen to 0.25 nm in 𝑥, 𝑦 and 𝑧 direction, i.e. 30 grid points in 𝑥 and 𝑦
direction, 15 grid points in 𝑧 direction. Therefore, the size of Schrödinger matrix to be solved is 30·30·15 = 13500.
All other assumptions are the same as for the cubic QD example above.

344 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.5.3: Superlattice dispersion along [111] for heavy-hole states in an artificial cubic Ge quantum dot
crystal.

4.10. Superlattices 345

nextnano++ Documentation, Release 1.25.13

Results

Figures show the dispersion along the [100], [110] and [111] directions, resepectively. All results are in very good
agreement to Fig. 6 of [Lazarenkova2001].

Figure 4.10.5.4: Superlattice dispersion along [100] for heavy-hole states in an artificial tetragonal Ge quantum
dot crystal.

This tutorial also exists for nextnano3.

Last update: 17/07/2024

4.11 Cascade Structures

4.11.1 Simple quantum cascade structure
Input Files:

• 1DQCL_simple_nnp.in

In this tutorial we simulate a simple quantum cascade structure that has been presented in an article by Capasso et
al. (Figures 12 (b) and 16 (b) of [CapassoIEEE1986]).

We can generate the following picture that is based on Fig. 3 of [BirnerPhotonikInt2008] and [BirnerPho-
tonik2008].

It shows the conduction band edge profile of an Al0.48In0.52As/In0.53Ga0.47As superlattice at an electric field of -89
kV/cm. The single-band effective-mass Schrödinger equation is solved for this band profile. The wave functions
(𝜓2) of this quantum cascade structure are shown.

346 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.10.5.5: Superlattice dispersion along [110] for heavy-hole states in an artificial tetragonal Ge quantum
dot crystal.

4.11. Cascade Structures 347

nextnano++ Documentation, Release 1.25.13

Figure 4.10.5.6: Superlattice dispersion along [111] for heavy-hole states in an artificial tetragonal Ge quantum
dot crystal.

348 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The basic idea of such a structure is to depopulate the lowest eigenstate of each quantum well efficiently by bringing
it into resonance with the third eigenstate of the next quantum well (resonant tunneling).

The transition second eigenstate → lowest eigenstate should be a nonradiative intersubband transition.

On the other hand, the transition third eigenstate → second eigenstate should be a radiative intersubband transition,
i.e. a photon is emitted.

Another important condition for a quantum cascade laser is population inversion, i.e. the occupation of the third
eigenstate must be much higher than the occupation of the second eigenstate and lowest eigenstate.

• The input file 1DQCL_simple_nnp/*nn3.in should be rather intuitive and self-explanatory. Documentation
for each keyword and each specifier can be found here: Keywords

• In the nextnano++ sample file, the electric field is applied by specifying the keyword contacts as follows:

contacts{
charge_neutral{
name = "leftgate"
bias = 0.0
}
charge_neutral{
name = "rightgate"
bias = 1.36081 # corresponds to electric field of F = -89␣

→˓kV/cm
}

}

In the keyword structure, “leftgate” is defined at x = [-1, 0] and “rightgate” is at x =
[152.9, 153.9]. Thus the electric field applied by this specification is -1.36081 [V] / 152.9
[nm] = -89 [kV/cm]

• Alternatively, we can apply a constant electric field by providing a value for the field.

poisson{
electric_field{ strength = -89e5 } # [V/m]
output_potential{}
output_electric_field{}

}

Output

The output files are ASCII files.

Bandedges

The conduction and valence band edges can be found in the following file:

• bias_0000/Quantum/bandedges.dat

If one plots the conduction band profile, one gets the following figure.

There are six Al0.48In0.52As barriers and five In0.53Ga0.47As wells. The conduction band offset is 0.51 eV.

Eigenvalues

The 40 eigenvalues that were calculated can be found in these files. The units are [eV].

• bias_0000/Quantum/wf_energy_spectrum_quantum_region_Gamma_0000.dat

The eigenvalues are also contained in these files, i.e. the eigenvalues for each grid point

• bias_0000/Quantum/wf_probabilities_shift_quantum_region_Gamma_0000.dat

4.11. Cascade Structures 349

nextnano++ Documentation, Release 1.25.13

1st column 2nd column 3rd column . . . 41st column
grid points in units of
[nm]

1st eigenvalue in units
of [eV]

2nd eigenvalue in units
of [eV]

. . . 40th eigenvalue in units
of [eV]

If one plots these columns (together with the conduction band edge) one obtains the following picture:

ò Note

The figure shows only the following energy levels: 1,2,3,4,5,9,10,12,16,18,20,26,27,30,37

Wave Functions

The square of the wave functions (𝜓2) of the 40 eigenstates can be found in these files.

• bias_0000/Quantum/wf_probabilities_shift_quantum_region_Gamma_0000.dat

1st column . . . 42nd column 43rd column . . . 81st column
grid points in units of [nm] . . . 𝜓2of 1st eigenstate 𝜓2of 2nd eigenstate . . . 𝜓2of 40st eigenstate

ò Note

In order to be able to plot the wave functions nicely into the conduction band edge profile, we shift the square
of the wave function by its corresponding energy.

If one plots these columns (together with the conduction band edge) one obtains the following picture:

ò Note

350 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.11. Cascade Structures 351

nextnano++ Documentation, Release 1.25.13

The figure shows only the following wave functions: 1,2,3,4,5,9,10,12,16,18,20,26,27,30,37

Now the lowest eigenstate of each quantum well is in resonance with the third eigenstate of the next quantum well.
This leads to the depopulation of the lowest eigenstate of each quantum well.

Photon should be emitted with the radiative intersubband transition 3 → 2 whreas 2 → 1 should be nonradiative
intersubband transition.

Effective masses

The effective masses that were used for each grid point can be found in these files.

• Structure/charge_carrier_masses.dat

ò Note

We need to add the following option into the sample file for nextnano++.

output{
material_parameters{

charge_carrier_masses{ boxes = yes }
}

}

• 1st column: grid points in units of [nm]

• other columns:

– effective mass tensor components of Gamma and HH valley in units of [m0]. When we use other valleys
for the simulation, then these columns shows the effective mass tensor components in that valleys.

These masses have been calculated from the binaries InAs, GaAs and AlAs for the relevant ternaries, including
bowing parameters.

Intersubband matrix elements

Experienced users might be interested in having a look at the intersubband matrix elements.

We can find the intersubband (or intraband) matrix elements 𝑝z, the oscillator strengths and the transition energies
by adding the followings into quantum{ } in 1DQCL_simple_nnp.in:

intraband_matrix_elemets{
Gamma{}
output_matrix_elements = yes
output_transition_energies = yes
output_oscillator_strengths = yes

}

The relevant output files are

• bias_0000/Quantum/momentum_matrix_elements_quantum_region_Gamma_100.txt

• bias_0000/Quantum/transition_energies_quantum_region_Gamma_Gamma.txt

See Optical spectra for more information on the matrix elements.

This tutorial also exists for nextnano3.

Last update: 27/05/2025

352 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.11.2 Quantum-Cascade Lasers
Input files:

• examples\quantum_cascade_lasers\1DQuantumCascadeLaser_nnp.in

• examples\quantum_cascade_lasers\1DQuantumCascadeLaserSiGe_nnpp.in

• examples\quantum_cascade_lasers\1DQCL_AlGaAs_Sirtori_APL73_1998_nnp.in

• examples\quantum_cascade_lasers\1DQCL_Andrea_Friedrich_NoInjector_InGaAs_APL86_2005_kp_nnp.in

• examples\quantum_cascade_lasers\1DQCL_Andrea_Friedrich_NoInjector_InGaAs_APL86_2005_sg_nnp.in

• examples\quantum_cascade_lasers\1DQCL_Rochat_APL81_2002_nnp.in

• examples\quantum_cascade_lasers\1DQCL_THz_MIT_Sandia_SemicScTech20_2005_nnp.in

• examples\quantum_cascade_lasers\THzQCL_Andrews_Vienna_MatSciEng2008_nnp.in

• examples\quantum_cascade_lasers\THzQCL_Andrews_Vienna_MatSciEng2008_nnp_electric_field.in

• examples\quantum_cascade_lasers\THzQCL_Andrews_Vienna_MatSciEng2008_nnp_no_repeat.in

ò Note

If you want to obtain the input files that are used within this tutorial, please check if you
can find them in the installation directory. If you cannot find them, please submit a Support
Ticket.

Scope:
This tutorial aims to simulate different quantum-cascade structures proposed in the literature.

GaAs/ AlGaAs Quantum-Cascade Laser

This tutorial is based on the quantum-cascade structure that has been presented in [Page2001]. Here, we are trying
to reproduce fig. 1 of this paper. The corresponding input file is 1DQuantumCascadeLaser.in.

The quantum-cascade structure consists of a sequence of𝐺𝑎𝐴𝑠 wells and𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 barriers. The sequence
is as follows (from 0 nm to 45 nm; it is repeated outside this region):

Layer Thickness [nm]
1 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 4.6
2 𝐺𝑎𝐴𝑠 1.9
3 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 1.1
4 𝐺𝑎𝐴𝑠 5.4
5 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 1.1
6 𝐺𝑎𝐴𝑠 4.8
7 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 2.8
8 𝐺𝑎𝐴𝑠 3.4
9 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 1.7
10 𝐺𝑎𝐴𝑠 3.0
11 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 1.8
12 𝐺𝑎𝐴𝑠 2.8
13 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 2.0
14 𝐺𝑎𝐴𝑠 3.0
15 𝐴𝑙0.45𝐺𝑎0.55𝐴𝑠 2.6
16 𝐺𝑎𝐴𝑠 3.0

In [Page2001], a conduction band offset of 390 meV was used. Consequently, we modify our default band offset
by shifting the AlGaAs ternary to get a 390 meV offset. We also apply an electric field of -48 kV/cm.

4.11. Cascade Structures 353

nextnano++ Documentation, Release 1.25.13

$ElectricField = 48e5 # Electric field in units of [V/m] - Here: 48 kV/cm
$ReferencePotential = 0.092 # Set the potential at the leftmost point of the grid

For simplicity, in contrast to [Page2001], we do not include doping here. In the original paper, the areas between
15.2 nm and -5.6 nm (9.8 nm) and 29.8 nm and 39.4 nm (9.8 nm), corresponding to layer 11 - 14, were n-type
doped with silicon, with a sheet density of 𝑛Si = 3.8 · 1011 cm-2. In this example, we do not have to calculate
the strain, because piezo and any pyroelectric fields do not exist. We use single-band (effective-mass) rather than
8-band k.p model.

Bandedge profile

Figure 4.11.2.1: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 48 kV/cm applied. Also shown are the probability densities (Ψ2) of four electron states, which are
shifted by their corresponding eigenenergies.

Figure 4.11.2.1 shows the conduction band energy of the Gamma conduction band edge and the probability den-
sities (Ψ2) of the ground state 4 (red), the lower state 6 (blue), the excited state 10 (pink) and the injector state 8
(green). The above shown structure of the conduction band edge and the wave functions is in excellent agreement
with fig. 1 of [Page2001].

Note that periodic boundary conditions for the Schrödinger and Poisson equation do not make sense because of
the application of an electric field. Thus, we used Dirichlet boundary conditions. However, this will lead to some
artificial, wrong wave functions at the boundaries because the wave function is forced to be zero at the boundaries.
For the states in the middle of the device where the wave function decays to zero in any case at the boundaries, the
boundary conditions do not have any influence at all and so these states are fine. So the suggestion is to calculate 3
or 5 periods, and then take the energy levels and wave functions of the center period. In this way, boundary effects
should not be very severe.

354 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

global{
periodic{ x = yes } # apply period boundary conditions along the x-direction

}

Dipole matrix elements

The files:

• bias_00000\Quantum\overlap_integrals_qr1_Gamma_100.txt

• bias_00000\Quantum\dipole_moment_matrix_elements_qr1_Gamma_100.txt

contain the 𝑝𝑥 and 𝑧 matrix elements for all transitions. Our result for the 𝑧 matrix element for the transition
between the excited state to lower state is in excellent agreement with the result of [Page2001]:

nextnano3 [Page2001]
⟨Ψ10|𝑧|Ψ6⟩ 𝑧10,6 = 1.6655138016 nm 𝑧3,2 = 1.7 nm
∆𝐸transition 147.7 meV 160 meV

QCL examples

ò Note

Please submit a support ticket if you want to obtain the input files for the following structures.

1. 𝜆 = 9 𝜇m, i.e. 33 THz or 138 meV

The simulated QCL structure is taken from [Page2001], see Figure 4.11.2.1. The corresponding input is 1DQuan-
tumCascadeLaser.in.

2. 𝜆 = 9.4 𝜇m or 132 meV

The simulated quantum-cascade structure, shown in Figure 4.11.2.2, is based on [Sirtori1998]. The corresponding
input file is 1DQCL_AlGaAs_Sirtori_APL73_1998.in.

Figure 4.11.2.2: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 48 kV/cm applied. Also shown are the probability densities (Ψ2) of several electron states, which are
shifted by their corresponding eigenenergies.

4.11. Cascade Structures 355

nextnano++ Documentation, Release 1.25.13

3. 𝜆 = 10 𝜇m or 124 meV (77 K)

The simulated quantum-cascade structure, shown in Figure 4.11.2.3 and Fig-
ure 4.11.2.4, is based on [Friedrich2005]. The corresponding input file is
1DQCL_Andrea_Friedrich_NoInjector_InGaAs_APL86_2005_kp.in.

Figure 4.11.2.3: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 80 kV/cm applied (𝑇 = 77 K). Also shown are the probability densities (Ψ2) of several electron states,
which are shifted by their corresponding eigenenergies.

Figure 4.11.2.4: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 110 kV/cm applied (𝑇 = 300 K). Also shown are the probability densities (Ψ2) of several electron states,
which are shifted by their corresponding eigenenergies.

4. 𝜆 = 66 𝜇m, i.e. 4.54 THz or 18.8 meV

The simulated quantum-cascade structure, shown in Figure 4.11.2.5, is based on [Rochat2002]. The corresponding
input file is 1DQCL_Rochat_APL81_2002.in.

5. 𝜆 = 89.2 𝜇m, i.e. 3.4 THz or 13.9 meV

The simulated quantum-cascade structure, shown in Figure 4.11.2.6, is based on [Hu2005]. The corresponding
input file is 1DQCL_THz_MIT_Sandia_SemicScTech20_2005.in.

6. 𝜆 = 107 𝜇m, i.e. 2.8 THz or 11 meV

The simulated quantum-cascade structure, shown in Figure 4.11.2.7, is based on [Andrews2008]. The correspond-
ing input file is THzQCL_Andrews_Vienna_MatSciEng2008_nnp.in.

356 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.11.2.5: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 3.15 kV/cm applied. Also shown are the probability densities (Ψ2) of several electron states, which are
shifted by their corresponding eigenenergies.

Figure 4.11.2.6: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 12.2 kV/cm applied. Also shown are the probability densities (Ψ2) of several electron states, which are
shifted by their corresponding eigenenergies.

Figure 4.11.2.7: Calculated conduction band edge (black line) of the quantum-cascade structure with electric field
of strength 9.8 kV/cm applied. Also shown are the probability densities (Ψ2) of several electron states, which are
shifted by their corresponding eigenenergies.

4.11. Cascade Structures 357

nextnano++ Documentation, Release 1.25.13

7. 𝜆 = 9.9 𝜇m, i.e. 30.2 THz or 125 meV

The simulated quantum-cascade structure, shown in Figure 4.11.2.8, is based on [Dehlinger2000]. This corre-
sponding input file is 1DQuantumCascadeLaserSiGe_nnpp.in.

Figure 4.11.2.8: Calculated valance band edge (black line) of the quantum-cascade structure with electric field of
strength 50 kV/cm applied. Also shown are the probability densities (Ψ2) of several hole states, which are shifted
by their corresponding eigenenergies.

This tutorial also exists for nextnano3.

Last update: 27/05/2025

4.12 Optical Spectra and Transitions

4.12.1 Single Particle
Optical absorption for interband and intersubband transitions

Section author: Takuma Sato

Input Files:
• QWIP_singleQW_GaAs_AlGaAs_nnp.in

• QWIP_singleQW_InAs_AlSb_nnp.in

• QWIP_Gunapala_JAP_1991_nnp.in

• AlGaAs_QW_Frankenberger_Simple_nnp.in

• AlGaAs_QW_Frankenberger_Simple_nnp_fast.in

• AlGaAs_QW_Frankenberger_Doping_schottky07_nnp.in

• AlGaAs_QW_Frankenberger_Doping_schottky07_nnp_fast.in

Contents

In this tutorial we illustrate the optics{ } module to demonstrate what nextnano++ can simulate for optoelectronic
devices. This module performs a detailed calculation to optical absorption phenomena, using 8 (or 6) band k ·p
models. If you are interested in

358 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• the background physics of this module and how to write the input file, go to Principle and nextnano++
implementation.

• the simulation results for intersubband transitions, go to 1D tutorial for intersubband transitions: Quantum
well infrared photodetector.

• the simulation results for interband transitions, go to 1D tutorial for interband transitions: Frankenberger.

• optical absorption in 2D devices, (under construction)

• optical absorption in broken-gap structures, (under construction)

This algorithm is implemented based on the following diploma thesis:

• Thomas Eißfeller, Linear Optical Response of Semiconductor Nanodevices, Technische Universität München
(2008)

For the physics of optical transition in semiconductors and its application, we refer to

• Shun L. Chuang, Physics of Optoelectronic Devices (Wiley, 1995)

• S.M. Sze & Kwok K. Ng, Physics of Semiconductor Devices (Wiley, 2007)

Principle and nextnano++ implementation

k‖ space

In the k.p analysis of one- (or two-) dimensional structures we have a projection of the Bloch wave vector along
translation-invariant directions. We denote them as k‖ = 𝑘𝑦𝑦 + 𝑘𝑧𝑧 (1D) and k‖ = 𝑘𝑧𝑧 (2D). Under envelope
function approximation the k ·p model yields the following equation to determine the confined states in structured
directions

8∑︁
𝜇=1

𝐻kp8
𝜈𝜇 (k‖, r⊥)𝑓𝑚,𝜇(r⊥) = 𝐸𝑚(k‖)𝑓𝑚,𝜈(r⊥) (𝜈 = 1, . . . , 8), (4.12.1.1)

where the Greek indices label the k.p bands and 𝑚 denotes eigenvalues, r⊥ = 𝑥�̂� in 1D and r⊥ = 𝑥�̂� + 𝑦𝑦 in
2D. 𝐻kp8 is the 8 × 8 matrix whose elements are given by the k.p parameters in the database. 𝑓𝑚,𝜇(r⊥)‘ are the
envelopes in the structured directions. The full wave function is given at each k‖ as

Ψ𝑛(k‖, r) =

8∑︁
𝜇=1

𝐹𝑚,𝜇(k‖, r)𝑢𝜇(r) =

8∑︁
𝜇=1

𝑒𝑖k‖·r‖
√
𝐴

𝑓𝑚,𝜇(r⊥)𝑢𝜇(r), (4.12.1.2)

where 𝑢𝜇(r) is the Bloch function of the band 𝜇 at k = 0 and 𝐴 =
∫︀
𝑑r‖. In general, both the conduction band

(Γ) and valence bands contribute to this full wave function. The spinor composition is exported to Quantum\
spinor_composition. After solving this “Schrödinger” equation, the wave function is integrated over a limited
region in k‖ space to obtain the charge density, which is used in the quantum-current-Poisson iteration. The region
is specified under quantum{ } as

quantum{
region{

kp_8band{
k_integration{

relative_size = $r_quantum # size of k||-space in quantum{ }␣
→˓(relative to the Brillouin zone)

num_points = $N_quantum # number of k|| points where Schrödinger␣
→˓eq. is solved

num_subpoints = $Nsub_quantum # number of points between k|| points␣
→˓where wave functions and eigenvalues are interpolated

(continues on next page)

4.12. Optical Spectra and Transitions 359

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

force_k0_subspace = # (optional) use the eigenfunctions of the␣
→˓Schrödinger equation at k=0 as the basis for the Schrödinger equation at all k-
→˓point (default: no)

}
}

}
}

ò Note

When force_k0_subspace=yes in quantum{ } or optics{ }, the Schrödinger equations at non-zero k-
points are solved in the subspace of the eigenfunctions obtained by the Schrödinger equation at k‖ = 0. This
approximation largely improves the computational speed. In case you are planning to use this approximation
for final results, please make sure to check whether the resulting loss of accuracy in density is acceptable
(quantum{ }) or the loss in optical spectra is acceptable (optics{ }).

Optical absorption spectrum

When 1) Schrödinger equation is solved with k.p method, 2) optics{ } flag is present and 3) the specifier optics{
} is present under run{ } flag, nextnano++ calculates the absorption spectrum.

optics{
region{
... # see below for details
}

}

run{
quantum{ }
optics{ }

}

The optical absorption accompanied by excitation of charge carriers (state 𝑛→ 𝑚) in a condensed matter is calcu-
lated from Fermi’s golden rule [ChuangOpto1995]. The absorption coefficient has the dimension of (length)−1.

𝛼(⃗𝜖, 𝜔) =
𝜋𝑒2

𝑛𝑠𝑐𝜀0𝑚2
0𝜔

1

𝑉

∑︁
𝑛>𝑚

∑︁
k‖

|⃗𝜖 · �⃗�𝑛𝑚(k‖)|2(𝑓𝑚 − 𝑓𝑛)𝛿(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔), (4.12.1.3)

where the first sum runs over bands that fulfill 𝐸𝑛 > 𝐸𝑚, and 𝑓𝑚(k‖) = [1 + 𝑒[𝐸𝑚(k‖)−𝐸𝐹]/𝑘𝐵𝑇]−1 is the
occupation of eigenstate 𝑚. When optics{ occupation_ignore=yes } (default is no), the program assumes{︃

𝑓𝑚(k‖) = 0 if 𝑚 ∈ conduction band
𝑓𝑚(k‖) = 1 if 𝑚 ∈ valence band

The light polarization �⃗� and refractive index 𝑛𝑠 are specified in the input file. The refractive index is in general
frequency-dependent, but we assume it to be constant and equal to the substrate value.

optics{
region{

polarization{ name="TM" re = [1,0,0] } # in 1D simulation, x is the growth␣
→˓direction

(continues on next page)

360 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

polarization{ name="TE" re = [0,1,0] } # complex (circular) polarization is␣
→˓also allowed

refractive_index = # (optional) use alternative value for the␣
→˓refractive index (default: substrate value)
}

}

The core of the optical transition is the optical matrix elements �⃗� · �⃗�𝑛𝑚(k‖) because the kinematic momentum
operator �⃗� = (𝜋𝑥, 𝜋𝑦, 𝜋𝑧) couples linearly to the vector potential that accounts for the electromagnetic field. Here
�⃗� is the sum of the conventional momentum operator p and the contribution of spin-orbit interaction. The optical
matrix elements are calculated as

�⃗�𝑛𝑚(k‖) = ⟨𝑛|�⃗�|𝑚⟩ =
∫︁
𝑑r
(︀
𝐹 *
𝑛1 · · · 𝐹 *

𝑛8

)︀⎛⎝ �⃗�kp8
𝜈𝜇

⎞⎠
⎛⎜⎝𝐹𝑚1

...
𝐹𝑚8

⎞⎟⎠ , (4.12.1.4)

where the 8×8 matrix representation of the momentum operator, �⃗�kp8
𝜈𝜇 , has been derived using the Hellmann-

Feynman theorem extended to the 8-band k.p model up to first order in k [Eißfeller]. For the analysis of the
absorption spectrum, nextnano++ also prints out some fractions of the absorption coefficient formula in the output
folder, namely

1. occupation (if output_occupations=yes) \Optics\occupation_~.dat 𝑓𝑚(k‖)

2. eigenvalue dispersion (if output_energies=yes) \Optics\energy_disp_~.dat 𝐸𝑚(k‖)

3. transition intensity (if output_transitions=yes) Optics\transition_disp_~.dat 𝑇𝑛𝑚(⃗𝜖,k‖) = 2
𝑚0

|⃗𝜖 ·
�⃗�𝑛𝑚(k‖)|2

4. imaginary part of the dielectric function for each transition (if output_spectra{ output_components

yes }) \Optics\imepsilon_~.dat Im𝜀𝑛𝑚(⃗𝜖, 𝜔) = 𝑚0

2𝜔2
𝜋𝑒2

𝑚2
0𝜀0

1
𝑉

∑︀
k‖
𝑇𝑛𝑚(⃗𝜖,k‖)(𝑓𝑚 − 𝑓𝑛)𝛿(𝐸𝑛 −𝐸𝑚 − ℏ𝜔)

5. total imaginary part of the dielectric function \Optics\imepsilon_~.dat Im𝜀(⃗𝜖, 𝜔) =
∑︀
𝑛>𝑚 Im𝜀𝑛𝑚(⃗𝜖, 𝜔)

6. total absorption spectrum \Optics\absorption_~.dat 𝛼(⃗𝜖, 𝜔) =
∑︀
𝑛>𝑚 𝛼𝑛𝑚(⃗𝜖, 𝜔) =∑︀

𝑛>𝑚
𝜔
𝑛𝑠𝑐

Im𝜀𝑛𝑚(⃗𝜖, 𝜔)

The following part of the input specifies how much transitions to be taken into account. The setting for
k_integration{} is explained in the next section.

optics{
region{

interband = $INTERBAND # yes or no
intraband = $INTRABAND # yes or no

energy_min = $ENERGY_MIN # minimum energy of the absorption␣
→˓spectrum

energy_max = $ENERGY_MAX # maximum energy of the absorption␣
→˓spectrum

energy_resolution = $ENERGY_RESOLUTION # energy grid spacing

k_integration{
relative_size = $r_optics # size of k||-space in optics{ } (relative to␣

→˓the Brillouin zone)
num_points = $N_optics # number of k|| points where transition␣

→˓intensities are computed
num_subpoints = $Nsub_optics # number of points between k|| points where␣

→˓transition intensity is interpolated
force_k0_subspace = # (optional) use the eigenfunctions of the␣

(continues on next page)

4.12. Optical Spectra and Transitions 361

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓Schrödinger equation at k=0 as the basis for the Schrödinger equation at all k-
→˓point (default: no)

}
}

}

Parameters in k_integration{} (for fine tuning)

Parameters in k_integration{} in optics{ } flag (hereafter 𝑟opt, 𝑁opt, 𝑁
′
opt) specify the size and resolu-

tion of the k‖ space integration in absorption spectrum calculation,
∑︀

k‖
. This should not be confused with

the specifier k_integration{} in quantum{ } flag used for quantum mechanical charge density integration
(hereafter 𝑟𝑞, 𝑁𝑞, 𝑁 ′

𝑞 , see Figure 4.12.1.1).

Figure 4.12.1.1: Calculation algorithm of optical absorption spectrum and its relation to the parameters in
k_integration{}. 𝑟𝑞, 𝑁𝑞, 𝑁 ′

𝑞 and 𝑟opt, 𝑁opt, 𝑁
′
opt are specified in quantum{ } and optics{ }, respectively.

To do; the energy dispersion is interpolated with 𝑁 ′
q or 𝑁 ′

opt?

First we discuss the parameters 𝑟opt and 𝑁opt. The size of k|| space may affect the validity of simulation results.
It also determines the simulation load. Here are some hints to determine the appropriate parameter sets:

• In undoped systems, integrating up to |k‖| that gives in-plane kinetic energy ℏ2𝑘2‖/2𝑚 corresponding to
2𝑘𝐵𝑇 or 3𝑘𝐵𝑇 should be sufficient. Usually 𝑟opt = 0.3 is sufficiently large to include all occupied states.
In doped systems, it depends on the Fermi energy.

• To see the range of occupied states in k‖ space, run a simulation and look at the output \Optics\
occupation_~.dat. We recommend checking the box “Show grid” on the left panel in Output tab of
nextnanomat. This shows the occupation 𝑓𝑚(k‖) as a function of k‖. Let us consider 1D simulation and
suppose you got the following:

where (𝑟opt, 𝑁opt) = (0.3, 8). The horizontal- and vertical axes are 𝑘𝑦 and 𝑘𝑧 , respectively. The area |𝑘𝑦,𝑧| ≤
𝑟opt

𝜋
𝑎 is shown with the k||-space gridding (thin white lines). The number of k|| points in one direction is 2𝑁opt +

3. The occupation profile is not smooth, and you might want a higher resolution by increasing the parameter
(𝑟opt, 𝑁opt) → (0.3, 60):

362 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.12. Optical Spectra and Transitions 363

nextnano++ Documentation, Release 1.25.13

The occupation becomes smooth, but at the same time this significantly increases the number of k points (in 1D
simulation, (the number of k points)∝ (𝑟opt𝑁opt)

2). Noting that the black region, where occupation is zero, does
not contribute to the absorption, you can “zoom in” to the colored region by decreasing 𝑟opt and 𝑁opt in such
a way that the ratio 𝑟opt/𝑁opt remains constant. This will cut down the irrelevant region without changing the
resolution. For example, if you set (𝑟opt, 𝑁opt) = (0.05, 10), you obtain

and this should be sufficient for the k||-space integration.

After tuning the parameters 𝑟opt, 𝑁opt, we can further optimize the setting regarding the interpolation. The number
of subpoints 𝑁 ′

opt determines at how many k|| points the transition intensity should be interpolated. Increasing
𝑁 ′

opt gives 𝐸𝑚(k‖) of higher resolution and makes the absorption spectrum smooth. Figure 4.12.1.2 shows that
this parameter improves the absorption spectrum.

Figure 4.12.1.2: The effect of the parameter𝑁 ′
opt specified in optics{ k_integration{}} on absorption spec-

trum output \Optics\absorption. Larger 𝑁 ′
opt smoothens the k||-dependence of the integrand, which leads to

smoother spectrum.

To do: investigate spin_degeneracy=yes/no and dipole_approximation = yes/no

364 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

1D tutorial for intersubband transitions: Quantum well infrared photodetector

In the following we apply the formalism to several devices. As a first example, we model the absorption spectrum
of an AlGaAs/GaAs quantum well infrared photodetector (QWIP). The QWIP is based on photoconductivity due
to intersubband excitation.

Input files

• QWIP_singleQW_GaAs_AlGaAs_nnp.in

• QWIP_singleQW_InAs_AlSb_nnp.in

• QWIP_Gunapala_JAP_1991_nnp.in

The first example uses the same parameters used in

• FIG. 20 in B.F. Levine, J. Appl. Phys. 74 (8), 15 (1993),

while the third example is based on [GunapalaJAP1991]

GaAs/AlGaAs single QW - band structure, eigenstates and absorption

We first illustrate the first example QWIP_singleQW_GaAs_AlGaAs_nnp.in. In this example, we model optical
absorption in single quantum well structure. The following input is required for self-consistent quantum-current-
Poisson simulation:

quantum{
region{

name = "optical_active"
no_density = no
kp_8band{
num_electrons = $OptNumE
num_holes = $OptNumH

}
}

}

poisson{ }

current{}

run{
strain{ } # strain calculation
current_poisson{ }
quantum_current_poisson{ }
optics{ } # absorption calculation

}

The specifier no_density=no lets the program calculate quantum mechanical charge density (default). Current-
Poisson equation takes over this value. The band structure and wave functions are shown in Figure 4.12.1.3 and
Figure 4.12.1.4, respectively.

The output folder \Optics contains computed absorption spectra. Let us first check the occupation 𝑓𝑚(k‖)
used in the calculation. When comparing the results \Optics\occupation, please mind the autoscale mode
of nextnanomat:

The autoscale mode in nextnanomat is set off here. We clearly see that the first state is well occupied, whereas for
the second state is not (precisely speaking 𝑓1(0)=0.897 while 𝑓2(0)<0.07).

The absorption coefficient for TE (⃗𝜖 = 𝑦) and TM (⃗𝜖 = �̂�) light polarization is shown in Figure 4.12.1.7. The
energy grid spacing here is $ENERGY_RESOLUTION=0.5meV. For single-band models the peak becomes very sharp
unless one introduces phenomenological broadening function such as Lorentzian. In k.p calculation, in contrast,

4.12. Optical Spectra and Transitions 365

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.3: Single quantum well structure \bandedges.dat. The bias voltage between two contacts is set to
2mV.

Figure 4.12.1.4: Probability distribution |𝜓(𝑥)|2 of the confined states at k‖ = 0 (\Quantum\
probabilities_shift_optical_active). The wave functions here are the solution to the 8-band k.p model.
The energy separation is ∆𝐸=0.06960-(-0.05589)=0.1255[eV] according to the output data. The electron Fermi
energy lies between two bound states.

Figure 4.12.1.5: Occupation of the first (m=1) bound states as a function of k‖.

366 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.6: Occupation of the second (m=2) bound states as a function of k‖.

peaks gets broadened because the transition energies, 𝐸𝑛(k‖) − 𝐸𝑚(k‖), depends on k||. One can confirm this
by comparing the output \Optics\energy_disp_~.dat for states m=1 and 2 (not shown). In intersubband
transitions the transition energies can be concave downward in k|| space, i.e.,𝐸𝑛(k‖)−𝐸𝑚(k‖) ∝ −𝑘2, depending
on the masses. In the present case the absorption spectrum has a tail in the region ℏ𝜔 < ∆𝐸.

Figure 4.12.1.7: Absorption coefficient in \Optics\absorption_~.dat as a function of photon energy, for TE
and TM. Black arrow points the energy separation∆𝐸. The broadening of the spectrum is due to the k||-dependence
of wave functions and corresponding eigenvalues.

The optical transitions between conduction band states (intersubband transitions) in response to TE-polarized light
is only allowed when eigenstates have finite spinor components in valence bands. In the present case its large band
gap and small confinement leads to small band-mixing, rendering TE absorption spectrum orders of magnitude
smaller than TM polarization (Figure 4.12.1.7). As seen in the output \Quantum\spinor_composition_~.dat,
eigenstates contain approximately 98% contribution from conduction band and 2% from valence band.

4.12. Optical Spectra and Transitions 367

nextnano++ Documentation, Release 1.25.13

InAs/AlSb single QW - small band gap & large confinement

In the second example QWIP_singleQW_InAs_AlSb_nnp.in, single quantum well is narrower and the band gap is
smaller than the first example. The small band gap and large confinement of the wave function (Figure 4.12.1.8)
leads to large band mixing. In fact, the output \Quantum\spinor_composition_~.dat shows that the ground
states in Figure Figure 4.12.1.8 consists of 80.7% of conduction band and 19.3% of valence band contribution.

Figure 4.12.1.8: Confined states atk‖ = 0 (\Quantum\probabilities_shift_optical_active) in a narrower
and deeper quantum well. The blue line marks the electron Fermi energy (0eV).

Figure 4.12.1.9: Absorption spectrum for TE and TM. TE absorption becomes relevant compared to Figure 4.12.1.7
because of the large band-mixing. Note that TE spectrum here is multiplied by a factor of 100, instead of 1000 in
Figure 4.12.1.7.

Periodic case

In the third example QWIP_Gunapala_JAP_1991_nnp.in, we set the bias to zero and impose the periodic boundary
condition. The GaAs/Al𝑥Ga1−𝑥As superlattice structure induces miniband states below the barriers, enabling
bound-to-continuum absorptions of sub-eV photons. This 𝜇m-wavelength photodetector works without electron
tunneling through the barriers, thereby improving the detectivity [Gunapala]. The band structure bandedges.dat
and wave functions \Quantum\probabilities_shift.dat are shown in Figure 4.12.1.10. We have continuum
states above the barriers as well as bound states in the superlattice (miniband).

The absorption coefficient is exported to \Optics\absorption. The indices in the filename *_kp8_TE_m_n.dat
refer to the transition from state m to state n. The files without indices contain the total absorption spectrum (sum

368 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.10: Gamma band profile and probability distribution of the bound miniband states and continuum
states above the top of the barriers.

over all transitions). The total absorption spectrum for TE and TM polarization looks like this:

Figure 4.12.1.11: Absorption spectrum for TE (⃗𝜖 = 𝑦) and TM (⃗𝜖 = �̂�) polarization. TE spectrum is magnified by
factor of 1000. We observe that TM absorption is much larger than TE, while the peak positions are the same.

The peak positions do not depend on polarization, while the peak height is much larger for TM polarization com-
pared to the one for TE. Looking at the absorption spectrum for each transition, we identify which transition
contributes to which peak (Figure 4.12.1.12).

Let us look at the eigenvalue and occupation of each state to confirm this result. The eigenvalues of the
bound- and continuum states are written in the output \Quantum\probabilities_shift.dat or \Quantum\
energy_spectrum.

ò Note

quantum{ } uses spin-resolved index for the eigenstates, so there are 80 states in total. In optics{ }, however,
two spin-degenerate states are summed up and there are only 40 states. This number (1 to 40) is used in the
\Optics output filenames. For the consistency, we use the latter notation throughout. (To do: examine the
specifier spin_degeneracy)

Based on the indices in Figure 4.12.1.12, we identify the first four peaks to the following four different transitions
(Figure 4.12.1.13). We have confirmed that the peak energies in Figure 4.12.1.12 are consistent to the energy
separation of the corresponding states.

Lastly we check the occupation (Fermi-Dirac distribution) 𝑓𝑚(k‖). In the output \Optics\
eigenvaluespectrum (Figure 4.12.1.14), occupation at k||=0 of 𝑚-th state, 𝑓𝑚(k‖ = 0), is plotted at

4.12. Optical Spectra and Transitions 369

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.12: Contributions from different transitions to the total TE absorption spectrum.

Figure 4.12.1.13: Eigenenergies of relevant bound- and continuum states. Many other transitions have little contri-
bution due to the shape of the wave functions and/or occupation of the states. When we calculate for wider energy
range, i.e. increase the parameter $ENERGY_MAX, there will be many more peaks that are attributed to higher energy
transitions.

370 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

corresponding eigenvalues 𝐸𝑚. The function takes the maximum value at the origin k‖ = 0. In the present
system, 𝑓1(0) = 0.087, 𝑓2(0) = 0.077, . . . , 𝑓10(0) = 0.0148 for the bound states, whereas 𝑓𝑚(0) < 10−4

for continuum states (𝑚 ≥ 11). Therefore the initial states in Figure 4.12.1.13 are well occupied and the final
states are mostly empty. This enables optical absorption via bound-to-continuum excitation of electrons, thereby
realizing a quantum well photodetector with high detectivity.

Figure 4.12.1.14: Occupation of eigenstates showing a noticeable difference for bound (m=1-10) and continuum
(m=11,. . .) states.

1D tutorial for interband transitions: Frankenberger

Input files

• AlGaAs_QW_Frankenberger_Simple_nnp.in

• AlGaAs_QW_Frankenberger_Simple_nnp_fast.in

• AlGaAs_QW_Frankenberger_Doping_schottky07_nnp.in

• AlGaAs_QW_Frankenberger_Doping_schottky07_nnp_fast.in

These files are located in the sample files folder. The fast examples reduce the computation load by limiting
exact solution only to 𝑘 = 0 point and computing all other 𝑘 points in the basis of the 𝑘 = 0 wave functions
(force_k0_subspace; see quantum{ } and optics{ } documentations).

Optical absorption and interband transitions

In the input file AlGaAs_QW_Frankenberger_Simple_nnp.in, we consider a single quantum well structure:

The program solves the 8-band k.p model coupled to the Poisson equation to find the eigenstates and compute
the absorption coefficient. Figure Figure 4.12.1.16 shows the absorption spectrum for circularly polarized light
(⃗𝜖 = 𝑦− 𝑖𝑧). In contrast to QWIP examples above, peaks have long tails toward higher energy. This is because the
transition energies𝐸𝑛(k‖)−𝐸𝑚(k‖) in interband transitions are concave upward ∼ +𝑘2 (here we do not consider
Type 2 semiconductors).

The steps of this absorption spectrum are associated with the following interband transitions:

ò Note

In the end of the log file, you find the message “Integration reliable up to —eV”. This tells you up to which
energy the absorption spectrum is reliable. Since we only consider the vicinity of the origin k‖ = 0, the reliable

4.12. Optical Spectra and Transitions 371

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.15: The conduction band edge profile (bandedges.dat) and wave functions of the bound states
(\Quantum\probabilities_shift).

Figure 4.12.1.16: Absorption coefficient of circularly polarized lights. Numbers “m-n” denote each transition
𝑚→ 𝑛. The first four transitions are sketched in Figure 4.12.1.17 .

372 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.17: Eigenvalues (black) and transitions from valence-band to conduction band bound states (arrows)
which are responsible for the first four steps in Figure 4.12.1.16. Here spin-degenerate states are counted as one
state (eigenstate numbering in optics{ }).

energy interval is bound from above by the energy difference of the initial and final states at the edge of the
k||-space considered. The upper limit d [eV] is given by

𝑑 = mink‖∈ Ω* edge |𝐸𝑛(k‖)− 𝐸𝑚(k‖)|

where Ω* is the region in k||-space specified in optics{ region{ k_integration{} } } with parameters
𝑟opt and 𝑁opt. In the present case d=3.2eV, while the calculation is safely performed for the interval [1.4, 1.7]
(eV). This message appears only when interband transitions are computed, i.e. when interband=yes and
intraband=no in optics{ } flag.

Doping and Schottkey barrier

In the second input file AlGaAs_QW_Frankenberger_Doping_schottky07_nnp.in, we consider the following
structure:

Figure 4.12.1.18: The band structure and eigen functions used for optics calculation. The Fermi level is at 0eV.

Figure 4.12.1.20 compares the results for different settings for occupation 𝑓𝑚(k‖). When optics{
occupation_ignore=yes }, valence bands and conduction bands are considered to be fully occupied and fully
empty, respectively. When the actual occupation of eigenstates are taken into account, in contrast, optical transi-

4.12. Optical Spectra and Transitions 373

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.19: Absorption coefficient of circularly polarized lights. Numbers “m-n” denote each transition
𝑚→ 𝑛.

tions to conduction band states just above the Fermi energy are prohibited because of the thermal distribution of
electrons.

Figure 4.12.1.20: Absorption coefficient for different settings of occupation. The red curve is identical to the total
absorption spectrum in Figure 4.12.1.19. When occupation_ignore=no, absorption of low energy photons is
suppressed due to the occupation of the lowest conduction band states (also see Figure 4.12.1.18).

Last update: nnnn/nn/nn

Optical interband transitions in a quantum well - Matrix elements and selection rules

Input files:
• 1DQW_interband_matrixelements_finite_nnpp.in

• 1DQW_interband_matrixelements_infinite_nnpp.in

Scope:
We consider a 5 nm 𝐺𝑎𝐴𝑠 quantum well embedded between 𝐴𝑙𝐴𝑠 barriers. The structure is
assumed to be unstrained. We distinguish between two cases:

a) finite 𝐴𝑙𝐴𝑠 barriers

b) infinite 𝐴𝑙𝐴𝑠 barriers (This can be achieved by choosing Dirichlet boundary conditions at
the quantum well boundaries.)

374 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Eigenstates and wave functions in the quantum well

a) Finite quantum well

Input file: 1DQW_interband_matrixelements_finite_nnpp.in

For finite barriers we obtain using single-band Schrödinger effective-mass approximation (i.e. isotropic and
parabolic effective masses)

• 3 confined electron states in the Gamma conduction band (we do not consider L and X bands here)

• 5 confined heavy hole states

• 2 confined light hole states

• 3 confined split-off hole states

Figure 4.12.1.21 shows the band edges of the Gamma conduction band and the heavy, light and split-off hole
band edges together with wave functions of the confined states. Note that the heavy and light hole band edge is
degenerate.

Figure 4.12.1.21: Calculated conduction band edge (black), hh/ lh valence bands (red) and split-off hole valence
band (blue) with wave functions of lowest electron and hole states.

As one can see, the valence band looks rather messy. Thus, we zoom into it, see Figure 4.12.1.22 The 5 heavy hole
wave functions are indicated in black, the 2 light hole wave function in red and the 3 split-off hole wave functions
in blue.

Overlap integrals

Case b) Infinite quantum well

Input file: 1DQW_interband_matrixelements_infinite_nnpp.in

To understand the optical transitions we first examine the matrix elements of the envelope functions, i.e. the spatial
overlap which is the integral over their product with no dependence on polarization:

⟨𝜓cn|𝜓vm⟩ = 𝛿nm

This leads to the so-called ‘Delta n = 0’ selection rule, i.e. only transitions between levels with the same index are
allowed. Of course, this rule is not valid anymore for case a), where we have finite 𝐴𝑙𝐴𝑠 barriers, but nevertheless
this rule gives the strongest transitions.

quantum{
...

(continues on next page)

4.12. Optical Spectra and Transitions 375

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.22: Calculated valence band edges and hole wave functions. The 5 heavy hole wave functions are
indicated in black, the 2 light hole wave function in red and the 3 split-off hole wave functions in blue.

(continued from previous page)

overlap_integrals{ # output matrix elements
HH_Gamma{}
LH_Gamma{}
SO_Gamma{}

}
}

The spatial overlap integrals of the envelope functions are contained in these files:

• bias_00000Quantumoverlap_integrals_quantum_region_HH_Gamma.txt - (heavy hole)

• bias_00000Quantumoverlap_integrals_quantum_region_LH_Gamma.txt - (light hole)

• bias_00000Quantumoverlap_integrals_quantum_region_SO_Gamma.txt - (split-off hole)

For instance, the matrix elements of the envelope functions for the ‘heavy hole’ to ‘conduction band’ transitions
read:

Spatial overlap matrix elements < psi_hl_i | psi_el_j > and
energy of transition in [eV].

heavy hole <-> Gamma conduction band
--
<psi_vb001|psi_cb001> 1.001844 1.729371 ('Delta n = 0' selection rule)
<psi_vb001|psi_cb002> 3.456436E-016
<psi_vb001|psi_cb003> 7.866970E-016
<psi_vb002|psi_cb001> 7.463647E-016
<psi_vb002|psi_cb002> 1.007268 2.355209 ('Delta n = 0' selection rule)
<psi_vb002|psi_cb003> 2.844946E-016
<psi_vb003|psi_cb001> 9.575673E-016
<psi_vb003|psi_cb002> 1.450228E-015
<psi_vb003|psi_cb003> 1.015938 3.384106 ('Delta n = 0' selection rule)
<psi_vb004|psi_cb001> 1.076395E-015
<psi_vb004|psi_cb002> 1.422473E-015
<psi_vb004|psi_cb003> 2.019218E-015
<psi_vb005|psi_cb001> 1.960237E-016
<psi_vb005|psi_cb002> 1.346145E-015
<psi_vb005|psi_cb003> 1.217775E-015

The results shown above are for a 0.25 nm grid spacing (which is rather coarse). For a 0.1 nm grid spacing one

376 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

obtains the following values for the relevant transitions:

<psi_vb001|psi_cb001> 1.000140 1.754633
<psi_vb002|psi_cb002> 1.000559 2.459675
<psi_vb003|psi_cb003> 1.001251 3.631886

Case a) finite quantum well

We now calculate the same matrix elements as above but this time for the finite 𝐴𝑙𝐴𝑠 barriers.

Spatial overlap matrix elements < psi_hl_i | psi_el_j > and
energy of transition in [eV].

heavy hole <-> Gamma conduction band

<psi_vb001|psi_cb001> 0.987507 1.654103 ('Delta n = 0' selection rule)
<psi_vb001|psi_cb002> 1.336279E-014
<psi_vb001|psi_cb003> 0.145559 2.538366 (same parity: symmetric)
<psi_vb002|psi_cb001> 1.133344E-014
<psi_vb002|psi_cb002> 0.964789 2.065139 ('Delta n = 0' selection rule)
<psi_vb002|psi_cb003> 7.879180E-015
<psi_vb003|psi_cb001> 0.128041 1.829856 (same parity: symmetric)
<psi_vb003|psi_cb002> 4.286800E-015
<psi_vb003|psi_cb003> 0.839306 2.714118 ('Delta n = 0' selection rule)
<psi_vb004|psi_cb001> 6.263441E-015
<psi_vb004|psi_cb002> 0.215428 2.315853 (same parity: antisymmetric)
<psi_vb004|psi_cb003> 1.246759E-015

The results shown above are for a 0.25 nm grid spacing (which is rather coarse). For a 0.1 nm grid spacing one
obtains the following values for the relevant transitions:

<psi_vb001|psi_cb001> 0.987955 1.652509
<psi_vb001|psi_cb003> 0.142978 2.541682
<psi_vb002|psi_cb002> 0.966524 2.062825
<psi_vb003|psi_cb001> 0.127100 1.828683
<psi_vb003|psi_cb003> 0.838394 2.717855
<psi_vb004|psi_cb002> 0.211786 2.317309

6-band k.p calculations for the infinite barrier 𝐴𝑙𝐴𝑠/ 𝐺𝑎𝐴𝑠/ 𝐴𝑙𝐴𝑠 quantum well

Input file: 1DQW_interband_matrixelements_infinite_kp_nnpp.in

Figure 4.12.1.23 shows the lowest 26 eigenstates obtained with 6-band k.p for the 5 nm 𝐺𝑎𝐴𝑠 quantum well with
infinite barriers. Each k.p state is two-fold degenerate (spin up / spin down)

One can easily relate the transitions to the ‘Delta n = 0’ selection rule. However, in contrast to the single-band
approximation, the matrix elements are not necessarily equal to 1 anymore because the hole states are mixed and
thus the hole envelope functions are significantly different to the electron envelope functions, even for an infinitely
deep square well.

6-band k.p calculations for the finite barrier 𝐴𝑙𝐴𝑠/ 𝐺𝑎𝐴𝑠/ 𝐴𝑙𝐴𝑠 quantum well

Input file: 1DQW_interband_matrixelements_finite_kp_nnpp.in

Figure 4.12.1.24 shows the 6-band k.p hole wave functions for the quantum well having finite𝐴𝑙𝐴𝑠 barriers. Their
energies and 𝑃𝑠𝑖2 are two-fold degenerate due to spin but the wave functions Ψ are different! (not shown here).
The electron wave functions (3 confined states) are the same as above.

The calculated spatial overlap integrals nicely show that in addition to the transitions where the ‘Delta n = 0’ se-
lection rule is responsible, additional transitions arise due to symmetric/antisymmetric parity. All other transitions
are zero. This is in agreement with the single-band results.

4.12. Optical Spectra and Transitions 377

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.23: 6-band k.p wave functions (𝑃𝑠𝑖2) for a 5 nm 𝐺𝑎𝐴𝑠 quantum well with finite barriers

Figure 4.12.1.24: 6-band k.p wave functions (𝑃𝑠𝑖2) for a 5 nm 𝐺𝑎𝐴𝑠 quantum well with 𝐴𝑙𝐴𝑠 barriers

378 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: 27/05/2025

Optical intraband transitions in a quantum well - Momentum matrix elements and selection rules

Input files:
• 1DQW_intraband_matrixelements_infinite_nnpp.in

• 1DQW_intraband_matrixelements_infinite_kp_nnpp.in

Scope:
We consider a 10 nm 𝐺𝑎𝐴𝑠 quantum well embedded between 𝐴𝑙𝐴𝑠 barriers. The structure
is assumed to be unstrained. We assume “infinite” 𝐴𝑙𝐴𝑠 barriers. (This can be achieved by
choosing a band offset of 100 eV.) This way we can compare our results to analytical text books
results.

Eigenstates and wave functions in the quantum well

Input file: 1DQW_intraband_matrixelements_infinite_nnpp.in

quantum{
...
momentum_matrix_elements{ # output spatial overlap of wave functions

Gamma{}
HH{}
LH{}
SO{}
output_oscillator_strengths = yes # default is no

}
dipole_moment_matrix_elements{ # output dipole moment matrix elements

Gamma{}
HH{}
LH{}
SO{}
output_oscillator_strengths = yes # default is no

}
transition_energies{ # output transition energies

Gamma{}
HH{}
LH{}
SO{}

}
}

Figure 4.12.1.25 shows the six lowest eigenfunctions of the 1D 𝐺𝑎𝐴𝑠 quantum well. The conduction band edge
of 𝐺𝑎𝐴𝑠 is assumed to be located at 0 eV.

For “infinite” barriers we obtain using single-band Schrödinger effective-mass approximation (i.e. isotropic and
parabolic effective masses) the following eigenvalues:

E1 = 0.05652 eV (0.05655)
E2 = 0.22601 eV (0.22618 = 22 E1)
E3 = 0.50831 eV (0.50891 = 32 E1)
E4 = 0.90314 eV (0.90473 = 42 E1)
E5 = 1.41011 eV (1.41365 = 52 E1)
E6 = 2.02872 eV (2.03565 = 62 E1)

4.12. Optical Spectra and Transitions 379

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.25: Calculated conduction band edge (black) and wave functions of confined electron states.

The analytic formula in the infinite barrier QW model reads:

𝐸𝑛 =
ℏ2

2𝑚0

(︁𝜋𝑛
𝐿

)︁2
= 0.056546 · 𝑛2 eV

where 𝐿 is the width of the quantum well (𝐿 = 10 nm). The analytically calculated values are given in brackets
and are in excellent agreement.

Momentum matrix elements

Light that propagates normal to the quantum well layers cannot be absorbed by intraband transitions. However, if
the light propagates in the plane of the well (i.e. the electric field is oriented normal to the quantum well layers),
intersubband absorption occurs.

To understand optical intraband (= intersubband) transitions for light that travels in the plane of the QW, we have
to examine the intersubband dipole moment:

𝑀𝑓𝑖 = ⟨𝜓f |𝑥|𝜓i⟩ =
∫︁ ∞

−∞
𝜓*
𝑓 (𝑥)𝑥𝜓𝑖(𝑥)𝑑𝑥

where |𝜓⟩ is the envelope function of the relevant state (within the same band).

In our case, we have a symmetric quantum well with infinite barriers, thus our envelope functions are either sym-
metric or antisymmetric. The intersubband matrix elements will vanish if the envelope functions have the same
parity, e.g. 𝑀13 = 𝑀31 = 0. In this simple example, the matrix elements can be calculated analytically, e.g. 𝑀12

= (16/9𝜋2) 𝐿 = 1.8013 nm. nextnano++ gives the following results:

𝑀12 =𝑀21 = 1.80143 nm

𝑀13 =𝑀31 = 1.9463𝑒−15 nm

For the “infinite” QW barrier model, this matrix element is independent of the effective mass, thus the matrix
elements in the conduction band are the same as in the valence bands (single-band approximation).

A useful quantity is the oscillator strength 𝑓𝑓𝑖 which is defined as follows:

𝑓𝑓𝑖 =
2𝑚0

ℏ2
(𝐸𝑓 − 𝐸𝑖) · |𝑀𝑓𝑖|2.

𝑓21 for our simple infinite barrier example is given by 𝑓21 = 256/(27 𝜋2) = 0.9607 and is independent of the well
width. The nextnano++ result is:

𝑓21 = 0.9603 = −𝑓12

We can also see that this is a strong transition because all transitions from state ‘1’ to state ‘f’ must add up to unity
(so-called “f-sum rule”): ∑︁

𝑓

𝑓𝑓𝑖 = 1.0

380 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(Thomas-Kuhn sum rule for constant effective mass m*.) Thus all other transitions are much weaker.

It is interesting to look at the transitions starting from the second level i = 2. The lowest oscillator strength 𝑓12 = -
0.96 is negative, but the sum over all 𝑓𝑓2 must still give unity, thus oscillator strengths larger than 1.0 are possible,
e.g. 𝑓32 = 1.87.

The intersubband dipole moments and the oscillator strengths are contained in these files:

• bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_Gamma_100.txt

• bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_HH_100.txt

• bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_LH_100.txt

• bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_SO_100.txt

For each transition, the transition energy is given in

• bias_00000\Quantum\transition_energies_quantum_region_Gamma.txt

• bias_00000\Quantum\transition_energies_quantum_region_HH.txt

• bias_00000\Quantum\transition_energies_quantum_region_LH.txt

• bias_00000\Quantum\transition_energies_quantum_region_SO.txt

The effective masses that have been used for the calculation of the oscillator strengths are also indicated. They are
calculated by building an average of the parallel effective masses for each grid point, weighted by the square of the
wave function on each grid point. In this particular example, the effective masses are constant and do not vary with
position (𝑚|| = 0.0665𝑚0). (Assuming that the masses are isotropic, it is fine to use the parallel effective masses.)

Intersubband transitions
=> Gamma conduction band

Electric field in z-direction [kV/cm]: 0.0000000E+00

Intersubband dipole moment | < psi_f* | z | psi_i > | [Angstrom]

------------------|--
Oscillator strength []

------------------|--------------|---
Energy of transition [eV]

------------------|--------------|--------------|------------------------------
m* [m_0]

------------------|--------------|--------------|----------|-------------------
<psi001*|z|psi001> 249.0000
<psi002*|z|psi001> 18.01673 0.9602799 0.1694912 6.6500001E-02
<psi003*|z|psi001> 6.1430171E-07 2.9757722E-15 0.4517909 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi004*|z|psi001> 1.441336 3.0698571E-02 0.8466209 6.6500001E-02
<psi005*|z|psi001> 1.6007220E-07 6.0536645E-16 1.353592 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi006*|z|psi001> 0.3971010 5.4281605E-03 1.972205 6.6500001E-02
<psi007*|z|psi001> 5.1874160E-08 1.2690011E-16 2.701849 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi008*|z|psi001> 0.1634139 1.6508275E-03 3.541806 6.6500001E-02
...
<psi020*|z|psi001> 1.0178176E-02 3.9451432E-05 21.81846 6.6500001E-02
Sum rule of oscillator strength: f_psi001 = 0.9994023

<psi001*|z|psi002> 18.01673 -0.9602799 -0.1694912 6.6500001E-02
(continues on next page)

4.12. Optical Spectra and Transitions 381

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

<psi002*|z|psi002> 249.0000
<psi003*|z|psi002> 19.45806 1.865556 0.2822997 6.6500001E-02
<psi004*|z|psi002> 2.0636767E-06 5.0333130E-14 0.6771297 6.6500001E-02 (same␣
→˓parity: antisymmetric)
<psi005*|z|psi002> 1.838436 6.9852911E-02 1.184101 6.6500001E-02
<psi006*|z|psi002> 1.4976163E-08 7.0571038E-18 1.802713 6.6500001E-02 (same␣
→˓parity: antisymmetric)
<psi007*|z|psi002> 0.5605143 1.3886644E-02 2.532358 6.6500001E-02
<psi008*|z|psi002> 8.7380023E-08 4.4941879E-16 3.372315 6.6500001E-02 (same␣
→˓parity: antisymmetric)
<psi009*|z|psi002> 0.2461317 4.5697703E-03 4.321757 6.6500001E-02
<psi010*|z|psi002> 8.3240280E-07 6.5062044E-14 5.379748 6.6500001E-02 (same␣
→˓parity: antisymmetric)
<psi011*|z|psi002> 0.1302904 1.9393204E-03 6.545245 6.6500001E-02
...
<psi020*|z|psi002> 2.7233656E-07 2.8025147E-14 21.64897 6.6500001E-02
Sum rule of oscillator strength: f_psi002 = 0.9975320

<psi001*|z|psi003> 6.1430171E-07 -2.9757722E-15 -0.4517909 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi002*|z|psi003> 19.45806 -1.865556 -0.2822997 6.6500001E-02
<psi003*|z|psi003> 249.0000
<psi004*|z|psi003> 19.85515 2.716784 0.3948300 6.6500001E-02
<psi005*|z|psi003> 6.4708888E-07 6.5907892E-15 0.9018011 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi006*|z|psi003> 2.001849 0.1063465 1.520414 6.6500001E-02
<psi007*|z|psi003> 3.9201248E-07 6.0352080E-15 2.250058 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi008*|z|psi003> 0.6432316 2.2314854E-02 3.090015 6.6500001E-02
<psi009*|z|psi003> 2.6240454E-07 4.8547223E-15 4.039457 6.6500001E-02 (same␣
→˓parity: symmetric)
...
<psi020*|z|psi003> 3.1797737E-02 3.7707522E-04 21.36667 6.6500001E-02
Sum rule of oscillator strength: f_psi003 = 0.9945912

The commonly used intersubband dipole moment ⟨𝜓f |𝑥|𝜓i⟩ [nm] depends on the choice of origin for the matrix
elements when f = i, thus the user might prefer to output the Intersubband dipole moment ⟨𝜓f |𝑝𝑥|𝜓i⟩ which are the
intersubband dipole moments

𝑁𝑓𝑖 = ⟨𝜓f |𝑝𝑥|𝜓i⟩ =
∫︁ ∞

−∞
𝜓*
𝑓 (𝑥)𝑝𝑥𝜓𝑖(𝑥)𝑑𝑥 = −𝑖ℏ

∫︁ ∞

−∞
𝜓*
𝑓 (𝑥)

𝜕

𝜕𝑥
𝜓𝑖(𝑥)𝑑𝑥

and the oscillator strengths

𝑓𝑓𝑖 =
2𝑚0

ℏ2
(𝐸𝑓 − 𝐸𝑖) · |𝑀𝑓𝑖|2 =

2

𝑚0(𝐸𝑓 − 𝐸𝑖)
· |𝑁𝑓𝑖|2

between all calculated states in each band from min to max eigenvalues. In the simple QW of this tutorial, the
matrix elements can be calculated analytically, e.g. 𝑁21 = 8ℏ/3𝐿 = 0.2666 ℏ/nm. The nextnano++ result is:

𝑁21 = 𝑁12 = 0.265957 ℏ/nm

𝑁31 = 𝑁13 = 7.05011𝑒−17

The oscillator strength 𝑓21 for our simple infinire barrier example is given by 𝑓21 = 256/(27𝜋2) = 0.9607 and is
independent of the well width. The nextnano++ result is:

𝑓21 = −𝑓12 = 0.9603

The intersubband dipole moments and the oscillator strengths are contained in these files:

382 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• bias_00000\Quantum\momentum_matrix_elements_quantum_region_Gamma_100.txt

• bias_00000\Quantum\intraband__matrix_elements_quantum_region_HH_100.txt

• bias_00000\Quantum\momentum_matrix_elements_quantum_region_LH_100.txt

• bias_00000\Quantum\momentum_matrix_elements_quantum_region_SO_100.txt

The numbers show a comparison between the 𝑥 and the 𝑝𝑥 matrix elements for nextnano3:

Intersubband dipole moment | < psi_f* | z | psi_i > | [Angstrom]
Intersubband dipole moment | < psi_f* | p | psi_i > | [h_bar /␣

→˓Angstrom]
------------------|--

Oscillator strength []
------------------|--------------|---

Energy of transition [eV]
------------------|--------------|--------------|------------------------------

m* [m_0]
------------------|--------------|--------------|-----------|------------------
<psi001*|z|psi001> 249.0000 (matrix element <1|1> depends on choice of origin!)
<psi001*|p|psi001> 4.3405972E-19 (matrix element <1|1> independent of origin)

<psi002*|z|psi001> 18.01673 0.9602799 0.1694912 6.6500001E-02
<psi002*|p|psi001> 2.6649671E-02 0.9602799 0.1694912 6.6500001E-02

<psi003*|z|psi001> 6.1430171E-07 2.9757722E-15 0.4517909 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi003*|p|psi001> 2.7325134E-18

<psi004*|z|psi001> 1.441336 3.0698571E-02 0.8466209 6.6500001E-02
<psi004*|p|psi001> 1.0649348E-02 3.0698579E-02 0.8466209 6.6500001E-02

<psi005*|z|psi001> 1.6007220E-07 6.0536645E-16 1.353592 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi005*|p|psi001> 6.9518724E-18

<psi006*|z|psi001> 0.3971010 5.4281605E-03 1.972205 6.6500001E-02
<psi006*|p|psi001> 6.8347314E-03 5.4281540E-03 1.972205 6.6500001E-02

<psi007*|z|psi001> 5.1874160E-08 1.2690011E-16 2.701849 6.6500001E-02 (same␣
→˓parity: symmetric)
<psi007*|p|psi001> 2.8686024E-19

<psi008*|z|psi001> 0.1634139 1.6508275E-03 3.541806 6.6500001E-02
<psi008*|p|psi001> 5.0510615E-03 1.6508278E-03 3.541806 6.6500001E-02
...
<psi020*|z|psi001> 1.0178176E-02 3.9451432E-05 21.81846 6.6500001E-02
<psi020*|p|psi001> 1.9380626E-03 3.9452334E-05 21.81846 6.6500001E-02

Sum rule of oscillator strength: f_psi001 = 0.9994023
Sum rule of oscillator strength: f_psi001 = 0.9994023

8-band k.p calculation for 𝑘|| = (𝐾𝑦, 𝑘𝑧) = 0

The following input file performs the same calculations as above but this time using the 8-band k.p model:
1DQW_intraband_matrixelements_infinite_kp_nnpp.in.

We modified the 8-band k.p parameters and decoupled (!) the electrons from the holes (𝐸𝑃 = 0 eV, 𝑆 = 1/𝑚𝑒).

4.12. Optical Spectra and Transitions 383

nextnano++ Documentation, Release 1.25.13

This way we have an effective single-band model, and thus we are able to compare the k.p results to the single-band
results in order to check for consistency.

The numbering of the k.p eigenstates differs slightly from the single-band eigenstates because the k.p eigenstates
are two-fold spin-degenerate. The actual values for the matrix elements are identical (assuming a decoupled k.p
Hamiltonian, i.e. a single-band Hamiltonian).

Note that the single-band definition of the oscillator strength does not really make sense for a k.p calculation where
the masses usually are anisotropic, non-parabolic and are different on each grid point (due to different materials
and different strain tensors).

For the calculation of the oscillator strength in a k.p calculation, the user can specify suitable masses by overwriting
the default entries. Of course, the masses that are used to calculate the k.p eigenstates have to be specified via the
6-band and 8-band k.p parameters (inside the database{ } group).

The intersubband dipole moments and the oscillator strengths are contained in this file:

• bias_00000\Quantum\momentum_matrix_elements_quantum_region_kp8_100.txt (𝑝𝑥 elements)

• bias_00000\Quantum\dipole_moment_matrix_elements_quantum_region_kp8_100.txt (𝑥 elements)

Note that the two-fold spin-degeneracy in single-band is counted explicitly in k.p.

Intersubband dipole moment | < psi_f* | z | psi_i > | [Angstrom]
Intersubband dipole moment | < psi_f* | p | psi_i > | [h_bar /␣

→˓Angstrom]
------------------|--

Oscillator strength []
------------------|--------------|---

Energy of transition [eV]
------------------|--------------|--------------|------------------------------

m* [m_0]
------------------|--------------|--------------|-----------|------------------
<psi001*|z|psi001> 249.0000 (matrix element <1|1> depends on choice of origin!)
<psi002*|z|psi001> 249.0000 (matrix element <2|1> depends on choice of origin!)
<psi001*|p|psi001> 1.8126842E-18 (matrix element <1|1> independent of origin)
<psi002*|p|psi001> 1.8126842E-18 (matrix element <2|1> independent of origin)

<psi003*|z|psi001> 18.01673 0.9602799 0.1694912 6.6500001E-02
<psi004*|z|psi001> 18.01673 0.9602799 0.1694912 6.6500001E-02
<psi003*|p|psi001> 2.6649671E-02 0.9602798 0.1694912 6.6500001E-02
<psi004*|p|psi001> 2.6649671E-02 0.9602798 0.1694912 6.6500001E-02

<psi005*|z|psi001> 3.5382732E-13
<psi006*|z|psi001> 3.5382732E-13
<psi005*|p|psi001> 2.1414240E-15
<psi006*|p|psi001> 2.1414240E-15

<psi007*|z|psi001> 1.441336 3.0698583E-02 0.8466209 6.6500001E-02
<psi008*|z|psi001> 1.441336 3.0698583E-02 0.8466209 6.6500001E-02
<psi007*|p|psi001> 1.0649348E-02 3.0698583E-02 0.8466209 6.6500001E-02
<psi008*|p|psi001> 1.0649348E-02 3.0698583E-02 0.8466209 6.6500001E-02

<psi009*|z|psi001> 7.2598817E-13
<psi010*|z|psi001> 7.2598817E-13
<psi009*|p|psi001> 1.0445775E-14
<psi010*|p|psi001> 1.0445775E-14

<psi011*|z|psi001> 0.3971008 5.4281550E-03 1.972205 6.6500001E-02
<psi012*|z|psi001> 0.3971008 5.4281550E-03 1.972205 6.6500001E-02

(continues on next page)

384 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

<psi011*|p|psi001> 6.8347319E-03 5.4281550E-03 1.972205 6.6500001E-02
<psi012*|p|psi001> 6.8347319E-03 5.4281550E-03 1.972205 6.6500001E-02

...
<psi039*|z|psi001> 1.0178294E-02 3.9452352E-05 21.81846 6.6500001E-02
<psi040*|z|psi001> 1.0178294E-02 3.9452352E-05 21.81846 6.6500001E-02
<psi039*|p|psi001> 1.9380630E-03 3.9452349E-05 21.81846 6.6500001E-02
<psi040*|p|psi001> 1.9380630E-03 3.9452349E-05 21.81846 6.6500001E-02

Sum rule of oscillator strength: f_psi001 = 0.9994023
Sum rule of oscillator strength: f_psi001 = 0.9994023

This tutorial also exists for nextnano3.

Last update: 27/05/2025

Optical absorption of an InGaAs quantum well | 1D

• Header

• Introduction

• Simulation

– Input file

– Eigenstates in the quantum well

– Optical absorption spectrum

Header

Files for the tutorial located in nextnano++\examples\optical_spectra

• absorption_InGaAs-QW_Dumitras_PRB_2002_1D_nnp.in

Scope of the tutorial:
• InGaAs quantum well

• simple absorption spectrum

Main adjustable parameters in the input file:
• $run_optics

• $w_well

• $w_barrier

• $alloy_composition

Relevant output files:
• bias_00000\bandedges.dat - energy profile (see Figure 4.12.1.26)

• bias_00000\Quantum\probabilities_shift_quantum_region_kp8_00000.dat - probability distributions
(see Figure 4.12.1.26)

• bias_00000\Quantum\absorption_coeff_quantum_region_TE_y_eV.dat - absorption spectrum TE (see
Figure 4.12.1.27)

4.12. Optical Spectra and Transitions 385

nextnano++ Documentation, Release 1.25.13

• bias_00000\Quantum\absorption_coeff_quantum_region_TM_z_eV.dat - absorption spectrum TM
(see Figure 4.12.1.27)

Introduction

This tutorial presents a simple setup to calculate optical absorption coefficient as a function of photon energy
for transitions in a quantum well (QW) by means of 8-band k · p method. As an example, we chose 8-nm-wide
In0.2Ga0.8As quantum well with barriers made of GaAs, as in [DumitrasPRB2002]. The InGaAs QW is pseudo-
morphically strained to the GaAs (001) substrate and the temperature of the system is assumed to be 150 K.

Simulation

Input file

The input file absorption_InGaAs-QW_Dumitras_PRB_2002_1D_nnp.in is prepared to solve Schrödinger and
Poisson equations without self-consistency, with included strain effects. A couple of variables defined within
the input file are especially interesting to play with when trying the simulation for the first time. The first of them is
$run_optics which allows turning calculation of the optical spectra on and off. When the spectra are computed,
the Fermi’s Golden Rule is used. Other parameters are temperature of the system $temperature and parameters
characterizing the dimensions, $w_well and $w_barrier, and content of the QW $alloy_composition. We
encourage modifying other parameters as well to explore the simulation capabilities.

ò Note

The bandoffset bowing parameter for the In(x)Ga(1-x)As alloy has been set to 0 at the end of the input
file to obtain energy profile similar with the one reported in [DumitrasPRB2002].

Eigenstates in the quantum well

Energy profiles together with probability densities of all states confined in the InGaAs QW (at 𝑘‖ = 0) are showed
in the Figure 4.12.1.26. The energy profiles can be found in bias_00000\bandedges.dat while the probability
densities in bias_00000\Quantum\probabilities_shift_quantum_region_kp8_00000.dat.

Figure 4.12.1.26: Energy profiles and probability distributions of confined electrons and holes states at 𝑘‖ = 0.
The conduction band is labeled as CB. The heavy-hole valence bands is denoted as VB (hh) while the light-hole
valence band as VB (lh). The first and the second electron states are labeled as e1 and e2, respectively. Similarly,
heavy-hole states are labeled as hh1 and hh2. 𝐸1 is a transition energy between e1 and hh1. 𝐸2 is a transition
energy between e2 and hh2.

The prepared simulation computes 20 electron states and 40 hole states (sum of light-hole and heavy-hole states).
All of these states (at each wave vector) are used for computation of the optical spectra as they contribute to the part

386 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

representing continuum. However, only the bound states are crucial for the analysis of the quantum well. One can
quickly compute the most relevant interband transition energies, 𝐸1 and 𝐸2, if omitting the exciton corrections.
These transitions are the strongest ones, following the selection rule ∆𝑛 = 0, between two states with the same
quantum number, e.g., between e1 and h1 or between e2 and h2.

The transition energies 𝐸1 and 𝐸2 are defined as

𝐸1 = 𝐸e1 − 𝐸hh1,

𝐸2 = 𝐸e2 − 𝐸hh2,

where 𝐸e1, 𝐸e2, 𝐸hh1, and 𝐸hh2 are eigenenergies of the states e1, e2, hh1, and hh2, respectively. Using respec-
tive values from the output file bias_00000\Quantum\probabilities_shift_quantum_region_kp8_00000.dat one can
calculate

𝐸1 = 1.028 eV − [−0.275 eV] = 1.303 eV,

𝐸2 = 1.118 eV − [−0.302 eV] = 1.420 eV.

Note that these transition energies are calculated at 𝑘‖ = 0.

� Hint

One can use Show Differences feature in nextnanomat to extract these numbers from the eigenenergies stored
in bias_00000\Quantum\probabilities_shift_quantum_region_kp8_00000.dat. Also, nextnano++ can produce
an output file containing all transition energies, see output_transition in optics{ quantum_spectra{} }.

Optical absorption spectrum

When $run_optics = 1 in the input file for this tutorial, then optical spectra are also computed. The simulation
is prepared to model optical spectra for two kinds of light polarization modes.

The transverse electric (TE) mode corresponds to the optical field (could be light) polarized parallel to the plane of
the QW, that is in the yz plane of the simulation. In the input file we choose the direction y. Choosing z direction
for the TE mode brings the same results. The light in this mode can propagate either in the plane of the QW or
perpendicular to it.

The transverse magnetic (TM) mode corresponds to the optical field polarized perpendicular to the plane of the
QW, that is in the x direction of the simulation. The light in this mode can propagate only in the pane of the QW.

Figure 4.12.1.27 shows the optical absorption spectrum as a function of photon energy for TE and TM polarized
optical field.

While optical transitions involving both heavy holes and light holes can be observed within TE mode (heavy holes
are dominating), only absorption with contribution of light holes is visible in the TM mode.

. Attention

The above does not hold exactly in realistic conditions because the TM modes also have a component of the
electric field parallel to the plane. However, this component is small in weakly guiding structures. There-
fore, typically only the transition involving the light holes is seen (e1-lh1) and the heavy hole transitions are
suppressed (e1-hh1, e2-hh2) in Figure 4.12.1.27.

The transitions 𝐸1 and 𝐸2 are clearly visible in the computed TE absorption spectrum as steps at 1.303 eV and
1.420 eV, respectively. Both computed TE and TM spectra exhibit series of transitions at around 1.37 eV and
1.46 eV. These are numerical artifacts related to transitions between the states confined in the InGaAs QW and
numerically limited continuum in the GaAs. To explore this aspect of the simulation one can modify the width of
the barrier $w_barrier and number of computed quantum states $eigen_e and $eigen_v.

4.12. Optical Spectra and Transitions 387

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.27: Absorption spectrum for TE (turquoise) and TM (magenta) modes of optical field.

� Hint

Using normalization_volume may become very helpful when comparing spectra computed for different
dimensions of the structure, see optics{ quantum_spectra{} }.

Last update: 07/03/2024

Intersubband absorption of an infinite quantum well

Input files for nextnano++:
• 1D_IntersubbandAbsorption_InfiniteWell_GaAs_Chuang_sg_nnp.in

• 1D_IntersubbandAbsorption_InfiniteWell_GaAs_Chuang_Gamma_nnp.in

• 1D_IntersubbandAbsorption_InfiniteWell_GaAs_Chuang_kp_nnp.in

This tutorial presents calculation of intersubband absorption spectrum of a GaAs quantum well with infinite bar-
riers.

The following input file was used:

• 1D_IntersubbandAbsorption_InfiniteWell_GaAs_Chuang_sg_nn3.in (single-band effective mass
approximation)

This tutorial aims to reproduce the example discussed on p. 376f of Section 9.6.2 Intersubband Absorption Spec-
trum of [ChuangOpto1995].

388 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Structure

Property Symbol unit [ChuangOpto1995] nextnano
quantum well width L nm 10.0 10.0
barrier height E b eV infinite quantum well model 1000
effective electron mass me m0 0.0665 0.0665
refractive index nr 3.3 3.3
doping concentation (n-type) ND cm-3 1 · 1018 1 · 1018

linewidth (FWHM) Γ meV 30 30
temperature T K 300 300

[ChuangOpto1995] models the infinite quantum well using the analytical solution while we are using a numerical
model with a barrier height of 1000 eV.

Results

[ChuangOpto1995] uses the analytical infinite quantum well model and calculates the energy levels, and the inter-
subband dipole moment exactly. Our calculated transition energies differ by 3 meV which is acceptable as we use
a finite grid spacing of 0.05 nm. Our calculated dipole moment is also reasonable. More difficult are the densities.
In our calculation we solve the Schrödinger-Poisson equation self-consistently. For that reason, the quantum well
bottom is not entirely flat but slightly bent. At T = 300 K, the second subband shows a small density which is larger
than in the model of [ChuangOpto1995]. The difference in subband densities leads to a slight deviation for the
peak of the absorption spectrum because the occupation of the second level N2 reduces absorption. Nevertheless,
the agreement is reasonable.

Property Symbol unit [ChuangOpto1995] nextnano
energy level E1 meV 56.5 (exact)
energy level E2 meV 226 (exact)
transition energy E21 meV 169.5 (exact) 166.5
dipole moment x21 nm -1.8 (exact) -1.82
EF - E1 eV 78 28.2
subband density N1 cm-2 7.19 · 1011 9.92 · 1011

subband density N2 cm-2 3 · 109

peak in absorption 𝛼peak cm-1 1.015 · 104 0.986 · 104

The following figures show the

• lowest eigenstates (probability densities) of the infinite quantum well

• absorption spectra 𝛼(𝜔) in units of cm-1

• position dependent absorption spectra 𝛼(𝜔, 𝑥) in units of cm-1

The peak in the absorption spectra occurs at the transition energy E21.

Then we perform two parameter sweeps:

• We vary the quantum well width (Variable: $QuantumWellWidth).

• We vary the doping concentration (Variable: $DopingConcentration).

Results and explanations for the sweeps can be found further below.

— Begin —

Automatic documentation: Running simulations, generating figures and reStructured Text (*.rst) using
nextnanopy

4.12. Optical Spectra and Transitions 389

nextnano++ Documentation, Release 1.25.13

The following figures have been generated using nextnano3. Self-consistent Schrödinger-Poisson calculations have
been performed for an infinite quantum well.

A single-band effective mass approach has been used, i.e. not k · p.

The absorption spectra have been calculated assuming a parabolic energy dispersion 𝐸(𝑘).

Infinite Quantum Well (QuantumWellWidth = 10 nm)

Figure 4.12.1.28: Conduction band edge, Fermi level and confined electron states of an infinite quantum well
(QuantumWellWidth = 10 nm)

Infinite Quantum Well (QuantumWellWidth = 13 nm)

Infinite Quantum Well (QuantumWellWidth = 16 nm)

Infinite Quantum Well (QuantumWellWidth = 19 nm)

Parameter sweep: Well width
Figure 4.12.1.37 shows the absorption spectra for different quantum well widths (Variable:
$QuantumWellWidth). The larger the well, the closer the energy level spacings. Therefore the peak oc-
curs at smaller energies. The larger wells show absorption also for transitions other than E21.

Parameter sweep: Doping concentration
Figure 4.12.1.38 shows the absorption spectra for different doping concentrations (Variable:
$DopingConcentration). The peak absorption coefficient increases with the doping concentration ND.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

390 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.29: Calculated absorption spectra 𝛼(𝐸) of an infinite quantum well (QuantumWellWidth = 10 nm)

Figure 4.12.1.30: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of an infinite quantum well (Quan-
tumWellWidth = 10 nm)

4.12. Optical Spectra and Transitions 391

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.31: Conduction band edge, Fermi level and confined electron states of an infinite quantum well
(QuantumWellWidth = 13 nm)

Figure 4.12.1.32: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of an infinite quantum well (Quan-
tumWellWidth = 13 nm)

392 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.33: Conduction band edge, Fermi level and confined electron states of an infinite quantum well
(QuantumWellWidth = 16 nm)

Figure 4.12.1.34: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of an infinite quantum well (Quan-
tumWellWidth = 16 nm)

4.12. Optical Spectra and Transitions 393

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.35: Conduction band edge, Fermi level and confined electron states of an infinite quantum well
(QuantumWellWidth = 19 nm)

Figure 4.12.1.36: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of an infinite quantum well (Quan-
tumWellWidth = 19 nm)

394 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.37: Calculated absorption spectra 𝛼(𝐸) of an infinite quantum well for different well widths

Figure 4.12.1.38: Calculated absorption spectra 𝛼(𝐸) of an infinite quantum well for different doping concentra-
tions

4.12. Optical Spectra and Transitions 395

nextnano++ Documentation, Release 1.25.13

Intersubband transitions in InGaAs/AlInAs multiple quantum well systems

This tutorial calculates the eigenstates of a single, double and triple quantum wells. It compares the energy levels
and wave functions of the single-band effective mass approximation with the 8-band k · p model. Finally, the
intersubband absorption spectrum is calculated.

The following input files were used:

• Single Quantum Well

– 1DSirtoriPRB1994_OneWell_sg_self-consistent_nnp.in (single-band effective mass approx-
imation)

– 1DSirtoriPRB1994_OneWell_kp_self-consistent_nnp.in (8-band k · p)

– 1DSirtoriPRB1994_OneWell_sg_quantum-only_nnp.in (single-band effective mass approxima-
tion)

– 1DSirtoriPRB1994_OneWell_kp_quantum-only_nnp.in (8-band k · p)

• Two coupled Quantum Wells

– 1DSirtoriPRB1994_TwoCoupledWells_sg_self-consistent_nnp.in (single-band effective
mass approximation)

– 1DSirtoriPRB1994_TwoCoupledWells_kp_self-consistent_nnp.in (8-band k · p)

– 1DSirtoriPRB1994_TwoCoupledWells_sg_quantum-only_nnp.in (single-band effective mass
approximation)

– 1DSirtoriPRB1994_TwoCoupledWells_kp_quantum-only_nnp.in (8-band k · p)

• Three coupled Quantum Wells

– 1DSirtoriPRB1994_ThreeCoupledWells_sg_self-consistent_nnp.in (single-band effective
mass approximation)

– 1DSirtoriPRB1994_ThreeCoupledWells_kp_self-consistent_nnp.in (8-band k · p)

– 1DSirtoriPRB1994_ThreeCoupledWells_sg_quantum-only_nnp.in (single-band effective
mass approximation)

– 1DSirtoriPRB1994_ThreeCoupledWells_kp_quantum-only_nnp.in (8-band k · p)

This tutorial aims to reproduce Figs. 4 and 5 of [SirtoriPRB1994].

This tutorial nicely demonstrates that for the ground state energy the single-band effective mass approximation is
sufficient whereas for the higher lying states a nonparabolic model, like the 8-band k·p approximation, is necessary.
This is important for e.g. quantum cascade lasers where higher lying states have a dominant role.

Layer sequence

We investigate three structures:

a) a single quantum well

b) two coupled quantum wells

c) three coupled quantum wells

Material parameters

We use In0.53 Ga0.47 As as the quantum well material and Al0.48 In0.52 As as the barrier material. Both materials
are lattice matched to the substrate material InP. Thus we assume that the InGaAs and AlInAs layers are unstrained
with respect to the InP substrate. The publication [SirtoriPRB1994] lists the following material parameters:

conduction band offset Al0.48 In0.52 As / In0.53 Ga0.47 As 0.510 eV
conduction band effective mass Al0.48 In0.52 As 0.072 m0
conduction band effective mass In0.53 Ga0.47 As 0.043 m0

396 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The temperature is set to 10 Kelvin.

Method

Single-band effective mass approximation
Because our structure is doped, we have to solve the single-band Schrödinger-Poisson equation self-consistently.
The doping is such that the electron ground state is below the Fermi level and all other states are far away from the
Fermi level, i.e. only the ground state is occupied and contributes to the charge density.

For nextnano++ we use:

'0' solve Schrödinger equation only
'1' solve Schrödinger and Poisson equations self-consistently
$SELF_CONSISTENT = 1

run{
!IF($SELF_CONSISTENT)
poisson{ }
quantum_poisson{ iterations = 50 } # Schrödinger-Poisson

!ELSE
quantum{ } # Schrödinger only

!ENDIF
}

quantum {
region{
...
Gamma{ # single-band
num_ev = 3 # 3 eigenstates

}

ò Note

Single-band eigenstates are two-fold spin degenerate.

The Fermi level is always equal to 0 eV in our simulations and the band profile is shifted accordingly to meet this
requirement.

8-band k.p approximation
Old version of this tutorial:

Becauce both, the single-band and the 8-band k · p ground state energy and the corresponding wave functions are
almost identical, we can read in the self-consistently calculated electrostatic potential of the single-band approxi-
mation and calculate for this potential the 8-band k · p eigenstates and wave functions for 𝑘‖ = 0.

ò Note

One k · p eigenstate for each spin component.

New version of this tutorial:
We provide input files for:

a) self-consistent single-band Schrödinger equation (because the structure is doped)

b) single-band Schrödinger equation (without self-consistency)

c) 8-band k · p single-band Schrödinger equation (without self-consistency)

4.12. Optical Spectra and Transitions 397

nextnano++ Documentation, Release 1.25.13

For a), although the structure is doped, the band bending is very small. Thus we omit for the single-band / k · p
comparison in b) and c) the self-consistent cycle.

Results

Single quantum well
Figure 4.12.1.39 shows the lowest two electron eigenstates for an In0.53 Ga0.47 As / Al0.48 In0.52 As quantum well
structure calculated with single-band effective mass approximation and with a nonparabolic 8-band k · p model.

The energies (and square of the wave functions 𝜓2) for the ground state are identical in both models but the second
eigenstate differs substantially. Clearly the single-band model leads to an energy which is far too high for the upper
state.

Our calculated value for the intersubband transition energy𝐸12 of 255 meV compares well with both, the calculated
value of [SirtoriPRB1994] (258 meV) and their measured value (compare with absorption spectrum in Fig. 4 of
[SirtoriPRB1994]).

Figure 4.12.1.39: Conduction band edge, Fermi level and confined electron states of a quantum well

The calculated intersubband dipole moments are:

• 𝑧12 = 1.55 nm (single-band)

For comparison: 𝑧12 = 1.53 nm (exp.), 𝑧12 = 1.48 nm (th.) ([SirtoriPRB1994])

The influence of doping on the eigenenergies is negligible (smaller than 1 meV).

Two coupled quantum wells
Figure 4.12.1.40 shows the lowest three electron eigenstates for an In0.53 Ga0.47 As / Al0.48 In0.52 As double quantum
well structure calculated with single-band effective mass approximation and with a nonparabolic 8-bandk·pmodel.

The energies (and square of the wave functions 𝜓2) for the ground state are very similar in both models but the
second and especially the third eigenstate differ substantially. Clearly the single-band model leads to energies
which are far too high for the higher lying states.

Our calculated values for the intersubband transition energies 𝐸12 = 150 meV and 𝐸13 = 267 meV compare well
with both, the calculated values of [SirtoriPRB1994] (150 meV and 271 meV) and their measured values (compare
with absorption spectrum in Fig. 5 (a) of [SirtoriPRB1994]).

The calculated intersubband dipole moments are:

• 𝑧12 = 1.61 nm (single-band)

• 𝑧13 = 1.11 nm (single-band)

398 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.40: Conduction band edge, Fermi level and confined electron states of two coupled quantum wells

For comparison: 𝑧12 = 1.64 nm (exp.), 𝑧12 = 1.65 nm (th.) ([SirtoriPRB1994])

The influence of doping on the eigenenergies is almost negligible (between 0 and 2 meV).

Three coupled quantum wells
Figure 4.12.1.41 shows the lowest four electron eigenstates for an In0.53 Ga0.47 As / Al0.48 In0.52 As triple quantum
well structure calculated with single-band effective mass approximation and with a nonparabolic 8-band k · p
model.

The energies (and square of the wave functions 𝜓2) for the ground state are similar in both models but the second
and especially the third and forth eigenstates differ substantially. Clearly the single-band model leads to energies
which are far too high for the higher lying states.

Our calculated values for the intersubband transition energies 𝐸12 = 118 meV, 𝐸13 = 261 and 𝐸14 = 370 meV
compare well with both, the calculated values of [SirtoriPRB1994] (116 meV, 257 meV and 368 meV) and their
measured values (compare with absorption spectrum in Fig. 5 (b) of [SirtoriPRB1994]).

Figure 4.12.1.41: Conduction band edge, Fermi level and confined electron states of three coupled quantum wells

The calculated intersubband dipole moments are:

4.12. Optical Spectra and Transitions 399

nextnano++ Documentation, Release 1.25.13

• 𝑧12 = 1.81 nm (single-band)

• 𝑧13 = 0.77 nm (single-band)

• 𝑧14 = 0.30 nm (single-band)

For comparison: 𝑧12 = 1.86 nm (exp.), 𝑧12 = 1.84 nm (th.) [SirtoriPRB1994]

The influence of doping on the eigenenergies is almost negligible (between 0 and 4 meV).

— Begin —

The following documentation and figures were generated automatically using nextnanopy.

The following figures have been generated using nextnano3. Self-consistent Schrödinger-Poisson calculations have
been performed for three different structures.

• Single Quantum Well

• Two coupled Quantum Wells

• Three coupled Quantum Wells

The single-band effective mass and the 8-band k · p results are compared to each other. In both cases the wave
functions and the quantum density are calculated self-consistently. The k · p quantum density has been calculated
taking into account the solution at different 𝑘‖ vectors.

The absorption spectrum has been calculated using a simple model assuming a parabolic energy dispersion. The
dipole moment 𝑧𝑖𝑗 =< 𝑖|𝑧|𝑗 > has been evaluated only at 𝑘‖ = 0. The subband density is used to calculate
the absorption spectrum. For the k · p calculation, the density was calculated taking into account a nonparabolic
energy dispersion, i.e. including all relevant 𝑘‖ vectors.

Quantum Well (single-band)

Figure 4.12.1.42: Conduction band edge, Fermi level and confined electron states of a quantum well

400 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.43: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of a quantum well

Figure 4.12.1.44: Conduction band edge, Fermi level and confined electron states of a quantum well

4.12. Optical Spectra and Transitions 401

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.45: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of a quantum well

Figure 4.12.1.46: Calculated absorption spectra 𝛼(𝐸) of a quantum well

402 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Quantum Well (k.p)
Two Coupled Quantum Wells (single-band)

Figure 4.12.1.47: Conduction band edge, Fermi level and confined electron states of two coupled quantum wells

Two Coupled Quantum Wells (k.p)
Three Coupled Quantum Wells (single-band)
Three Coupled Quantum Wells (k.p)

— End —

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

Interband absorption of a GaAs cylindrical quantum wire

Section author: Naoki Mitsui (simulation), Brandon Loke (write-up and visualisation)

This tutorial calculates the optical spectrum of a GaAs cylindrical quantum wire with infinite barriers. The formulas
used to calculate absorption spectra will be highlighted and a brief explanation of the output files will be given.

For the detailed scheme of the calculation of the optical matrix elements or absorption spectrum, please see our
1D optics tutorial: Optical absorption for interband and intersubband transitions For the corresponding tutorial
for the intraband absorption, please see Intersubband absorption of a GaAs cylindrical quantum wire Input file:

• 2Dcircular_infinite_wire_GaAs_inter_nnp.in

4.12. Optical Spectra and Transitions 403

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.48: Calculated spatially resolved absorption spectrum:math:alpha(x,E) of two coupled quantum
wells

Figure 4.12.1.49: Conduction band edge, Fermi level and confined electron states of two coupled quantum wells

404 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.50: Calculated spatially resolved absorption spectrum:math:alpha(x,E) of two coupled quantum
wells

Figure 4.12.1.51: Calculated absorption spectra 𝛼(𝐸) of two coupled quantum wells

4.12. Optical Spectra and Transitions 405

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.52: Conduction band edge, Fermi level and confined electron states of three coupled quantum wells

Figure 4.12.1.53: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of three coupled quantum wells

406 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.54: Conduction band edge, Fermi level and confined electron states of three coupled quantum wells

Figure 4.12.1.55: Calculated spatially resolved absorption spectrum 𝛼(𝑥,𝐸) of three coupled quantum wells

4.12. Optical Spectra and Transitions 407

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.56: Calculated absorption spectra 𝛼(𝐸) of three coupled quantum wells

ò Note

Figures in this tutorial will be generated with nextnanopy.

The corresponding Jupyter Notebook used to generate the figures in this tutorial can be found here at 2DInter-
bandQuantumCylinder.ipynb.

Structure

The above figures show the Gamma band edge of the circular GaAs region and the barrier region. We model the
infinite barrier by assigning 100 eV for the band edge of AlAs barrier region from database{ } section. Please
see the input file for the details.

The parameters used in this simulation are as follows.

Property Symbol Value [unit]
quantum wire radius 𝑅 5 [nm]
barrier height 𝐸𝑏 92 [eV]
effective electron mass 𝑚𝑒 0.0665
refractive index 𝑛𝑟 3.3
doping concentation (n-type) 𝑁𝐷 5·1018 [cm-3]
linewidth (FWHM) Γ 0.01 [eV]
temperature 𝑇 300 [K]

The run{ } section is specified as follows:

run{
poisson{ }

(continues on next page)

408 Chapter 4. Tutorials

https://github.com/nextnanopy
https://nbviewer.org/github/nextnanopy/nextnanopy/blob/master/templates/2DInterbandQuantumCylinder.ipynb
https://nbviewer.org/github/nextnanopy/nextnanopy/blob/master/templates/2DInterbandQuantumCylinder.ipynb

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.57: Left: Conduction band edge for cylindrical quantum wire. Right: Slice of the band edge along
𝑥 = 0.

(continued from previous page)

quantum{ }
optics{ }

}

Then the simulation follows these steps:

1. Poisson equation is solved with the setting specified in the poisson{ } section.

2. “Schrödinger” equation is solved with the setting specified in the quantum{ } section.

3. “Schrödinger” equation is solved again with the setting specified in the optics{ } section and optical properties
are calculated.

ò Note

• If quantum_poisson{ } is specified instead of quantum{ }, Poisson and Schrödinger equations are
solved self-consistently.

• optics{ } requires that kp8 model is used in the quantum region specified in quantum{ }.

• In this tutorial the kp parameters are adjusted so that the conduction and valence bands are decoupled
from each other. Thus the single-band Schrödinger equations are solved effectively by the kp solver.

Spectra of optical absorption accompanied by the excitation of charge carriers (state 𝑛→ 𝑚) in condensed matter
is calculated on the basis of Fermi’s golden rule [ChuangOpto1995] in the dimenstion of (length)-1:

𝛼(⃗𝜖, 𝜔) =
𝜋𝑒2

𝑛𝑠𝑐𝜀0𝑚2
0𝜔

1

𝑉

∑︁
𝑛>𝑚

∑︁
k𝑧

|⃗𝜖 · �⃗�𝑛𝑚(k𝑧)|2(𝑓𝑚(k𝑧)− 𝑓𝑛(k𝑧))ℒ(𝐸𝑛(k𝑧)− 𝐸𝑚(k𝑧)− ℏ𝜔), (4.12.1.5)

where

• k𝑧 is the Bloch wave vector along translation-invariant directions. In 2D simulation this is 1D vector.

• 𝐸𝑛(k𝑧) is the energy of eigenstate 𝑛. The first sum runs over the pair of states where 𝐸𝑛(k𝑧) > 𝐸𝑚(k𝑧).

• 𝑓𝑛(k𝑧) is the occupation of eigenstate 𝑛.

• �⃗� is the optical polarization vector defined in optics{ quantum_spectra{ polarization{ } } }.

• �⃗� = 𝑝+ 1
4𝑚0𝑐2

(𝜎×∇𝑉)where 𝑝 is the canonical momentum operator and 1
4𝑚0𝑐2

(𝜎×∇𝑉) is the contribution
of spin-orbit interaction.

4.12. Optical Spectra and Transitions 409

nextnano++ Documentation, Release 1.25.13

• �⃗�𝑛𝑚(k𝑧) = ⟨𝑛|�⃗�|𝑚⟩.

• �⃗� · �⃗�𝑛𝑚(k𝑧) is known as the optical matrix elements.

• ℒ(𝐸𝑛(k𝑧)− 𝐸𝑚(k𝑧)− ℏ𝜔) is the energy broadening function.
– When energy_broadening_lorentzian is specified in optics{ quantum_spectra{ en-

ergy_broadening_lorentzian } },

ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) = 1
𝜋

Γ/2
(𝐸𝑛−𝐸𝑚−ℏ𝜔)+(Γ/2)2

where Γ is the FWHM defined by energy_broadening_lorentzian.

– When energy_broadening_gaussian is specified in optics{ quantum_spectra{ en-
ergy_broadening_gaussian } },

ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) = 1√
2𝜋𝜎

exp
{︁(︀

− (𝐸𝑛−𝐸𝑚−ℏ𝜔)2
2𝜎2

)︀}︁
where energy_broadening_lorentzian defines the FWMH Γ = 2

√
ln 2 · 𝜎

– When neither energy_broadening_lorentzian nor energy_broadening_gaussian is spec-
ified in optics{ quantum_spectra{ } }, ℒ is replace by the delta function 𝛿(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔).

– It is also possible to include both Lorentzian and Gaussian broadening (Voigt profile).

The detailed calculation scheme of the optical matrix elements �⃗� · �⃗�𝑛𝑚(k𝑧) and the absorption spectrum 𝛼 is
described in Optical absorption for interband and intersubband transitions.

Results

Absorption

Figure 4.12.1.58: Calculated absorption spectrum 𝛼(⃗𝜖, 𝐸) for �⃗� = �̂�, 𝑦, 𝑧.

Figure 4.12.1.58 shows the calculated 𝛼(⃗𝜖, 𝐸) specified in \Optics\absorption_~.dat for each polarization x, y, and
z. The absorptions for the x- and y-polarisation are identical due to the rotational symmetry of the quantum cylinder
in the x-y plane. It is observed that there are peaks at 1.675 eV (P1), 1.806 eV (P2) and 2.005 eV (P3).

410 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

ò Note

𝛼(⃗𝜖, 𝐸) for z-polarization is generally non-zero in the calculation through k.p model. This is because the
eigenstates above the conduction band edge can have the component of valence band Bloch functions and vice
versa (band-mixing).

Eigenvalues, transition energies, and occupations

Figure 4.12.1.59: Calculated energy spectrum and the minimum hole energy.

Figure 4.12.1.59 shows the calculated energy eigenvalues at k𝑧 = 0 specified in \Quantum\energy_spectrum_~.dat.

Please note that the output in Quantum\ counts the eigenstates with different spins individually when k.p
model is used, while they are counted jointly in Optics\.

The valence band states lie below the Fermi level (0 eV). The minimum hole energy is indicated in Figure 4.12.1.59
with the purple line. It can be seen through a comparison with Figure 4.12.1.58 that the peak in absorption spectrum
at P1 corresponds to the transition energy from the minimum hole energy level to the first conduction band state
(number 31, 32). Similarly, the peak at P2 corresponds to the transition energy between the minimum hole energy
state and the second conduction band state (number 33-36).

The occupation probabilities for each state can be checked from \Optics\occupation_disp_~.datas a function of the
1D Bloch wave vector k𝑧:

In the above figure, the occupation probabilities are plotted for the 1st and the 16th excited state. The 16th excited
state corresponds to the lowest conduction band level.

ò Note

The eigenstates with different spins are counted individually in Quantum\ when k.p model is used, while they
are counted jointly in Optics\.

For example, the two ground states in the conduction band counted as no.31 and 32 in Figure 4.12.1.59 due
to spin are put together as one eigenstate in Optics\. Thus \Optics\occupation_disp_~_kp8_16.dat shows the

4.12. Optical Spectra and Transitions 411

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.60: Calculated occupation probabilities for the ground state and 16th excited state as a function of
k𝑧 .

occupation of the ground state in the conduction band and \Optics\occupation_disp_~_kp8_2.dat and \Op-
tics\occupation_disp_~_kp8_17.dat show the 1st excited state in the conduction band (number 33 & 34) in
Figure 4.12.1.59.

At 𝑇 = 300K, 𝑘𝐵𝑇 ≃ 0.026 eV , which is insufficient energy to excite electron carriers to the upper conduction
band states.

From the above data of eigenvalues and occupations, we could see which pair of states contributes to each peak in
the absorption spectrum Figure 4.12.1.58. In order to understand the magnitude of the peaks and why some pairs
of states do not appear as peaks, we will see the output data for |⃗𝜖 · �⃗�𝑛𝑚(k𝑧)|2 next.

Transition intensity (Momentum matrix element)

An important part of the calculation of optical absorption spectra is the transition intensity:

𝑇𝑛𝑚(⃗𝜖, k𝑧) =
2

𝑚0
|⃗𝜖 · �⃗�𝑛𝑚(k𝑧)|2 (4.12.1.6)

which has dimensions of energy [eV].

The intensity at k𝑧 = 0
(︀
𝑇𝑛𝑚(⃗𝜖, k𝑧 = 0)

)︀
for each pair of states (𝑛,𝑚) is specified in Optics\transitions_~.txt.

These intensities whose “From” states are the ground state are shown here (x-polarization). We can also check the
transition energy of each pair of states.

Energy[eV] From To Intensity_k0[eV] 1/
→˓Radiative_Rate[s]
2.00196 10 19 5.9913 ␣
→˓ 1.74672e-09
2.00394 10 20 1.79227 ␣
→˓ 5.83325e-09
1.67437 13 16 19.9021 ␣
→˓ 6.2871e-10
1.80179 14 17 6.25494 ␣
→˓ 1.85897e-09

412 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Above are the transitions of interest. The other transitions are ommitted for brevity. The “From” and “To” states
tell us which band the transition belongs to. Using this information, we can identify which peaks (P1, P2, P3)
correspond to transitions between which bands. This is marked in Figure 4.12.1.59.

There are also the output files that specify the k-dispersion of the transition intensities for each light polarization
in Optics\transition_disp_~.dat.

Eigenstates

The probability distributions of the eigenfunctions |𝜓(r)|2 can be found in Quantum\probabilities_~.vtr.
The amplitude of the envelope function on each Bloch function |𝑆⟩, |𝑋⟩, |𝑌 ⟩, |𝑍⟩ can be found in Quan-
tum\amplitudes_~_SXYZ.vtr.

The analytcal expression of the eigenfunctions for the cylindrical quantum wire is shown as eq. (4.7.2.1) in this
tutorial: Electron wave functions in a cylindrical well (2D Quantum Corral). According to this analytical solution,
the eigenfunction has 2 quantum numbers: 𝑛 for radial direction and 𝑙 for circumferential direction.

Here the amplitudes of eigenfunctions calculated by single-band model are shown. We can see the optical tran-
sition from ground state (𝑛 = 1, 𝑙 = 0) occurs only to the states with 𝑙 = ±1. The file used for this plot is
amplitudes_quantum_region_Gamma_00000.vtr in the single band calculation.

Figure 4.12.1.61: Wave function of the ground state. (𝑛, 𝑙) = (1, 0)

Wave functions of the energy eigenstates calculated by the single-band model.

Last update: nnnn/nn/nn

Intersubband absorption of a GaAs cylindrical quantum wire

Section author: Naoki Mitsui

This tutorial calculates the optical absorption spectrum of a GaAs cylindrical quantum wire with infinite barriers.
We will see which output file we should refer to in order to understand the absorption spectrum.

Also, the formula used for calculation of the absorption spectra is presented. For the detailed scheme of the calcu-
lation of the optical matrix elements or absorption spectrum, please see our 1D optics tutorial: Optical absorption
for interband and intersubband transitions

4.12. Optical Spectra and Transitions 413

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.62: Wave function of the first excited state. (𝑛, 𝑙) = (1,±1)

Figure 4.12.1.63: Wave function of the second excited state. (𝑛, 𝑙) = (1,±2)

414 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.64: Wave function of the third excited state. (𝑛, 𝑙) = (2, 0)

Figure 4.12.1.65: Wave function of the fourth excited state. (𝑛, 𝑙) = (1,±3)

4.12. Optical Spectra and Transitions 415

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.66: Wave function of the fifth excited state. (𝑛, 𝑙) = (2,±1)

• Structure

• Scheme

• Results

– Absorption

– Eigenvalues, transition energies, and occupations

– Transition intensity (Momentum matrix element)

– Eigenstates

Input file:

• 2Dcircular_infinite_wire_GaAs_intra_nnp.in

Structure

The above figures show the Gamma band edge of the circular GaAs region and the barrier region. We model the
infinite barrier by assigning 100 eV for the band edge of AlAs barrier region from database{ } section. Please
see the input file for the details.

The parameters used in this simulation are as follows.

416 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.67: Left: Conduction band edge for a cylindrical quantum wire. Right: Slice of the band edge along
𝑥 = 0.

Property Symbol Value [unit]
quantum wire radius 𝑅 5 [nm]
barrier height 𝐸𝑏 92 [eV]
effective electron mass 𝑚𝑒 0.0665
refractive index 𝑛𝑟 3.3
doping concentation (n-type) 𝑁𝐷 5·1018 [cm-3]
linewidth (FWHM) Γ 0.01 [eV]
temperature 𝑇 300 [K]

Scheme

The run{ } section is specified as follows:

run{
poisson{ }
quantum{ }
optics{ }

}

Then the simulation follows these steps:

1. Poisson equation is solved with the setting specified in the poisson{ } section.

2. “Schrödinger” equation is solved with the setting specified in the quantum{ } section.

3. “Schrödinger” equation is solved again with the setting specified in the optics{ } section and optical properties
are calculated.

ò Note

• If quantum_poisson{ } is specified instead of quantum{ }, Poisson and Schrödinger equations are
solved self-consistently.

• optics{ } requires that kp8 model is used in the quantum region specified in quantum{ }.

4.12. Optical Spectra and Transitions 417

nextnano++ Documentation, Release 1.25.13

• In this tutorial the kp parameters are adjusted so that the conduction and valence bands are decoupled
from each other. Thus the single-band Schrödinger equations are solved effectively by the kp solver.

The optical absorption accompanied by the excitation of charge carriers (state 𝑛 → 𝑚) in a condensed matter is
calculated on the basis of Fermi’s golden rule [ChuangOpto1995] in the dimenstion of (length)-1:

𝛼(⃗𝜖, 𝜔) =
𝜋𝑒2

𝑛𝑠𝑐𝜀0𝑚2
0𝜔

1

𝑉

∑︁
𝑛>𝑚

∑︁
k𝑧

|⃗𝜖 · �⃗�𝑛𝑚(k𝑧)|2(𝑓𝑚(k𝑧)− 𝑓𝑛(k𝑧))ℒ(𝐸𝑛(k𝑧)− 𝐸𝑚(k𝑧)− ℏ𝜔), (4.12.1.7)

where

• k𝑧 is the Bloch wave vector along translation-invariant directions. In 2D simulation this is 1D vector.

• 𝐸𝑛(k𝑧) is the energy of eigenstate 𝑛. The first sum runs over the pair of states where 𝐸𝑛(k𝑧) > 𝐸𝑚(k𝑧).

• 𝑓𝑛(k𝑧) is the occupation of eigestate 𝑛.

• �⃗� is the optical polarization vector defined in optics{ quantum_spectra{ polarization{ } } }.

• �⃗� = 𝑝+ 1
4𝑚0𝑐2

(𝜎×∇𝑉)where 𝑝 is the canonical momentum operator and 1
4𝑚0𝑐2

(𝜎×∇𝑉) is the contribution
of spin-orbit interaction.

• �⃗�𝑛𝑚(k𝑧) = ⟨𝑛|�⃗�|𝑚⟩.

• we call �⃗� · �⃗�𝑛𝑚(k𝑧) as the optical matrix elements.

• ℒ(𝐸𝑛(k𝑧)− 𝐸𝑚(k𝑧)− ℏ𝜔) is the energy broadening function.
– When energy_broadening_lorentzian is specified in optics{ quantum_spectra{ en-

ergy_broadening_lorentzian } },

ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) = 1
𝜋

Γ/2
(𝐸𝑛−𝐸𝑚−ℏ𝜔)+(Γ/2)2

where Γ is the FWHM defined by energy_broadening_lorentzian.

– When energy_broadening_gaussian is specified in optics{ quantum_spectra{ en-
ergy_broadening_gaussian } },

ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) = 1√
2𝜋𝜎

exp
{︁(︀

− (𝐸𝑛−𝐸𝑚−ℏ𝜔)2
2𝜎2

)︀}︁
where energy_broadening_lorentzian defines the FWMH Γ = 2

√
ln 2 · 𝜎

– When neither energy_broadening_lorentzian nor energy_broadening_gaussian is spec-
ified in optics{ quantum_spectra{ } }, ℒ is replace by the delta function 𝛿(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔).

– It is also possible to include both Lorentzian and Gaussian broadening (Voigt profile).

The detailed calculation scheme of the optical matrix elements �⃗� · �⃗�𝑛𝑚(k𝑧) and the absorption spectrum 𝛼 is
described in Optical absorption for interband and intersubband transitions.

Results

Absorption

Figure 4.12.1.68 shows the calculated 𝛼(⃗𝜖, 𝐸) specified in \Optics\absorption_~.dat for each polarization x, y, and
z. The absorptions for x- and y-polarization, which are identical due to the rotational symmetry in x-y plane, have
two peaks at around 0.2 eV (P1) and 0.95 eV (P2). 𝛼(⃗𝜖, 𝐸) = 0 for z-polarization, which is characteristic for
intersubband transtion. These results can be understood from the output data explained below.

418 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.68: Calculated absorption spectrum 𝛼(⃗𝜖, 𝐸) for �⃗� = �̂�, 𝑦, 𝑧.

ò Note

𝛼(⃗𝜖, 𝐸) for z-polarization is generally non-zero in the calculation through k.p model. This is because the
eigenstates above the conduction band edge can have the component of valence band Bloch functions and vice
versa (band-mixing).

𝛼(𝑧, 𝐸) = 0 in Figure 4.12.1.68 is reasonable since the single-band model is emulated in this tutorial.

Eigenvalues, transition energies, and occupations

Figure 4.12.1.69: Calculated energy spectrum and Fermi energy (=0 eV).

Figure 4.12.1.69 shows the calculated energy eigenvalues at k𝑧 = 0 specified in \Quantum\energy_spectrum_~.dat.

Please note that the output in Quantum\ counts the eigenstates with different spins individually when k.p
model is used, while they are counted jointly in Optics\.

The only states below the Fermi energy are the ground states (no. 1 and 2). Comparing the excitation energy of

4.12. Optical Spectra and Transitions 419

nextnano++ Documentation, Release 1.25.13

other upper states to 𝑘𝐵𝑇 ≃ 0.026 eV at 𝑇 = 300 K, we can expect the occupation probability of each excited
state is almost 0 and the optical transition will occur only from the ground states in this case.

We can see the peak energy of P1 in Figure 4.12.1.68 corresponds to the transition energy from the ground states
(no. 1 and 2) to the 1st excited states (no. 3,4,5, and 6). Also the peak energy of P2 corresponds to the transition
energy from the ground states to 5th excited states (no. 17,18,19, and 20).

The occupation probabilities for each state can be checked from \Optics\occupation_disp_~.datas a function of the
1D Bloch wave vector k𝑧:

Figure 4.12.1.70: Calculated occupation probabilities for the ground state and 1st excited state as a function of k𝑧 .

As we expected above, the ground state is well occupied for small k𝑧 and the occupation of the 1st excited state is
alomost 0.

ò Note

The eigenstates with different spins are counted individually in Quantum\ when k.p model is used, while they
are counted jointly in Optics\.

For example, the two ground states counted as no.1 and 2 in Figure 4.12.1.69 due to spin are put together as one
eigenstate in Optics\. Thus \Optics\occupation_disp_~_kp8_1.dat shows the occupation of the ground state and
\Optics\occupation_disp_~_kp8_2.dat and \Optics\occupation_disp_~_kp8_3.dat show the 1st excited state in
this case.

From the above data of eigenvalues and occupations, we could see which pair of states contributes to each peak in
the absorption spectrum Figure 4.12.1.68. In order to understand the magnitude of the peaks and why some pairs
of states do not appear as peaks, we will see the output data for |⃗𝜖 · �⃗�𝑛𝑚(k𝑧)|2 next.

Transition intensity (Momentum matrix element)

One of the key element for the calculation of absorption spectra is the transition intensity

𝑇𝑛𝑚(⃗𝜖, k𝑧) =
2

𝑚0
|⃗𝜖 · �⃗�𝑛𝑚(k𝑧)|2 (4.12.1.8)

which has the dimension of energy [eV].

The intensity at k𝑧 = 0
(︀
𝑇𝑛𝑚(⃗𝜖, k𝑧 = 0)

)︀
for each pair of states (𝑛,𝑚) is specified in Optics\transitions_~.txt.

These intensities whose “From” states are the ground state are shown here (x-polarization). We can also check the
transition energy of each pair of states.

420 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Energy[eV] From To Intensity_k0[eV] 1/
→˓Radiative_Rate[s]
0.19824 1 2 2.77912 3.
→˓80277e-08
0.19824 1 3 2.9137 3.
→˓62712e-08
0.775938 1 7 8.37435e-06 0.
→˓00322418
0.775938 1 8 6.88813e-06 0.
→˓00391985
0.964304 1 9 0.368533 5.
→˓89532e-08
0.964304 1 10 0.427067 5.
→˓0873e-08

We can explain the large P1 (~0.198 eV) and small P2 (~0.964 eV) by the large and small transition intensities in
these output data. Also we can see the transtions from 1 to 4,5,6,7 are almost zero and these pairs of states do not
contribute to the absorption (transitions from 1 to 4,5 are omitted here since Intensity_k0 are too small).

There is also the output files that specify the k-dispersion of the transition intensities for each light polarization in
Optics\transition_disp_~.dat.

Eigenstates

The probability distribution of eigenfunctions |𝜓(r)|2 is output in Quantum\probabilities_~.vtr. The amplitude of
the envelope function on each Bloch function |𝑆⟩, |𝑋⟩, |𝑌 ⟩, |𝑍⟩ can be found in Quantum\amplitudes_~_SXYZ.vtr.

The analytcal expression of the eigenfunctions for the cylindrical quantum wire is shown as eq. (4.7.2.1) in this
tutorial: Electron wave functions in a cylindrical well (2D Quantum Corral). According to this analytical solution,
the eigenfunction has 2 quantum numbers: 𝑛 for radial direction and 𝑙 for circumferential direction.

Here the amplitudes of eigenfunctions calculated by single-band model are shown. We can see the optical transition
from ground state (𝑛 = 1, 𝑙 = 0) occurs only to the states with 𝑙 = ±1.

Figure 4.12.1.71: Wave function of the ground state. (𝑛, 𝑙) = (1, 0)

Wave funstions of the energy eigenstates calculated by the single-band model.

4.12. Optical Spectra and Transitions 421

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.72: Wave function of the 1st excited state. (𝑛, 𝑙) = (1,±1)

Figure 4.12.1.73: Wave function of the 2nd excited state. (𝑛, 𝑙) = (1,±2)

Figure 4.12.1.74: Wave function of the 3rd excited state. (𝑛, 𝑙) = (2, 0)

422 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.75: Wave function of the 4th excited state. (𝑛, 𝑙) = (1,±3)

Figure 4.12.1.76: Wave function of the 5th excited state. (𝑛, 𝑙) = (2,±1)

4.12. Optical Spectra and Transitions 423

nextnano++ Documentation, Release 1.25.13

Last update: nnnn/nn/nn

Absorption of a GaAs spherical quantum dot

This tutorial calculates the optical absorption spectrum of a GaAs spherical quantum dot with infinite barriers. We
will see which output file we should refer to in order to understand the absorption spectrum.

Also, the formula used for the absorption calculation is presented. For the detailed scheme of the calculation of
the optical matrix elements and absorption spectrum, please see our 1D optics tutorial: Optical absorption for
interband and intersubband transitions

• Structure

• Scheme

• Results

– Absorption

– Eigenvalues, transition energies, and occupations

– Transition intensity (Momentum matrix element)

– Eigenstates

Input file:

• 3Dspherical_infinite_dot_GaAs_intra_nnp.in

• 3Dspherical_infinite_dot_GaAs_inter_nnp.in

Structure

Figure 4.12.1.77: Left: GaAs region as a spherical quantum dot. Right: Slice of the Gamma band edge along
𝑧 = 0.

The above figures show the Gamma band edge of the spherical GaAs region and the barrier region. We model the
infinite barrier by assigning 100 eV for the band edge of AlAs barrier region from database{ } section. Please
see the input file for the details.

The parameters used in this simulation are as follows.

424 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Property Symbol Value [unit]
quantum dot radius 𝑅 5 [nm]
barrier height 𝐸𝑏 92 [eV]
effective electron mass 𝑚𝑒 0.0665
refractive index 𝑛𝑟 3.3
doping concentation (n-type) 𝑁𝐷 8·1018 [cm-3]
linewidth (FWHM) Γ 0.01 [eV]
temperature 𝑇 300 [K]

Scheme

The run{ } section is specified as follows:

run{
poisson{ }
quantum{ }
quantum optics{ }

}

Then the simulation follows these steps:

1. Poisson equation is solved with the setting specified in the poisson{ } section.

2. “Schrödinger” equation is solved with the setting specified in the quantum{ } section.

3. “Schrödinger” equation is solved again with the setting specified in the optics{ } section and optical properties
are calculated.

ò Note

• If quantum_poisson{ } is specified instead of quantum{ }, Poisson and Schrödinger equations are
solved self-consistently.

• optics{ } requires that kp8 model is used in the quantum region specified in quantum{ }.

• In this tutorial the kp parameters are adjusted so that the conduction and valence bands are decoupled
from each other. Thus the single-band Schrödinger equations are solved effectively by the kp solver.

The optical absorption accompanied by the excitation of charge carriers (state 𝑛 → 𝑚) in a condensed matter is
calculated on the basis of Fermi’s golden rule [ChuangOpto1995] in the dimenstion of (length)-1:

𝛼(⃗𝜖, 𝜔) =
𝜋𝑒2

𝑛𝑠𝑐𝜀0𝑚2
0𝜔

1

𝑉

∑︁
𝑛>𝑚

|⃗𝜖 · �⃗�𝑛𝑚|2(𝑓𝑚 − 𝑓𝑛)ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔), (4.12.1.9)

where

• 𝐸𝑛 is the energy of eigenstate 𝑛. The first sum runs over the pair of states where 𝐸𝑛 > 𝐸𝑚.

• 𝑓𝑛 is the occupation of eigestate 𝑛.

• �⃗� is the optical polarization vector defined in optics{ quantum_spectra{ polarization{ } } }.

• �⃗� = 𝑝+ 1
4𝑚0𝑐2

(𝜎×∇𝑉)where 𝑝 is the canonical momentum operator and 1
4𝑚0𝑐2

(𝜎×∇𝑉) is the contribution
of spin-orbit interaction.

• �⃗�𝑛𝑚 = ⟨𝑛|�⃗�|𝑚⟩.

4.12. Optical Spectra and Transitions 425

nextnano++ Documentation, Release 1.25.13

• we call �⃗� · �⃗�𝑛𝑚 as the optical matrix elements.

• ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) is the energy broadening function:
– When energy_broadening_lorentzian is specified in optics{ quantum_spectra{ en-

ergy_broadening_lorentzian } },

ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) = 1
𝜋

Γ/2
(𝐸𝑛−𝐸𝑚−ℏ𝜔)+(Γ/2)2

where Γ is the FWHM defined by energy_broadening_lorentzian.

– When energy_broadening_gaussian is specified in optics{ quantum_spectra{ en-
ergy_broadening_gaussian } },

ℒ(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔) = 1√
2𝜋𝜎

exp
{︁(︀

− (𝐸𝑛−𝐸𝑚−ℏ𝜔)2
2𝜎2

)︀}︁
where energy_broadening_lorentzian defines the FWMH Γ = 2

√
ln 2 · 𝜎

– When neither energy_broadening_lorentzian nor energy_broadening_gaussian is spec-
ified in optics{ quantum_spectra{ } }, ℒ is replace by the delta function 𝛿(𝐸𝑛 − 𝐸𝑚 − ℏ𝜔).

– It is also possible to include both Lorentzian and Gaussian broadening (Voigt profile).

The detailed calculation scheme of the optical matrix elements �⃗� · �⃗�𝑛𝑚 is described in Optical absorption for
interband and intersubband transitions. In 3D simulation we do not have the k-summation like 1D and 2D cases.

Results

Absorption

Figure 4.12.1.78: Calculated absorption spectrum 𝛼(⃗𝜖, 𝐸) for �⃗� = �̂�.

Figure 4.12.1.78 shows the calculated 𝛼(⃗𝜖, 𝐸) specified in \Optics\absorption_~.dat for x-polarization. The ab-
sorptions for y- and z-polarization are identical to this graph due to the rotational symmetry. We have one peak at
around 0.23 eV (P1). These results can be understood from the output data explained below.

ò Note

When we use the realistic k.p paramters, 𝛼(⃗𝜖, 𝐸) for each polarization would no more be identical in general.
This is because the eigenstates above the conduction band edge can have the component of valence band Bloch
functions (band-mixing).

426 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

They are identical in this tutorial since the single-band model is emulated.

Eigenvalues, transition energies, and occupations

Figure 4.12.1.79: Calculated energy spectrum and Fermi energy (=0 eV).

Figure 4.12.1.79 shows the calculated energy eigenvalues specified in \Quantum\energy_spectrum_~.dat.

Please note that the output in Quantum\ counts the eigenstates with different spins individually when k.p
model is used, while they are counted jointly in Optics\.

Comparing the excitation energy of other upper states to 𝑘𝐵𝑇 ≃ 0.026 eV at 𝑇 = 300 K, we can expect the
occupation probability of each excited state is almost 0 and only the ground states have the non-zero occupation.
Thus the optical transition will occur only from the ground states in this case.

We can see the peak energy of P1 in Figure 4.12.1.78 corresponds to the transition energy from the ground states
(no. 1 and 2) to the 1st excited states (no. 3,4,5,6,7 and 8).

ò Note

The eigenstates with different spins are counted individually in Quantum\ when k.p model is used, while they
are counted jointly in Optics\.

For example, the two ground states counted as no.1 and 2 in Figure 4.12.1.79 due to spin are put together as
one eigenstate in Optics\.

From the above data of eigenvalues, we could see which pair of states contributes to the peak in the absorption
spectrum Figure 4.12.1.78. In order to understand why some pairs of states do not appear as peaks, we will see the
output data for |⃗𝜖 · �⃗�𝑛𝑚|2 next.

4.12. Optical Spectra and Transitions 427

nextnano++ Documentation, Release 1.25.13

Transition intensity (Momentum matrix element)

One of the key element for the calculation of optical absorption is the transition intensity

𝑇𝑛𝑚(⃗𝜖) =
2

𝑚0
|⃗𝜖 · �⃗�𝑛𝑚|2 (4.12.1.10)

which has the dimension of energy [eV].

The intensity
(︀
𝑇𝑛𝑚(⃗𝜖)

)︀
for each pair of states (𝑛,𝑚) is specified in Optics\transitions_~.txt. These intensities

whose “From” states are the ground state are shown here for x-polarization. We can also check the transition
energy of each pair of states.

Energy[eV] From To Intensity_k0[eV] 1/
→˓Radiative_Rate[s]
0.233098 1 2 2.02882 4.43013e-08
0.233098 1 3 2.42777 3.70214e-08
0.233098 1 4 2.30413 3.90079e-08

The transtions from 1 to 5~10 are zero and these pairs of states do not contribute to the absorption (They are omitted
here since Intensity_k0 are too small).

Eigenstates

The probability distribution of eigenfunctions |𝜓(r)|2 is output in Quantum\probabilities_~.vtr. The amplitude of
the envelope function on each Bloch function |𝑆⟩, |𝑋⟩, |𝑌 ⟩, |𝑍⟩ can be found in Quantum\amplitudes_~_SXYZ.vtr.

Here the probability distribution of eigenfunctions calculated by single-band model are shown.

Figure 4.12.1.80: |wave function|2 of the ground state. (s orbital, not degenerated.)

|wave function|2 of the energy eigenstates calculated by the single-band model. The contours at the value of
|𝜓(r)|2 = 0.001 are shown.

Last update: nnnn/nn/nn

428 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.81: |wave function|2 of the 1st excited state. (3 times degenerated, p orbital)

Figure 4.12.1.82: |wave function|2 of the 2nd excited state. (5 times degenerated, d orbital)

4.12. Optical Spectra and Transitions 429

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.83: |wave function|2 of the 2nd excited state. (d orbital)

Optics: Optical gain of InGaAs quantum wells with different strain

Input Files:
• 1D_gain_strained_qw.in

Scope:
Comparison of the optical gain calculated for differently strained InGaAsP-InGaAs quantum
wells using 8-band k.p model with [ChuangOpto1995], Sec. 10.4 .

Most relevant keywords:
• quantum{ region{ kp_8band{} } }

• optics{ quantum_spectra{} }

Output files:
• \bias_00000\Optics\absorption_quantum_region_TEy_eV.dat

• \bias_00000\Optics\absorption_quantum_region_TMx_eV.dat

• \bias_00000\Quantum\Dispersions\dispersion_quantum_region_kp8_11_00_10.dat

• \bias_00000\bandedges.dat

Introduction

We consider a 1D single quantum well system consisting of 𝐼𝑛1−𝑥𝐺𝑎𝑥𝐴𝑠 sandwiched between
𝐼𝑛0.71𝐺𝑎0.29𝐴𝑠0.61𝑃0.39 barrier layers. Simulations are performed for three different mole fractions 𝑥
resulting in three different strain conditions:

• 𝑥 = 0.41 (QW region is compressively strained)

• 𝑥 = 0.47 (QW region is unstrained)

• 𝑥 = 0.53 (QW region is tensely strained).

The parameters for the layer thicknesses, alloy composition and quasi-Fermi levels are taken as follows:

• The well widths 𝐿w are chosen as 4.5 nm, 6.0 nm, and 11.5 nm for each 𝑥 value, respectively, so that the
energy difference between the highest valence band eigenstate and lowest conduction band eigenstate would

430 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

be around 0.8 eV (~1500 nm). The length of the complete simulation region is the same for all three cases,
namely 𝐿t = 20 nm.

• The alloy composition of 𝐼𝑛𝐺𝑎𝐴𝑠𝑃 barrier region is determined, so that its lattice constant matches to InP
substrate and the band gap is 0.95 eV (𝜆g = 1300 nm). The same barrier composition is used for all 𝑥.

• The electron and hole quasi-Fermi levels were determined for each 𝑥, so that the carrier densities of electrons
and holes integrated over the QW width both equal 3 ·1012 cm-2.

Computation of the optical absorption spectra within the Fermi’s golden rule and 8-band k.p model is triggered in
the optics{ } group. Please refer to our tutorial on absorption for the details about the calculation scheme of the
absorption spectra.

Results

We show for each of the three cases the calculated band edges, subband dispersions of the highest electron and
hole states, and the optical gain coefficients of TE and TM mode.

Figure 4.12.1.84: The band edges and Fermi levels of compressively strained QW (𝐿w = 4.5 nm, 𝑥 = 0.41) (left),
unstrained QW (𝐿w = 6.0 nm, 𝑥 = 0.47) (center) and tensely strained QW (𝐿w = 11.5 nm, 𝑥 = 0.50) (right). The
band profile is shifted so that the valence band edge of the barrier is at 0 eV.

The band profiles for all three cases are depicted in Figure 4.12.1.84. The HH is the highest valence band in the
compressive case, HH and LH are degenerated in the unstrained case, and LH is the highest valence band in the
tensile case due to the different band-shift of HH and LH. Figure 10.30 in [ChuangOpto1995] shows the same
qualitative effect of strain on the band edge profile.

Energy dispersions for all three cases are shown in Figure 4.12.1.85. The corresponding output file is Quan-
tum/dispersion_~.dat, which is calculated in quantum{ } group. We observe an upward shift of the valance bands
going from compressive to tensile strain, which is in agreement with figure 10.30 in [ChuangOpto1995].

Figure 4.12.1.86 shows optical gain computed for the differently strained QWs. The gain for TE polarization is
dominant in the compressive and unstrained quantum well as related to transitions involving HH, and TM gain
is dominant in the tensely strained quantum well due to the lowest energy transitions involving LH. Comparing
the gain spectra with the results presented in [ChuangOpto1995], we observe that for all three cases the shapes
of the TE spectra relative to the TM spectra are correctly reproduced. However, there are some deviations in the
amplitudes of the spectra. In the cases of the compressive strain and no strain, the computed gain spectra are about
100 cm-2 higher than the ones presented in [ChuangOpto1995]. Conversely, the spectra computed for the tensely
strained quantum well are about 100 cm-2 smaller than those in the reference.

Discussion

Most possible reasons which account for the deviations between our gain spectra and these shown in [Chuan-
gOpto1995] may be differences in:

• the model applied to compute the spectra,

• the number of electron and hole states included in the model,

4.12. Optical Spectra and Transitions 431

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.85: Calculated subband dispersions for the comressively strained QW (left), unstrained QW (center)
and tensely strained QW (right). The ground and 1st excited states for electron (cyan), as well as the three highest
hole states (black) are shown.

Figure 4.12.1.86: Calculated optical gain of TE and TM optical mode for compressively strained QW (left), un-
strained QW (center) and tensily strained QW (right)

432 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• how the surface charge concentration of 3 ·1012 cm-2 is calculated. In [ChuangOpto1995] the surface charge
concentration is equal to 𝑛𝐿z, where we assumed an integration of the carrier density over the well width,
i.e.
∫︀
𝑛(𝑥)𝑑𝑥. The surface charge concentration is an important parameter, because it determines the quasi-

Fermi levels and therefore the amplitude of the gain spectrum.

• boundary conditions for the wave functions. Here, we used periodic boundary conditions.

Last update: nnnn/nn/nn

— DEV — Optical gain and spontaneous emission rate of strained GaN quantum well

. Warning

This tutorial is under development.

In this tutorial, we calculate the optical gain and spontaneous emission rate of strained GaN quantum well using
8-band k.p model implemented in our optics{ } section. This tutorial aims to reproduce the results obtained in
[ChuangIEEE1996]:

• “Optical gain of strained wurtzite GaN quantum-well lasers” S. L. Chuang, IEEE Journal of Quantum
Electronics (1996)

Related files
• Chuang_1996_IEEE_GaN_QW_nnp.in

• Chuang_1996_IEEE_GaN_QW_postprocess.py (python script using nextnanopy)

Table of contents

• Structure

• Results

– Spontaneous emission rate

– Optical Gain

The nextnano++ tool can calculate the spontaneous emission rate and optical gain in 2 different models.

1. “Semiclassical” calculation corresponds to classical{ }

2. “Quantum” calculation corresponds to optics{ }

For the 1st model, please refer to InGaAs Multi-quantum well laser diode. Roughly speaking, this model calculates
the carrier densities either quantum mechanically or classically and the emission rate is calculated from them in a
phenomenological way (4.4.1.4).

The calculation described here is the 2nd model. This starts from the Fermi’s golden rule (time-dependent per-
turbation theory) and electrons in a condensed matter are treated fully quantum mechanically. This model has the
following characteristics:

• able to take into account the band-bending and band-mixing effect by strain

• distinguishes the different polarization

• requires less phenomenological parameter

• require the k.p parameters instead

(For most of the important materials, the parameters are already included in our database file.)

4.12. Optical Spectra and Transitions 433

nextnano++ Documentation, Release 1.25.13

Structure

Figure 4.12.1.87: The band edges and Fermi energies for Al0.3Ga0.7N-GaN quantum well with the carrier concen-
tration 𝑛 = 3× 1019 cm−3 inside the well region.

The above figures show the Gamma band edge of the Al0.3Ga0.7N-GaN quantum well.

Please see the input file for the details.

The parameters used in this simulation are as follows.

Property Symbol Value [unit]
quantum well width 𝐿𝑤 2.6, 5.0 [nm]
doping concentation 𝑁𝐷 0 [cm-3]
carrier concentration in the well 𝑛 1, 2, 3 × 1019 [cm-3]
linewidth (FWHM) Γ 0.0132 [eV]
temperature 𝑇 300 [K]

ò Note

The piezo- and pyroelectricity are not yet taken into consideration here for the simplicity.

Results

Spontaneous emission rate

The formula used for the spontaneous emission calculation in optics section is as follows:

𝑟𝑠𝑝𝑜𝑛(⃗𝜖, 𝜔) =
𝑛𝑟𝑒

2𝐸

𝜋ℏ2𝑐3𝜀0𝑚2
0

2

𝑉

∑︁
𝑛>𝑚

∑︁
k‖

|⃗𝜖 · �⃗�𝑛𝑚(k‖)|2ℒ(𝐸𝑛(k‖)− 𝐸𝑚(k‖)− 𝐸)𝑓𝑛(k‖)(1− 𝑓𝑚(k‖)),

(4.12.1.11)

For the detail of the definition of each quantity and calculation scheme, please see our Optical absorption for
interband and intersubband transitions.

434 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Here we show this 𝑟𝑠𝑝𝑜𝑛(⃗𝜖, 𝜔) calculated for 𝐿𝑤 = 2.6 [nm], 𝐿𝑤 = 5.0 [nm] and each polarization. These results
well agree with Fig.7 of [ChuangIEEE1996].

Figure 4.12.1.88: 𝑟𝑠𝑝𝑜𝑛 for an Al0.3Ga0.7N-GaN quantum well with the carrier concentration 𝑛 = 3× 1019 cm−3

on each polarization TE (x or y) and TM (z). 𝐿𝑤 = 2.6 [nm]

Figure 4.12.1.89: 𝑟𝑠𝑝𝑜𝑛 for an Al0.3Ga0.7N-GaN quantum well with the carrier concentration 𝑛 = 3× 1019 cm−3

on each polarization TE (x or y) and TM (z). 𝐿𝑤 = 5.0 [nm]

When we do not apply the linewidth broadening, the result shows the exact energy where the emission by each pair
of state starts.

Optical Gain

The optics section can calculate the absorption spectra 𝛼(⃗𝜖, 𝜔). This can be understood as a negative gain, i.e.

𝛼(⃗𝜖, 𝜔) = −𝑔(⃗𝜖, 𝜔) (4.12.1.12)

For the details of the calculation scheme of 𝛼(⃗𝜖, 𝜔), please see our Optical absorption for interband and intersub-
band transitions.

Here we show this 𝑔(⃗𝜖, 𝜔) calculated for 𝐿𝑤 = 2.6 [nm], 𝐿𝑤 = 5.0 [nm] and polarization.

These results almost agrees with Fig.8 of [ChuangIEEE1996] except for the case when the gain peak is relatively
low. This is because the models used here and [ChuangIEEE1996] apply the linewidth broadening in different
steps.

4.12. Optical Spectra and Transitions 435

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.90: TE emission rate in Figure 4.12.1.89 with (red dashed line) and without (blue line) line width
broadening.

Figure 4.12.1.91: 𝑔(⃗𝜖, 𝜔) for a Al0.3Ga0.7N-GaN quantum well with the carrier concentration 𝑛 = 1, 2, 3 × 1019

cm−3 on each polarization TE (x or y) and TM (z). 𝐿𝑤 = 2.6 [nm]

436 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.1.92: 𝑔(⃗𝜖, 𝜔) for a Al0.3Ga0.7N-GaN quantum well with the carrier concentration 𝑛 = 1, 2, 3 × 1019

cm−3 on each polarization TE (x or y) and TM (z). 𝐿𝑤 = 5.0 [nm]

Last update: nnnn/nn/nn

4.12.2 Excitons
Exciton absorption in infinite quantum well

Input files:
1D_InterbandExcitonAbsorption_InfiniteWell_GaAs_8kp_nnp.in 1D_InterbandExcitonAbsorption_InfiniteWell_GaAs_effective_mass_nnp.in

Scope of the tutorial:
In this tutorial, we show how excitonic correction affects the absorption in infinite quantum well.

The most relevant keywords:
• optics{ quantum_spectra{} }

• quantum{ region{ excitons{} } }

Relevant output files:
bias_xxxxx\bandedges.dat bias_xxxxx\Optics\absorption_quantum_region_TE_eV.dat
bias_xxxxx\Quantum\probabilities_shift_quantum_region_kp8_00000.dat

This tutorial presents calculation of interband absorption spectrum in a quantum well including excitonic effects.
The tutorial aims to provide a comprehensive explanation of how excitonic correction significantly influences the
optical absorption characteristics in a quantum well.

In this tutorial we calculate the absorption spectrum of a 10 nm GaAs quantum well. The purpose is to calculate
the absorption spectrum for a simple model and model that includes excitonic effects on the absorption spectrum.

The tutorial is structured into two parts. The first part involves the computation of valence and conduction states
using simple parabolic dispersion models, also known as the “single-band” model. In the second part, the states
will be computed using an 8-band kp Hamiltonian.

4.12. Optical Spectra and Transitions 437

nextnano++ Documentation, Release 1.25.13

Theory of optical excitonic correction

An exciton is a bound state of an electron and a hole in a solid material, resulting from the Coulomb attraction
between them. The exciton eigenvalue is computed using variational approach with the wave function

𝐹 (𝑟, 𝑥ℎ, 𝑥𝑒) = 𝑓(𝑥𝑒)𝑔(𝑥ℎ)𝜑(𝑟)

𝜑(𝑟) =
2

𝜋

1

𝜆
exp(−𝑟/𝜆)

where 𝑓(𝑥𝑒), 𝑔(𝑥ℎ) – electron and hole wave functions, 𝑟 – radial variable in plane orthogonal to growth direction,
𝜆 – variational parameter.

The exciton correction to absorption consists of 2 terms: exciton peak and Sommerfeld enhancement factor (also
known as Coulomb enhancement). The exciton peak is located few𝑚𝑒𝑉 below the absorption edge of correspond-
ing electron-hole pair (i.e. transition energy is reduced by binding energy of exciton) The intensity of the peak is
dependent on the parameter 𝜆.

𝛼𝑒𝑥 ∝ 2

𝜋𝜆2
𝑉 (𝐸𝑖𝑗 − 𝐸𝑏, ℏ𝜔)

where 𝑉 is Voigt profile,𝐸𝑖𝑗 is the transition energy between electron i and hole j,𝐸𝑏 is binding energy of exciton.

The second contribution is enhancemnt of the absorption above transition energy by the Sommerfeld factor

𝑆2𝐷 =
exp
(︁
𝜋/

√
∆
)︁

cosh
(︁
𝜋/

√
∆
)︁

where ∆ is the total excess energy of the electron-hole pair normalized to 𝐸𝑏/4

Input File

In order to include excitonic correction to absorption, excitons section should be present both in
quantum{region{}} and optics{quantum_spectra{}}.

In quantum, methods to compute excitons from conduction and valence band eigenstates are defined (see details
in keywords documentation “quantum {region {excitons} }”)

quantum{
region{

...
excitons{

density_averaged_masses = yes
energy_cutoff = 2.5
accuracy = 1e-5

}
}

}

In optics, the corrections to optical absorptions is defined. Setting coulomb_enhancement = no and
num_exciton_levels = 0 will output absorption without exciton correction (so called single-particel model).

optics{
quantum_spectra{

...
excitons{

coulomb_enhancement = yes
num_exciton_levels = 1

}
}

}

438 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The input files provided for this simulation have three modes, depending on the value of the variable $calculation,
defined at the top of the input file.

– $calculation=1 – computes single-particle absorption (no exciton correction)

– $calculation=2 – the computed absorption includes Coulomb enhancement

– $calculation=3 – the computed absorption includes both Coulomb enhancement and exctiton peaks

Simulation 1: single-band model

For this simulation, 1D_InterbandExcitonAbsorption_InfiniteWell_GaAs_effective_mass_nnp.in input file is used.

The parameters used in the calculation are the following

Property Symbol unit Value
quantum well width 𝐿 nm 10.0
barrier height 𝐸𝑏 eV 1000
Electron effective mass 𝑚𝑒 𝑚0 0.065
Heavy hole effective mass 𝑚ℎℎ 𝑚0 0.51
refractive index 𝑛𝑟 3.3
linewidth (FWHM) Lorentzian ΓL meV 3
linewidth (FWHM) Gaussian ΓG meV 5
temperature 𝑇 K 300

To simplify the calculation, only heavy hole states are computed in the valence band. To include light hole and
split off, set $compute_LH_and_SO variable to 1 in the input file.

The eigenstates from the calculation are shown in the Figure 4.12.2.1

In the figure below, the computed absorption in the quantum well is shown (Figure 4.12.2.2). The figure shows the
absorption without exciton correction, absorption including Sommerfeld enhancement factor and total excitonic
absorption (i.e. both exciton peak and Coulomb enhancement).

Simulation 2: 8-band kp model

For this simulation, 1D_InterbandExcitonAbsorption_InfiniteWell_GaAs_8kp_nnp.in input file is used.

The parameters used in the calculation are the following

Property Symbol unit Value
quantum well width 𝐿 nm 10.0
barrier height 𝐸𝑏 eV 1000
8-band kp parameters for GaAs 𝐸𝑔,𝐸𝑝, 𝐿,𝑀,𝑁 n/a from default database
refractive index 𝑛𝑟 3.3
linewidth (FWHM) Lorentzian ΓL meV 3
linewidth (FWHM) Gaussian ΓG meV 5
temperature 𝑇 K 300

The eigenstates from the calculation are shown in the Figure 4.12.2.3

In the figure below, the computed absorption in the quantum well is shown (Figure 4.12.2.4). Similarly to the
Simulation 1, the figure shows the absorption with and without exciton correction.

In both simulations, exciton correction increase the absorption significantly above the absorption edge and also
gives rise to a sharp peak at energy few meV below absorption edge.

4.12. Optical Spectra and Transitions 439

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.1: Computed eigenstates in the GaAs infinite quantum well with effective mass Hamiltonian in
conduction and valence bands. The colored dashed line are band edges, the solid lines are eigenstates.

440 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.2: Absorption in infinite quantum well computed with effective mass Hamiltonians. The figure shows
absorption with and without exciton correction.

4.12. Optical Spectra and Transitions 441

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.3: Eigenstates in the GaAs infinite quantum well computed with 8-band kp Hamiltonian. THe colored
dashed line are band edges, the solid lines are eigenstates.

442 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.4: Absorption in infinite quantum well computed with 8-band kp Hamiltonian. The figure shows
absorption with and without exciton correction.

4.12. Optical Spectra and Transitions 443

nextnano++ Documentation, Release 1.25.13

This tutorial is based on the nextnano GmbH collaboration in the scope of the SiPho-G Project aiming at devel-
opment of ultrahigh-speed optical components for next-generation photonic integrated circuits, and it is funded by
the European Union’s Horizon 2020 research and innovation program under the grant agreement No 101017194.

Last update: 2025/06/27

SiGe QW excitonic absorption

. Attention

This tutorial is under construction.

Input files:
1D_Ge_GeSi_QCSE_Lever2010_8kp_nnp_exciton.in

Scope of the tutorial:
In this tutorial, we show an approach how to model absorption spectrum in a quantum well. This
tutorial reproduces results from [LeverJLT2010].

The most relevant keywords:
• contacts

• optics{ quantum_spectra{} }

• quantum{excitons}

Solvers:
• strain

• poisson

• quantum

• quantum_optics

Relevant output files:
bias_xxxxx\Optics\absorption_quantum_region_TE_eV.dat

Introduction

This tutorial shows how to model an absorption inside a quantum well — an active region of electro-absorption
modulator. The tutorial reproduces results from [LeverJLT2010] with 9 nm Ge well with 12 nm Si 0.4 Ge 0.6 barrier
grown on Si 0.3 Ge 0.7 substrate. The Ge concentration profile is smoothened by interdiffusion, which is modelled
using analytic profile from [LeverJLT2010]. The Ge grown on the Si substrate is tensile strained, because the bulk
thermal expansion coefficient of Ge is larger than of the Si substrate. In order to take in into account, 0.1% tensile
residual strain is added to virtual substrate.

444 Chapter 4. Tutorials

https://www.sipho-g.eu/
https://cordis.europa.eu/project/id/101017194

nextnano++ Documentation, Release 1.25.13

strain{
residual_strain = 0.001

...
}

The figure Figure 4.12.2.5 shows the wave functions in conduction and valence bands.

Figure 4.12.2.5: The band edges (colored) and the wave function probabilities (gray) in the quantum well under 0
bias.

The bias sweep from 0 V to 0.5 V is specified in the input file in the contacts

$left_bias_start = 0
$left_bias_finish = 0.27
...
contacts{

ohmic{ name = "left" bias = [$left_bias_start, $left_bias_finish] steps = 3}
ohmic{ name = "right" bias = 0}

}

For each bias the absorption spectrum in the device is calculated. Due to the quantum confinement, the excitonic
absorption is still observable at room temperatures. The excitonic correction is added; more details are explained in
tutorial “Optical interband absorption in a quantum well including excitonic effects” for nextnano3. The absorption
spectra at different biases is shows in the figure Figure 4.12.2.6.

The redshift of exciton peak is observed when bias is applied to the structure. At a given wavelength, the absorption
increase is significant allowing for electro-optic absorption modulation. The modelling can be used to optimize
the parameters of the device and to choose the optimal wavelength of the modulation for a given structure.

The position of exciton peaks are in a good agreement with simulation from [LeverJLT2010] — within 1 meV
error for each bias. While the relative change of absorption spectra with applied bias also agrees with experimental
data, the absolute value differs by a factor 1.4 – 1.6. The nextnano software is continuously improving to meet last
criteria as well.

4.12. Optical Spectra and Transitions 445

https://www.nextnano.com/products/overview.php

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.6: Excitonic absorption spectra in the device. Labels indicate electric field in the middle of the
quantum well.

This tutorial is based on the nextnano GmbH collaboration in the scope of the SiPho-G Project aiming at devel-
opment of ultrahigh-speed optical components for next-generation photonic integrated circuits, and it is funded by
the European Union’s Horizon 2020 research and innovation program under the grant agreement No 101017194.

Last update: 2025/06/27

SiGe MQW QCSE electro-absorption modulator (EAM)

. Attention

This tutorial is under construction.

Input files:
1D_Ge_GeSi_QCSE_Kuo2005_8kp_nnp_exciton.in 1D_Ge_GeSi_QCSE_Kuo2005_simplified_8kp_nnp_exciton.in

Scope of the tutorial:
In this tutorial, we show an approach how to model absorption spectrum for a series of quantum
wells inside p-i-n junction. This tutorial reproduces experimental results from [KuoNature2005].

The most relevant keywords:

446 Chapter 4. Tutorials

https://www.sipho-g.eu/
https://cordis.europa.eu/project/id/101017194

nextnano++ Documentation, Release 1.25.13

• contacts

• optics{ quantum_spectra{} }

• quantum{excitons{} kp8{}}

Relevant output files:
bias_xxxxx\bandedges.dat bias_xxxxx\Optics\absorption_quantum_region_TEy_eV.dat struc-
ture\density_acceptor.dat structure\density_donor.dat

Introduction

In this tutorial, we will explore the physics behind the quantum-confined Stark effect (QCSE) and its application in
modulating light absorption in semiconductor structures. The QCSE is a phenomenon in which the absorption edge
of a semiconductor is shifted when an electric field is applied perpendicular to its surface, resulting in a redshift
of the exciton peak. This effect can be utilized in electro-optic devices such as modulators, switches, and tunable
lasers.

We will begin by simulating the QCSE in a simplified structure consisting of only an intrinsic region. In the second
example, we will simulate a more complex structure consisting of a p-i-n junction with the quantum well embedded
in the intrinsic region. This will provide us with a more accurate representation of the electro-optic properties of
a complete device and allow us to investigate the behavior of absorption versus bias.

This tutorial reproduces the experimental results from [KuoNature2005]. The design consists of the p-doped buffer,
grown on Si substrate, bottom spacer, series of 10 quantum wells, top spacer and n-doped cap layer. The device
parameters are given below

Name Thikness, nm Ge concentration doping type doping concentration, cm-3

Buffer 500 0.9 p-type 5 × 1018

Bottom spacer 100 0.9 — —
Barrier 16 0.85 — —
Well 10 1.0 — —
Top spacer 100 0.9 — —
Cap layer 200 0.9 n-type 1 × 1019

The modeling approach used in this tutorial is similar to the one used in our previous tutorial on SiGe excitons —
“SiGe QW excitonic absorption”. Specifically, the Ge content profile is smoothed with a characteristic diffusion
length of 1 nm, and a residual tensile strain of 0.1% is assumed in the strain-relaxed buffer. The electron states are
computed with 8-band kp hamiltonian.

In both examples, the quantum_region consists only of 1 well. It is sufficient to model only valence and conduc-
tion states in a single quantum well, because the barrier is wide enough, so there is no overlap of wave functions
between different wells.

Simulation 1: Only intrinsic region

Solvers:
• strain

• poisson

• quantum

• quantum_optics

Omitting the doped layers, the simulation regions consist of bottom spacer, MQW and top spacer. The built-in
potential of the junction has to be included in the simulation. Furthermore, the diffusion of dopants from a buffer
and cap layer effectively decreases the intrinsic region. Following [LeverJLT2010], the built-in is assumed to be
0.8𝑉 and the intrinsic region is shortened by 75𝑛𝑚 (i.e. the bottom spacer region used in the simulation is 25𝑛𝑚)

Since Simulation 1 example does not include any doped regions, the current equation is not necessary and can be
omitted.

4.12. Optical Spectra and Transitions 447

nextnano++ Documentation, Release 1.25.13

The simulated banedges at zero bias are shown in the figure Figure 4.12.2.7

Figure 4.12.2.7: Valence and conduction band edges at zero bias. The electric field is induced by 0.8V built-in
potential, included in the simulation

When additional bias applied, the electric filed in the quantum well is increased (figure Figure 4.12.2.7)

Figure 4.12.2.8: Valence and conduction band edges at 2V external bias.

The absorption spectra computed at different biases is given in the figure

Simulation 2: Whole pin device

Solvers:
• strain

• current_poisson

• quantum

• quantum_optics

For a more accurate representation of the electro-optic properties of a complete device, we will consider a more
detailed structure consisting of a p-i-n junction with the quantum well embedded in the intrinsic region.

448 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.9: Absorption spectra inside the MQW region at different external bias

In contrast to the simplified example, the second example involves the inclusion of doped regions in the simulation.
This necessitates the use of current equation to model the device behavior.

As discussed above, the diffusion of dopants from the p and n regions to the intrinsic region effectively decreases
the width of the intrinsic region, which increases the electric field. In order to model this phenomenon, we use a
smoothed doping profile corresponding to the analytical solution of diffusion between two infinite half-spaces with
a constant initial concentration 𝑐0 in one subspace and zero concentration in the other.

𝑐 =
𝑐0
2

+
𝑐0
2
𝑒𝑟𝑓(±𝑥− 𝑥0

𝑑
)

Here: 𝑥0 is junction position, 𝑑 is characteristic diffusion length, 𝑒𝑟𝑓 is error function, plus inside error function
is for the case when initial nonzero concentration is at 𝑥 > 𝑥0 and vice versa.

We find 𝑑 = 30𝑛𝑚 to give the closest result to experiment. In order to use the diffused doping profile, we initialize
doping profile function in import

import{
...

analytic_function{
name = "pdoping_profile"
function = "$pDopingConcentration*0.5 + $pDopingConcentration*0.5*erf(-(x-

→˓$pdoping_junction_position)/$diffusion_dopants_length)"
}

analytic_function{
name = "ndoping_profile"
function = "$nDopingConcentration*0.5 + $nDopingConcentration*0.5*erf((x-

→˓$ndoping_junction_position)/$diffusion_dopants_length)"
}

}

These functions are used in structure to initialize doping

4.12. Optical Spectra and Transitions 449

nextnano++ Documentation, Release 1.25.13

impurities{
donor{

name = "n-type"
energy = -1000 # (= all ionized)
degeneracy = 2 # degeneracy of energy levels, 2 for n-type, 4 for p-type

}
acceptor{

name = "p-type"
energy = -1000 # (= all ionized)
degeneracy = 4 # degeneracy of energy levels, 2 for n-type, 4 for p-type

}
}
...
structure{
...

region{ # n-doping
line{

x = [$x_min, $x_max]
}
doping{

import{
name = "n-type"
import_from = "ndoping_profile"
}

}

}

region{ # p-doping
line{

x = [$x_min, $x_max]
}
doping{

import{
name = "p-type"
import_from = "pdoping_profile"

}
}

}
...
}

The resulting doping profile is shown in the figure Figure 4.12.2.10.

The band edges at zero bias is shown in the figure Figure 4.12.2.11

At zero bias there is no current in the system, therefor the electron and hole Fermi levels coincide. At nonzero
reverse bias, the current is induced, separating electron and hole Fermi level and enhancing the electric field in the
MQW region (see Figure 4.12.2.12).

The absorption spectra computed in this example are shown in the Figure 4.12.2.13.

The position of exciton peaks are in a good agreement with experiment — within 3 𝑚𝑒𝑉 error for each bias. While
the relative change of absorption spectra with applied bias also agrees with experimental data, the absolute value
differs by a factor 1.5− 1.8. The nextnano software is continuously improving to meet last criteria as well.

This tutorial is based on the nextnano GmbH collaboration in the scope of the SiPho-G Project aiming at devel-
opment of ultrahigh-speed optical components for next-generation photonic integrated circuits, and it is funded by
the European Union’s Horizon 2020 research and innovation program under the grant agreement No 101017194.

450 Chapter 4. Tutorials

https://www.nextnano.com/products/overview.php
https://www.sipho-g.eu/
https://cordis.europa.eu/project/id/101017194

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.10: The doping profile in the device

Figure 4.12.2.11: Valence and conduction band edges at zero bias

4.12. Optical Spectra and Transitions 451

nextnano++ Documentation, Release 1.25.13

Figure 4.12.2.12: Valence and conduction band edges at zero bias

Figure 4.12.2.13: Absorption spectra inside the MQW region at different external bias for Simulation 2

452 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: 2025/06/27

4.13 2-Dimensional Electron Gases (2DEGs)

4.13.1 — FREE — Schrödinger-Poisson - A comparison to the tutorial file of Greg
Snider’s code

In this tutorial we calculate the self-consistent solution of Schrödinger-Poisson equations using nextnano++ and
another code provided by Greg Snider (University of Notre Dame). We compare the two results and see the agree-
ment of them.

We also discuss about the basic concept of the Schrödinger-Poisson solution.

The related input files are followings:

• Greg_Snider_MANUAL_1D_nn*.in

• Greg_Snider_MANUAL_1D_analytic_nn*.in

• Greg_Snider_MANUAL_2D_nn*.in

• Greg_Snider_MANUAL_2D_analytic_nn*.in

These are available in the sample file folder. The files which have analytic in their names use analytic doping
function.

We appreciate that Greg Snider provided his code, the manual and the input files free of charge, so that we could
use it here as a test case. His 1D Poisson/Schrödinger code can be obtained from this link. This tutorial is based
on his manual (1D Poisson Manual.pdf, MANUAL.EX).

Structure

We simulate a structure consisting of the following matrerials and doping profile. The additional doping profile
based on LSS Theory is explained in the next section.

surface Schottky barrier of 0.6V
z = 0 ~ 15 nm GaAs n-type doped (1018 cm-3)
z = 15 ~ 35 nm Al0.3 Ga0.7 As n-type doped (1018 cm-3)
z = 35 ~ 39.5 nm Al0.3 Ga0.7 As
z = 39.5 ~ 54.5 nm GaAs quantum well
z = 54.5 ~ 105 nm Al0.3 Ga0.7 As
z = 105 ~ 355 nm Al0.3 Ga0.7 As p-type doped (1017 cm-3)

substrate

• The grid resolution is 1 nm with the exception of the 250 nm layer which has a resolution of 5 nm and the
material interfaces of the quantum well which has a resolution of 0.5 nm.

• The dopants are assumed to be fully ionized.

• The temperature is 300 K.

• The Schrödinger equation will be solved between 5 nm and 195 nm.

4.13. 2-Dimensional Electron Gases (2DEGs) 453

http://www.nd.edu/~gsnider/

nextnano++ Documentation, Release 1.25.13

Doping

We consider two further impurity profile resulting from ion implantation using LSS Theory.

For further details see for example: “Very brief Introduction to Ion Implantation for Semiconductor Manufacturing”
by Gerhard Spitzlsperger.

The donor and acceptor profiles are written out of the file density_acceptor/acceptor.dat and look as follows:

Figure 4.13.1.1: Doping profiles separated by each region.

The relevant parameters are:

implant dose [cm-2] projected range 𝑅𝑝 [nm] projected straggle Delta 𝜎𝑝 [nm]
donor 2×10 12 86 44
acceptor 1×10 11 75 20

For further details on the LSS theory (ion implantation) and on the doping profiles, please check the relevant
keyword doping{ }.

Conduction and valence band edges

The following figure shows the conduction and valence band edges as well as the Fermi level (which is constant
and has the value of 0 eV) for the structure specified above. These bands are the solutions of the self-consistent
Schrödinger-Poisson equation.

Both codes, nextnano++ and Greg Snider’s “1D Poisson” lead to the same results.

Electron eigenstates and eigenfunctions

Inside the GaAs quantum well there are three confined electron states. The ground state is below the Fermi level
and thus occupied. The following figure shows a zoom of the GaAs Quantum well.

The wave functions as calculated with nextnano++ are nearly identical to Greg Snider’s “1D Poisson” code, as
well as the energies. However, there are tiny differences which is not too suprising as the conduction band profile
is not completely identical.

454 Chapter 4. Tutorials

http://www.gs68.de/tutorials/implant.pdf

nextnano++ Documentation, Release 1.25.13

Figure 4.13.1.2: Resulting doping profiles.

4.13. 2-Dimensional Electron Gases (2DEGs) 455

nextnano++ Documentation, Release 1.25.13

Electron states nextnano++ Greg Snider’s “1D Poisson” code
E1 [meV] -3.1 -1.3
E2 [meV] 43.4 44.0
E3 [meV] 117.4 117.8

Electron and hole densities

The electron and hole densities are depicted in this figure, there is also nice agreement between the two codes.

• The integrated electron density in the GaAs quantum well region is 0.667 * 1012 cm-2. (Greg Snider’s result:
0.636 * 1012 cm-2)

• The integrated hole density in the right most Al0.3Ga0.7As region is 1.033 * 1012 cm-2. (Greg Snider’s
result: 1.085 * 1012 cm-2)

The relevant output files are:

• integrated_density_electron.dat

• integrated_density_hole.dat

This tutorial shows very nicely that both codes, nextnano++ and Greg Snider’s “1D Poisson” lead to the same
results. Greg Snider’s 1D Poisson/Schrödinger code can be obtained from here: http://www.nd.edu/~gsnider/

2D simulations

• Greg_Snider_MANUAL_2D_nn*.in

We can also calculate the 2D schrödinger-Poisson equation for the same structure where the y direction has been
assumed to be of length 100 nm with periodic boundary conditions.

Self-consisent Schrödinger-Poisson solution

Here we briefly discuss about the basic concept of the method used to get the above results.

In this section, we refer to

• P. Harrison and A. Valavanis, Quantum Wells, Wires and Dots, (Wiley, 2016, Fourth Edition)

456 Chapter 4. Tutorials

http://www.nd.edu/~gsnider/

nextnano++ Documentation, Release 1.25.13

• I.-H. Tan, G. L. Snider, L. D. Chang, and E. L. Hu, A self-consistent solution of Schrödinger-Poisson equa-
tions using a nonuniform mesh, Journal of Applied Physics 68 (1990), no. 8, 4071-4076’

Self-consistent calculation of Schrödinger-Poisson equations is one way to treat the manybody effects associated
with Coulomb repulsion.

For example, suppose we calculate Schrödinger equation to obtain the energy eigenvalues and eigenstates for a
quantum well only one time. If we add a further test electron into the system, the potential that the test electron
feels is the band-edge potential plus Coulomb potential which is caused by the original electrons in the system.
In most cases, the carrier density in a single quantum well is so high that it is important to take this additional
potential into consideration. (6.67*1012 cm-2 for the GaAs quantum well in this tutorial.)

In order to obtain the solution which involves this effect, the potential used in Schrödinger equation for the electrons
and the charge distribution which is based on the energy eigenstates from that Schrödinger equation must satisfy
Poisson equation. This solution is described as self-consistent, rather like Hartree’s approach to solving many
electron atoms.

The process for obtaining self-consistent solution of Schrödinger-Poisson equations is as follows:

1. Solve Schrödinger equation using band-edge potential 𝑉𝑏𝑒(r) and obtain the eigenstates of an electron
Ψ𝑒𝑙𝛼,𝐸(r) and hole Ψℎ𝑜𝑙𝑒𝛽,𝐸 (r) . Here 𝛼 is the conduction band number, 𝛽 is the valence band number and
𝐸 represents the eigenvalue.

2. Calculate the density distribution of the particles 𝑛(r) using local density of state 𝜌𝑒𝑙(r, 𝐸) :=∑︀
𝛼 |Ψ𝑒𝑙𝛼,𝐸(r)|2, 𝜌ℎ𝑜𝑙𝑒(r, 𝐸) :=

∑︀
𝛽 |Ψℎ𝑜𝑙𝑒𝛽,𝐸 (r)|2 and Fermi distribution 𝑓(𝐸) := 1

𝑒(𝐸−𝐸𝑓)/𝑘𝐵𝑇+1
.

𝑛𝑒𝑙(r) :=

∫︁
𝑑𝐸𝜌𝑒𝑙(r, 𝐸)𝑓(𝐸)

𝑛ℎ𝑜𝑙𝑒(r) :=

∫︁
𝑑𝐸𝜌ℎ𝑜𝑙𝑒(r, 𝐸)𝑓(𝐸)

3. Solve Poisson equation and obtain the potential distribution 𝜑(r) caused by the distributed electrons, holes,
and ions.

∇ ·
(︀
𝜖𝑠(r)∇

)︀
𝜑(r) =

−𝑒[𝑛ℎ𝑜𝑙𝑒(r)− 𝑛𝑒𝑙(r) +𝑁𝐷(r)−𝑁𝐴(r)]

𝜖

4.13. 2-Dimensional Electron Gases (2DEGs) 457

https://aip.scitation.org/doi/10.1063/1.346245
https://aip.scitation.org/doi/10.1063/1.346245

nextnano++ Documentation, Release 1.25.13

where 𝜖𝑠 is the dielectric constant, 𝑁𝐷(r) is the donor concentration and 𝑁𝐴(r) represents the acceptor
concentration.

4. Using the new potential

𝑉𝑛𝑒𝑤(r) := −𝑞𝜑(r) + 𝑉𝑏𝑒(r)

which consists of the result of 3. and band-ege potential, solve Schrödinger equation.

5. Check whether the energy eigenvalues converged or not. Then

• Yes −→ End

• No −→ Go to 2.

The process is iterated until the energy eigenvalues converge. At last, the potential used in Hamiltonian and one
calculated from charge distribution which is from Schrödinger equation will be identical.

458 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: nnnn/nn/nn

4.13.2 Si/SiGe MODQW (Modulation Doped Quantum Well)
Input files:

• 1DSiGe_Si_Schaeffler_SemicondSciTechnol1997_nnpp.in

Scope:
This tutorial aims to reproduce Fig. 11 of [Schäffler1997].

Introduction

Layer sequence

width [nm] material strain doping [cm-3]
1 Schottky barrier 0.8 eV
2 15.0 Si cap strained w.r.t Si0.75 Ge0.25
3 22.5 Si0.75 Ge0.25 layer
4 15.0 Si0.75 Ge0.25 doping layer 2 · 1018 (fully ionized)
5 10.0 Si0.75 Ge0.25 barrier
6 18.0 Si channel strained w.r.t Si0.75 Ge0.25
7 69.5 Si0.75 Ge0.25 buffer

Material parameters

The material parameters were taken from [Schäffler1997]. The temperature was set to 0.1 K. The Si layers are
strained pseudomorphically with respect to a Si0.75 Ge0.25 substrate (buffer layer).

Method

Self-consistent solution of the Schrödinger-Poisson equation within single-band effective-mass approximation (us-
ing ellipsoidal effective mass tensors) for both Delta conduction band edges.

Results

Figure 4.13.2.1 shows the self-consistently calculated conduction band profile and the lowest wave functions of an
n-type Si/Si0.75 Ge0.25 modulation doped quantum well (MODQW) grown on a relaxed Si0.75 Ge0.25 buffer layer.
The strain lifts the sixfold degeneracy of the lowest conduction band (Delta6) and leads to a splitting into a twofold
(Delta2) and a fourfold (Delta4) degenerate conduction band edge.

Figure 4.13.2.2 shows the lowest three wave functions (Ψ2) of the structure. Two eigenstates that have very similar
energies and are occupied (i.e. they are below the quasi-Fermi level), whereas the third eigenstate is not occupied
at 0.1 K.

The electron density (in units of 1 · 1018 cm-3) is plotted in Figure 4.13.2.3. The lowest states in each channel are
occupied, i.e. are below the Fermi level. The integrated electron densities are:

• in the parasitic Si0.75 Ge0.25 channel: 0.75 · 1012 cm-2.

• in the strained Si channel: 0.66 · 1012 cm-2.

Last update: nnnn/nn/nn

4.13. 2-Dimensional Electron Gases (2DEGs) 459

nextnano++ Documentation, Release 1.25.13

Figure 4.13.2.1: Calculated conduction band edge profile.

Figure 4.13.2.2: Calculated probability densities of the lowest electron states.

Figure 4.13.2.3: Calculated electron density profile.

460 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.13.3 — DEV — Shubnikov-de Haas effect and subband occupation of 2DEG

. Attention

The tutorial is under development

Last update: nnnn/nn/nn

4.13.4 Depletion of electrons in a two-dimensional electron gas (2DEG)
In this tutorial you will learn how to setup an input file to simulate the electrostatic potential and the density of
electrons in a 2DEG formed at the interface of a GaAs/AlGaAs layers.

Structure simulated

Figure 4.13.4.1 and Figure 4.13.4.2 present the simulated structure, where a two-dimensional electron gas is formed
at the interface of the AlGaAs and GaAs (the substrate) materials. Doping the AlGaAs with n-type impurities at a
certain distance of this interface improves the confinement of electrons in the 2DEG region. A GaAs layer over the
n-AlGaAs region acts as a cap of the device. Finally metallic gates with different geometries are directly deposited
on the top of surface.

Figure 4.13.4.1: Schematics of a side view of the simulated device

Figure 4.13.4.2: 3-dimensional schematics of the simulated structure and typical shapes of gates

In the scope of the project, the density and mobility of electrons in the 2DEG were measured at low temperatures,
which were used in the calibration of the structure, in order to estimate the surface charge concentration at the
interface of the cap layer and the surrounding environment (air). Additionally, the calibration also assists in the
reduction of the incertainty of the doping concentration of the AlGaAs layer.

4.13. 2-Dimensional Electron Gases (2DEGs) 461

nextnano++ Documentation, Release 1.25.13

The methodology of combining simulations and experimental data was developed in the UltraFastNano project that
can be found in the papers: E. Chatzikyriakou et al., Unveiling the charge distribution of a GaAs-based nanoelec-
tronic device A large experimental data-set approach, arXiv preprint arXiv:2205.00846, 2022 and H. Edlbauer
et al., Semiconductor-based electron flying qubits: review on recent progress accelerated by numerical modelling
(link)

Input files

The bias applied to the gates that depletes the electrons in the 2DEG (the pinch-off voltage) is powerful information
that can be used to implement the building blocks of Electron Flying Qubits.

A simple method to define this voltage is by simulation of the same device for different voltages applied symmetric
to the gates and to observe the value of the bias that depletes the carriers in some specific point of the 2DEG region
(here, the center of the structure). The next two files can be used as an example how to set up the structure and all
necessary variables for a self-consistent solution of Schrödinger and Poisson equations for performing 2D and 3D
simulations.

Input files:

• QPC_1D_nnp.in

• QPC_2D_nnp.in (uniform grid of 0.25 nm)

• QPC_3D_nnp.in (nonuniform grid)

Using nextnanopy or the “Template” feature of nextnanomat input files can be automatically modified and executed.
Also it is very helpful to define slices and 2D sections of the 2DEG region in the input file: this is a powerful tool
for easy analysis of the data.

1D simulations

It is always a good strategy starting simulations in only one dimension in order to understand how the band edge
of the conduction and valence bands influence the most important mechanisms under study. The 1D version of the
input file is suitable for simulating the density of carriers in the 2DEG region, when a metallic layer deposited over
the whole surface is biased at different voltages. This input file can also be used for calibration of the wafer when,
for example, the density of electrons in the 2DEG is obtained experimentally.

2D Simulations

Before simulating 3D devices, that usually requires a large runtime to compute all relevant fields in the structure,
it is always recommended starting modelling in only one or two, when possible.

In this specific example, 2D simulations can be used to tune the most important parameters of the physical model
in order to reproduce, at least, the qualitative behavior of the experimental data.

The first animation (Figure 4.13.4.3) corresponds to the results of a 2D simulation of the device at the left in
Figure1. It illustrates that the free electrons are confined in the 2DEG region and its density decreases as a negative
bias 𝑉𝑔𝑎𝑡𝑒 is applied to both gates.

Figure 4.13.4.3: Density of electrons resulting from a 2D simulation as a negative bias is applied to the gates

462 Chapter 4. Tutorials

https://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00139-w

nextnano++ Documentation, Release 1.25.13

A slice of the conduction band at the mid-distance between the gates across the growth direction is displayed in
Figure 4.13.4.4. The results correspond to the cases where a 0, -1.00, -1.20 and -1.30 V bias is applied to the gates.
Overlayed to theses plots, the density of electrons (dashed lines) show that the confinement of carriers at the 2DEG
region actually occurs in the 2DEG and a depletion of carriers at this point is expected when very negative value
of 𝑉𝑔𝑎𝑡𝑒 is applied to the device.

Figure 4.13.4.4: Conduction band (solid lines) and density of electrons (dashed lines) resulting for a 2D simulation
as function of the applied bias to the gate. This plot corresponds to the results at the mid-distance of the gates
across the growth direction.

3D Simulations

As mentioned before, 2D simulations can be very helpful for a first modeling of the device, and help to reduce the
runtime. As shown before they are capable to reproduce the values of the pinch-off voltages for the case when the
distance between the gates (W) are very small compared with their lengths (L).

Nevertheless in the most general case, 3D simulations can be required for more accurate estimation of the pinch-off
voltage. Additionally, in the development of an Electron Flying Qubit building block computation of the conduction
band through the whole device is necessary, in order to reproduce the transport phenomena in the 2DEG layer.

As the simulation time depends on the number of the nodes on the grid, for more complex forms and for large
devices (of order of microns) with required fine grid (of order of nm), some computers might not have enough
memory for the numerical solution of a self-consistent calculation of the Schrödinger and Poisson equations, with
a minimum number of wave functions required for such operation.

In this case, a new algorithm was developed within nextnano++ that decomposes the 3D-problem in multiple 1D-
problems. In this example, the Schrödinger-Poisson system is solved along the growth direction independently for
each pair of coordinates of the nodes of the corresponding perpendicular plane. This decomposition method can
be perfect applied to this structure because it is expected that the electrostatic potential does not present any abrupt
variation in the any plane perpendicular to the quantization direction. For the application of this algorithm is only
required to include the line quantize_x{}, quantize_y{} or quantize_z{} in the quantum section of the input file.
In this tutorial the quantum calculations are decomposed in solutions over the growth direction (the z-axis) and,
therefore, we use quantize_z{}.
Figure 4.13.4.5 presents an animation of the density of electrons obtained from 3D simulations at 111 nm under
the surface (in the 2DEG region) as a function of the applied bias for gates with more complex geometry (square
in Figure 1). Slices of this plot for the plane passing between both gates (y=0) can be specified in the input file and
are very convenient for automatic extraction of the value where the depletion of electrons occurs. Figure 4.13.4.6
and Figure 4.13.4.7 show that in this case, the pinch-off voltage 𝑉𝑔𝑎𝑡𝑒 is around -1.20 and 1.30 V.

From an iterative process, accurate values of pinch-off can be extracted from 3D simulations as detailed in the
paper from Chatzikyriakou et al. mentioned above, that we strongly recommend to be used.

4.13. 2-Dimensional Electron Gases (2DEGs) 463

nextnano++ Documentation, Release 1.25.13

Figure 4.13.4.5: Density of electrons resulting from a 2D simulation as a negative bias is applied to the gates

Figure 4.13.4.6: Slice of the computed conduction band in the 2DEG region at 111 nm under the surface as function
of the applied bias to the gate. From the image the pinch-off voltage occurs around -1.30 and -1.20 V.

464 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.13.4.7: Slice of the computed density of electrons in the 2DEG region at 111 nm under the surface as
function of the applied bias to the gate. From the image the pinch-off voltage occurs around -1.30 and -1.20 V.

This tutorial is based on the nextnano GmbH collaboration in the scope of the UltraFastNano Project aiming at
development of the first Flying Electron Qubit at the picosecond scale, and it is funded by the European Union’s
Horizon 2020 research and innovation program under grant agreement No 862683.

Last update: 2025/06/27

4.14 Transmission and Conductance (CBR method)

4.14.1 Transmission (CBR)

• Header

• Introduction

• Single potential barrier

• Step potential

• Quantum well

• Double potential barrier

• CBR efficiency assessment

4.14. Transmission and Conductance (CBR method) 465

https://ultrafastnano.eu/
https://cordis.europa.eu/project/id/862683

nextnano++ Documentation, Release 1.25.13

Header

Input Files:
• transmission-barrier_1D_nnp.in

• transmission-step_1D_nnp.in

• transmission-quantum-well_1D_nnp.in

• transmission-double-barrier_Birner_JCEL_2009_1D_nnp.in

Scope of the tutorial:
• Transmission coefficient

Relevant output files:
• bias_00000\bandedge_Gamma.dat

• bias_00000\CBR\transmission_cbr_Gamma.dat

• bias_00000\Quantum\probabilities_shift_cbr_Gamma.dat

Introduction

In this tutorial, we calculate the transmission coefficient 𝑇 (𝐸) as a function of energy𝐸. We consider the following
pedagogical examples we learn in undergraduate quantum mechanics courses.

• Single potential barrier

• Step potential

• Quantum well

• Double potential barrier [BirnerCBR2009]

To calculate transmission spectra with nextnano++, we use Contact Block Reduction (CBR) method. This tutorial
is an analog of here.

Single potential barrier

We first consider transmission through a finite quantum barrier. 10 nm barrier is located in a 50 nm sample. After
running the input file transmission-barrier_1D_nnp.in, we obtain the following band edge profile. The barrier
height is set to 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 = 0.3 eV.

Figure 4.14.1.1: The conduction band edge profile (bandedge_Gamma.dat).

466 Chapter 4. Tutorials

https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_Transmission_NEGF.htm

nextnano++ Documentation, Release 1.25.13

With nextnano++, one can calculate the transmission spectrum using the CBR method ([BirnerCBR2009]). The
sample input file is generalized so that you can change the barrier width and alloy content (which determines the
barrier height).

Here we look into the barrier width dependence. In nextnanomat, go to ‘Template’ tab and select the input file.
Then, you can select how to sweep the value at the bottom (List of values) and variable Barrier_Width. The
list of values shows up automatically, as it is specified in the input file with the tag ListOfValues. Clicking the
button Create input files generates multiple input files by sweeping variables. Please go to ‘Simulation’ tab and
run the simulation.

The result is written in transmission_cbr_Gammma.dat. The barrier width 𝑤 affects the transmission coefficient
as shown in Figure 4.14.1.2.

Figure 4.14.1.2: The transmission coefficient as a function of energy for different barrier width 𝑤 (𝑛𝑚). The
dashed line marks 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟.

Classical mechanics argues that the transmission is 0 below𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 and abruptly increases to 1 at𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟. How-
ever, quantum mechanics allows electrons with energy below 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 to go through the barrier. This effect be-
comes even larger when the barrier is thin (𝑤 = 5 nm in this example). Quantum mechanics also predicts a
oscillatory behavior above 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟.

Step potential

For a step potential structure (transmission-step_1D_nnp.in) as shown in Figure 4.14.1.3 (a), the transmission of
electrons with energy below 𝐸𝑏𝑎𝑟𝑟𝑖𝑒𝑟 is prohibited because the barrier is infinitely thick.

4.14. Transmission and Conductance (CBR method) 467

nextnano++ Documentation, Release 1.25.13

Figure 4.14.1.3: The conduction band edge profile is shown in (a). The transmission spectrum for a step potential
is shown in (b). Transmission is only allowed above the step.

Quantum well

Similarly, a quantum well structure can be simulated with transmission-quantum-well_1D_nnp.in. The well width
is 𝑤 = 10 nm here. Again the transmission of electron within the barriers is impossible because the barrier is
infinitely thick. Above 0 eV, the spectrum shows an oscillatory behavior.

Figure 4.14.1.4: The conduction band edge profile is shown in (a). The transmission spectrum for a quantum well
is shown in (b). The dashed line marks the top of the barrier.

Double potential barrier

Finally, we consider a double barrier structure with wall width 10 nm, transmission-double-
barrier_Birner_JCEL_2009_1D_nnp.in. The barrier interval is 10 nm.

Figure 4.14.1.5: The conduction band edge profile is shown in (a). The probability distribution |𝜓(𝑥)|2 of the two
resonant modes. The transmission coefficient of the double barrier structure is shown in (c). The spectrum has two
sharp peaks below the barrier height 0.1 eV, which corresponds to the resonant mode within the barriers.

This system has two resonant modes localized between the barriers. The band structure and wave functions are
written in bandedge_Gamma.dat and Quantumprobabilities_shift_cbr_Gamma.dat, respectively. In the transmis-
sion spectrum, one can clearly see the sharp transmission at the energies of the resonant states in the quantum well.
Note that the vertical axis is logarithmic scale.

A resonant tunneling diode (RTD) is an example of a device that exploits this 𝛿-function-like behavior of transmis-

468 Chapter 4. Tutorials

https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_RTD_green.htm

nextnano++ Documentation, Release 1.25.13

sion coefficient 𝑇 (𝐸).

CBR efficiency assessment

Transmission_GaAs_AlAs_Birner_JCEL_2009_1D_Double_Barrier_nnp.in is used for this section. Figure 4 in
[BirnerCBR2009] compares the transmission coefficient of a double barrier structure for different number of
eigenstates considered in the CBR method. The following figure shows the result reproduced by nextnano++
and demonstrates that the first resonant peak is accurately reproduced using incomplete set of eigenstates. The
spectrum is not identical to the previous result because the barrier width here is 2 nm.

Figure 4.14.1.6: Transmission coefficient for three different CBR parameters. The blue curve is the result consid-
ering complete set of eigenstates, whereas violet and orange curves take into account only 40 % and 10 % of them,
respectively.

See also for 3D case for another CBR efficiency assessment.

Last update: nnnn/nn/nn

4.14.2 Landauer conductance and conductance quantization: from quantum
wires to quantum point contacts

• Header

• Introduction

• Simulations of the current in 1D wires

• Transmission and conductance of QPC, conductance quantization

4.14. Transmission and Conductance (CBR method) 469

nextnano++ Documentation, Release 1.25.13

Header

Files for the tutorial located in nextnano++\examples\transmission

• 1D_GaAs_conductance-nnp.in - simulations of 1D quantum wire in nextnano++

• 2D_transmission_QPC_nnp.in - simulations of QPC in 2DEG

• 2D_transmission_QPC_potential_of_2DEG_1.fld - numerically obtained energy profile of QPC

• 2D_transmission_QPC_potential_of_2DEG_2.fld - numerically obtained energy profile of differently
shaped QPC

Main adjustable parameters for 1D simulations (quantum wire):
• upper boundary for transmission energy - %E_max

• the barrier widths - %Delta_x = %Barrier_max - %Barrier_min

• the barrier heights - %Barrier_Height

• the temperature - %Temperature

• Fermi levels of left (xmin_contact < x < x_min) and right (x_max < x < xmax_contact) regions (leads)
- %Fermi_left and %Fermi_right

• the effective mass of the electron - %effective_mass

Relevant output files of 1D simulations (quantum wire):
• Results\BandEdges.dat (energy profile)

• Results\Transmission_cb_sg1_deg1.dat (transmission)

• Results\LocalDOS_sg1_deg1_Lead1.fld and Results\LocalDOS_sg1_deg1_Lead1.fld (LDoS)

• Results\IV_characteristics.dat (currents)

Main adjustable parameters for 2D simulations (QPC):
• dimensions of the device - $x_length and $y_length

• grid spacing in x and y direction, $grid_spacing

• number of eigenvalues in the device and the leads - $num_eigenstates_device and
$num_eigenvalues_leads

• the temperature - $Temperature

• energy range and resolution that the transmission will be computed - $E_min, $E_max and
$delta_energy

• path of the file to be imported - $pathPotentialFile

Relevant output files of 2D simulations (QPC):
• bias_00000\bandedges.fld (energy profile)

• Structure\contact.fld (contacts)

• bias_00000\CBR\transmission_sums_device_Gamma.dat (transmission)

Introduction

Conductance,𝐺, is the quantity which describes the relation between an electric current, 𝐽 , and an applied voltage,
𝑉dc, which causes this current. In this tutorial, we briefly review the analitical theory, which allows one to calculate
the conductance, and compare it with the numerical approach implemented into the nextnano software. We discuss
only the dc case with the main focus on the linear response regime where 𝐽 = 𝐺𝑉dc.

Unlike conductivity, which characterizes properties of a material, conductance describes a given sample. There-
fore, geometry and size of the sample matter. We start below from an example of a quantum wire where the electric
current is carried either by one (one-dimensional, 1D) or several (quasi-1D) propagating modes. Conductance of

470 Chapter 4. Tutorials

https://en.wikipedia.org/wiki/Electrical_resistance_and_conductance
https://www.nextnano.com/products/overview.php
https://en.wikipedia.org/wiki/Quantum_wire

nextnano++ Documentation, Release 1.25.13

the quantum wire is described by the seminal Landauer theory. A simple introduction to the Landauer theory can
be found in the book by S. Datta [Datta], section 2 “Conductance from Transmission”.

The setup of the Landauer theory is shown in the upper panel of Figure 4.14.2.1. The device is connected via left
and right ideal wires (ballistic conductors) to two leads with different chemical potentials. The current flows from
the material with a larger chemical potential to that with a smaller one.

Figure 4.14.2.1: Upper panel: Landauer setup. Left and right leads (green regions) are connected to a semicon-
ductor device (dark gray square) via connecting wires (light gray regions). Lower panel: chemical potentials of
the leads (orange lines) and the energy of the potential barrier (magenta lines).

In the standard approach, the leads are two- or three-dimensional large conductors and contacts between the leads
and the wires are reflectionless. This ensures that electrons supporting the current 𝐽 (in)

R are in equilibrium with the
left lead and have the chemical potential 𝜇𝐿. Similarly, the electrons supporting the current 𝐽 (in)

L are in equilibrium
with the right lead and have the chemical potential 𝜇𝑅.

Simulations of the current in 1D wires

Let us assume that all elements of the electric circuit are purely 1D, there is no temperature gradient, and the
chemical potentials of the leads are shifted by the applied external voltage, 𝜇𝑅 − 𝜇𝐿 = 𝑒𝑉dc.

. Attention

The value of chemical potentials is not calculated in this tutorial but is set a kind of “artificially”.
Of course, this value must be in agreement with physics of a given material. For example, when
the temperature (at 𝑘𝐵 = 1) is smaller than the energy gap separating the conduction and valence
bands, the chemical potential of an intrinsic unbiased semiconductor is close to the center of that
gap, see e.g section 3 The Fermi-Dirac Distribution in [Grahn].

Since the connecting wires are ballistic and the contacts are reflectionless, the backscattering of the electrons can
occur ony inside the semiconductor device. We model this by including a potential scatterer (a square barrier) into
the simulations. Hence, the scattering inside the device is elastic, the energy of the scattered electron is unchanged,
and the electrons supporting the currents 𝐽 (out)

R,L are a mixture of the electrons with the chemical potentials 𝜇𝑅,𝐿.
The energy landscape of the device containing a square potential, 𝑉 (𝑥 < 𝑥1) = 𝑉 (𝑥 > 𝑥2) = 0, 𝑉 (𝑥1 < 𝑥 <
𝑥2) = 𝑉0, is shown in the lower panel of Figure 4.14.2.1. The electrons whose energy is small,𝐸 < 𝑉0, can tunnel
through the potential barrier. The electrons with large energies, 𝐸 > 𝑣0, can be reflected due to quantum effects.
For the simple case of the rectangular barrier, the transmission in both cases is known:

𝒯 (0 < 𝐸 < 𝑉0) = 1/
(︁
1 + [𝜅 sinh

(︁
𝑘𝑎
)︁
]2
)︁
, (4.14.2.1)

4.14. Transmission and Conductance (CBR method) 471

https://en.wikipedia.org/wiki/Landauer_formula
https://en.wikipedia.org/wiki/Rectangular_potential_barrier

nextnano++ Documentation, Release 1.25.13

𝒯 (𝐸 > 𝑉0) = 1/
(︁
1 + [𝜅 sin

(︁
𝑘𝑎
)︁
]2
)︁
; (4.14.2.2)

Here 𝑘 =
√︀

2𝑚|𝑉0 − 𝐸|)|/ℏ, 𝜅 =
√︀
𝑉 2
0 /4𝐸|𝑉0 − 𝐸|, 𝑚 is the (effective) mass of the electron and ℏ is the

Planck constant. Transmission of the device is needed to calculate the current: The total current is the difference
of currents flowing in opposite directions: 𝐽 = 𝐽

(in)
𝑅 − 𝐽

(out)
𝐿 = 𝐽

(out)
𝑅 − 𝐽

(𝑖𝑛)
𝐿 . Here, upper indices indicate

whether a given current flows into or from the device. The Landauer formula allows one to express 𝐽 via 𝒯 . In the
purely 1D setup, the current reads:

𝐽 = 2𝑒

∫︁
𝑑𝑘

2𝜋
𝑣(𝑘)𝒯 (𝑘)

(︁
𝑓𝐿(𝑘)− 𝑓𝑅(𝑘)

)︁
=

2𝑒

ℎ

∫︁
𝑑𝐸 𝒯 (𝐸)

(︁
𝑓𝐿(𝐸)− 𝑓𝑅(𝐸)

)︁
; (4.14.2.3)

where 𝑒 and 𝑘 are the electron charge and its wave-vector, respectively. The electrons in the left/right leads are
described by the Fermi-Dirac distribution functions, 𝑓𝐿,𝑅. The second equality in (4.14.2.3) has been obtained
after changing the integration variable from the electron wave-vector to its energy.

If 𝑉0 = 0, i.e. 𝒯 = 1, a simple calculation yields 𝐽 = 𝐺0𝑉dc where 𝐺0 = 2𝑒2/ℎ is the quantum of the
conductance. The nextnano software reproduces this result with a very high accuracy, see Figure 4.14.2.2. The
numerical simulations presented in this tutorial were done by using Contact Block Reduction method [CBR], see
also a tutorial on the CBR method in nextnano3.

Figure 4.14.2.2: Numerically calculated IV-characteristics of a ballistic 1D conductor, 𝑉0 = 0. We have chosen
GaAs as the material of the conductor with the total length 32 nm at 𝜇𝑅 = 25meV; the temperature was set to
𝑇 = 50mK. Note that these parameters has no influence on the universal slope of the IV straight line which is
equal to𝐺0. For chosen parameters of the numerical solver and the numerical integration procedure (cf. the sample
input file), the difference between the numerically calculated slope and 𝐺0 is ≃ 4%.

The users of the nextnano software should pay attention that regions, which are called “leads” in the CBR-based
sample input files, are actually interfaces between the devices and the connecting wires. These interfaces have
minimal width of the space discretization. In the toy model which we discuss the chemical potential of each
interface is equal to that of the corresponding lead. Such a simplification of the Landauer setup in natural in the
CBR method. One may refer to the interfaces between the device and the connecting wires as “CBR-leads”. An
example of the CBR-leads is shown below for the case of the two-dimensional (2D) device.

Figure 4.14.2.3 and Figure 4.14.2.4 shows the transmission and the IV characteristics of the device which contains
the square scattering potential of width 30 nm with 𝑉0 = 100meV.

Since transmission of the device is exponentially small at energies below 0.1 eV, the current become nonzero only

472 Chapter 4. Tutorials

https://www.nextnano.com/products/overview.php
https://www.nextnano.com/products/overview.php

nextnano++ Documentation, Release 1.25.13

Figure 4.14.2.3: Transmission of a 1D conductor with 𝑉0 = 100meV and width 30nm. Orange line and blue dots
shows the exact analytical answer, Eqs. (4.14.2.1) and (4.14.2.2), and CBR calculations, respectively.

Figure 4.14.2.4: IV-characteristics of a 1D conductor with 𝑉0 = 100meV and width 30 nm at 𝜇𝑅 = 50meV.
Other parameters are the same as in Figure 4.14.2.2. Orange line and blue dots shows the exact analytical answer
[obtained by using Eqs. (4.14.2.1) and (4.14.2.2)], and CBR calculations. Green line exemlifies the ballistic law
𝐽 = 𝐺0𝑉dc.

4.14. Transmission and Conductance (CBR method) 473

nextnano++ Documentation, Release 1.25.13

at 𝜇𝐿 > 0.1eV and, after some transient, the IV characteristics becomes again linear with the slope being close to
𝐺0 with accuracy of several percents.

Exercise
• Calculate numerically transmission and current through a biased potential which

linearly
increases from the value 𝑉 (𝑥1) = 𝑉1 to 𝑉 (𝑥2) = 𝑉2 with 𝑉1 < 𝑉 2. Compare the
result of simulations with that for the unbiased barrier.

• Repeat the simulations for the inverted biased barrier: 𝑉 (𝑥1) = 𝑉2 to 𝑉 (𝑥2) = 𝑉1
keeping all other parameters the same as in the previous task. Do transmission and
current change under spatial invertion of the barrier? Explain your answer.

Transmission and conductance of QPC, conductance quantization

The CBR method implemented in nextnano software allows one also to calculate conductance of more complicated
semiconductor devices, for example, of a quantum point contact (QPC). QPC in a 2D electron gas (2DEG) can be
created in a semiconductor heretostructure by a voltage applied to a top gate. In this case, the potential energy in
the plane of the 2DEG can be obtained from the numerical solution of the Poisson equation. An example of such
a profile of the potential energy is shown in Figure 4.14.2.5.

Figure 4.14.2.5: An example of the numerically obtained energy profile for a QPC in the plane of the 2D electron
gas. The simulations were done for the 2D electron gas in GaAs at temperature 100mK.

The energy profile can be imported into the nextnano procedure which calculates transmission, e.g., from left to
right boarder of the sample. The left CBR-lead used in this tutorial is illustrated in Figure 4.14.2.6. The right
CBR-lead is attached at 𝑥 = 400nm.

Numerically calculated energy dependence of the QPC transmission is shown in Figure 4.14.2.7. Temperature
corrections to the transmission (due to the temperature-dependent gap) and to the conductance (due to the thermal
broadening of the distribution functions) are negligibly small in the sub-Kelvin range (≪ 1K) and we neglect them
in this tutorial.

The lowest modes with the energy < −35meV are localized near the CBR-leads and do not contribute to trans-
mission. A small plateau of 𝒯 ≃ 1 at −34.5meV < 𝐸 < −34meV corresponds to the energies where the first
delocalized mode of the device yields its maximum contribution to the transmission. The second (slightly smeared)
plateau, 𝒯 ≃ 2, signals that the second delocalized mode yields its maximum contribution to the transmission, etc.

474 Chapter 4. Tutorials

https://www.nextnano.com/products/overview.php
https://en.wikipedia.org/wiki/Quantum_point_contact

nextnano++ Documentation, Release 1.25.13

Figure 4.14.2.6: Illustration of how the left CBR-lead (light green region) is attached to the device (blue region).
The width of the lead along x-axis is equal to the step of the space discretization. The width of the lead along
y-axis has been chosen to be equal to the width of the device.

Figure 4.14.2.7: Numerically calculated energy dependence of the transmission via the QPC which is presented in
Figure 4.14.2.5. The bottom of the conduction band, 𝐸0, of the gated 2DEG is located at ≃ −40meV. Hence, 𝐸0

is the origin of the energy for this example.

4.14. Transmission and Conductance (CBR method) 475

nextnano++ Documentation, Release 1.25.13

The example of the gate-induced QPC is 2D and requires 2D simulations. However, the second equation in
(4.14.2.3) still can be used. It suggests that, if temperature and 𝑉dc are extremely small, then linear conductance
is proportional to transmission: 𝐺QPC = 𝐺0𝒯 (𝜇). Negative values of the chemical potential, 𝜇, of the gated
semiconductor structure are related to the choice of the origin, which is explained above. To conclude, we note
that plateaux in the energy dependent transmission correspond to those in the conductance which are called in the
literature “conductance quantization”.

Exercises
• The above example was based on the QPC geometry taken from the file

2D_transmission_QPC_2D_potential-v1_of_2DEG.fld.
File 2D_transmission_QPC_2D_potential-v2_of_2DEG.fld contains another QPC ge-
ometry which results from a different shape of the top gate electrode. Use this file with
the alternated QPC geometry, process it with the help of the nextnano input file, and
calculate the QPC transmission.

. Attention

The minimal energy, above which transmission is finite (not zero), depends on the
QPC geometry and on the applied gate voltage. Hence, one has to find an appropri-
ate energy range where the plateaux of the quantized conductance are well visible.

• Compare the energy profile and the energy dependent transmission for the both shapes of
the QPC.

• Note that the second QPC shape does not possess “left ↔ right” inversion symmetry
(inversion

with respect to the line 𝑥 = 0). Compare transmissions from the left to right CBR leads
with that from the right to left leads. Are they equal? Explain your observation.

This tutorial also exists for nextnano3.

Last update: 2024/07/17

4.14.3 Electron Flying Qubit
Input Files:

• EPJQT2022_2D_TCW_nnp.in (used for Figure 13 in [Edlbauer2022])

• EPJQT2022_2D_ABI_nnp.in (used for Figure 13 in [Edlbauer2022])

• EPJQT2022_1D_slice_TCW_nnp.in (used for Figure 13.c in [Edlbauer2022])

In this tutorial, we discuss multi-terminal electron transport in various nanodevices. As an example, we focus on
so-called electron flying qubits, which are solid-state counterparts of the quantum optics devices. Basic building
blocks of these qubits are the following semiconductor-based nanodevices:

• Tunneling-coupled wires, TCW - the electronic counterpart of the optical beam splitter, see Figure 4.14.3.1;

• Aharonov-Bohm interferometer, ABI - the electronic counterpart of the optical interferometer, see the central
region of Figure 4.14.3.2;

• Circuits containing these elements connected in a series, see Figure 4.14.3.2.

Left rectangular regions in Figure 4.14.3.1 and Figure 4.14.3.2 (with numbers 1 and 2) are incoming leads, where
the electron can be injected into the nanodevice. We will assume that it is injected into the lead 1. Right rectangular
regions (with numbers 3 and 4) are outgoing leads, where the electron can be detected after propagating through
the entire nanodevice. The functionality of the electron flying qubits requires a reflection-free propagation of the
electron. If the electron is reflected and returns to one of the incoming leads, a part of the quantum information

476 Chapter 4. Tutorials

https://iopscience.iop.org/article/10.1088/1361-6633/aaa98a

nextnano++ Documentation, Release 1.25.13

is lost. The important task of numerical simulations is to identify regimes where reflection is reduced as much as
possible.

The interior part of the nanodevices is assumed to be made from 2D GaAs-based semiconductor and includes
regions with different electrostatic potentials and applied gate voltages that govern the energy profile through which
the electron propagates. Colors in Figure 4.14.3.1 and Figure 4.14.3.2 reflect the strength of the electrostatic
potential in different parts of the device, ranging from 0 eV (dark blue color) up to ≫ 1 eV (dark red color). All
building blocks of the electron flying qubit can be realized in experiments with the help of properly tuned gated
regions.

Figure 4.14.3.1: Geometry and potential landscape of TCW connected to four terminals (external leads marked by
white numbers). Red and light blue separation regions denote impenetrable (very high with the height 𝑉∞ = 10
eV) and penetrable (tunneling with the height 𝑉𝑇) potential barriers, respectively. Green regions mark those parts
of the device where the gate voltages 0.5 eV and 𝑉𝑔 are applied.

Figure 4.14.3.2: Geometry and potential of a circuit containing two TCWs and one ABI, also connected to four
terminals. The additional barrier around x=0 in the lower path yields the electrostatic Aharonov-Bohm effect.

Let us first discuss transport in TCW. The horizontal line in Figure 4.14.3.1 shows a potential barrier separating two
paths, along which the electron can move towards the outgoing leads. Red parts of the barrier are impenetrable for
the electron while the electron can tunnel through the light blue segment. The latter is precisely the region where
the quantum interference between the upper and lower paths takes place. Having experienced the interference, the
electron wave function is split between the separated upper and lower paths. As a result, there is some probability
to detect the electron in the outgoing leads 3 or 4, which depends both on the electron energy and on the parameters
of the nanodevice, including the height of the tunneling barrier.

The TCW-ABI-TCW device shown in Figure 4.14.3.2 consists of two TCW (left and right outer) regions and
the electrostatically induced ABI (central) region. In addition to the interference in the TCWs, the interference
is influenced by the asymmetric gating in ABI: The electron trajectories traversing the lower and upper paths in
ABI, which are separated by the impenetrable potential barrier, require different geometric phases governed by this
asymmetric gating. This phase changes the interference and the transmmition through the entire device.

The nextnano software allows one to calculate the partial local density of states, Figure 4.14.3.3, and the transmis-
sion from the lead 1 to the leads 3 and 4, Figure 4.14.3.4 and Figure 4.14.3.5, in both, TCW and TCW-ABI-TCW,
devices. The theoretical background involves the numerical solution of the Schrödinger equation by using the
Contact Block Reduction method.

The partial local density of states, pLDoS, represents the probability of finding the propagating electron (that was
injected with an energy E at the lead 1) at a certain position. The coordinate dependence of pLDoS illustrates how

4.14. Transmission and Conductance (CBR method) 477

https://aip.scitation.org/doi/10.1063/1.96484
https://www.nextnano.com/products/overview.php
https://link.springer.com/article/10.1007/s10825-009-0293-z
https://link.springer.com/article/10.1007/s10825-009-0293-z

nextnano++ Documentation, Release 1.25.13

the electron with a given energy propagates through the device. The energy dependent transmission, 𝑇𝑖𝑗(𝐸), is
determined by the probability for the electron which is injected into lead i to reach lead j. Readers can find more
information on these quantities in one of standard textbooks.

nextnano simulations of the pLDoS and of the transmission are discussed in detail our review [Edlbauer2022].
which presents the progress of the EU Ultrafastnano project. Let us emphasize here that these simulations are
valuable tools to identify the parameter range where the reflection of the propagating electron, either to the lead
no. 1 or to the lead no. 2, is minimized and, simultaneously, there is a pronounced manifestation of the quantum
interference. Hence, one can find an optimal basic configuration for the realization of the electron flying qubit.
Such a preliminary optimization saves a lot of experimental efforts and can substantially accelerate the overall
progress.

Figure 4.14.3.3: nextnano simulations of the electron partial local density of states in TCW [panels (a-e)] and the
TCW - ABI - TCW [panels (f-j)] nanodevices. Both devices are connected to four terminals (marked by white
numbers). The background shows the potential landscape defined by the voltage on the surface gates. The electron
with a given energy (E = 9.2 meV for TCW and E = 7.5 meV for TCW-ABI-TCW) is always injected into the upper
incoming channel from lead 1. The states at the output leads are indicated at the top of each plot, with the 0 and 1
qubit states corresponding to the densities at output leads 3 and 4. Panels (a-e): the pLDoS in TCW for increasing
the tunneling barrier voltage (described by 𝑉𝑇). Panels (f-j): the pLDoS in TCW-ABI-TCW for increasing voltage
on a side gate of the bottom path (described by 𝑉𝑔).

To conclude we note that this tutorial exemplifies the simulations done for a simple toy-model describing physics
of the nanodevices. Nevertheless, the nextnano software can be used to simulate more realistic geometries whose
potential profile can be obtained from electrostatic simulations. The restriction to 2D GaAs-based semiconductor
materials is also not crucial, since input files can be easily adapted, e.g., for Si-based ones.

This tutorial is based on the nextnano GmbH collaboration in the scope of the UltraFastNano Project aiming at
development of the first Flying Electron Qubit at the picosecond scale, and it is funded by the European Union’s
Horizon 2020 research and innovation program under grant agreement No 862683.

478 Chapter 4. Tutorials

https://www.cambridge.org/de/academic/subjects/engineering/electronic-optoelectronic-devices-and-nanotechnology/quantum-transport-atom-transistor?format=HB&isbn=9780521631457
https://ultrafastnano.eu
https://www.nextnano.com/products/overview.php
https://ultrafastnano.eu/
https://cordis.europa.eu/project/id/862683

nextnano++ Documentation, Release 1.25.13

Figure 4.14.3.4: Energy-dependent transmission of the electron from the lead no. 1 into the leads no. 3 (𝑇13) and
no. 4 (𝑇14). Red dashed lines mark some electron energies where the reflection is almost absent, 𝑇13 + 𝑇14 ≃ 1 (E
= 9.2 meV for TCW and 7.5 meV for TCW-ABI-TCW).

Figure 4.14.3.5: Almost reflectionless transmission of the electron with fixed energy as a function of 𝑉𝑇 (TCW)
and 𝑉𝑔 (TCW-ABI-TCW). Dots in the left panel correspond to the semi-phenomenological theory supplied by the
1D simulation of the spectrum at the center of the device, x = 0. Insets: The same dependence as in the main
figures but for devices with half-length, where the accessible number of quantum oscillations is much smaller.

4.14. Transmission and Conductance (CBR method) 479

nextnano++ Documentation, Release 1.25.13

Last update: 2025/06/27

4.14.4 — DEV — Efficient method for the calculation of ballistic quantum trans-
port - The CBR method (2D example)

. Attention

This tutorial is under construction

• Header

• Introduction

• Simulation setup

• Transmission

• Lead modes

Header

Input Files:
• Transmission_CBR_Mamaluy_JAP_2003_2D_nnp.in

• Transmission_CBR_Mamaluy_JAP_2003_2D_holes_nnp.in

Scope of the tutorial:
•

Main adjustable parameters in the input file:
• parameter

Relevant output files:
• bias_00000\bandedges.fld

• bias_00000\Quantum\probabilities_shift_device_Gamma.fld

• bias_00000\Quantum\probabilities_shift_lead_X_Gamma.dat

• bias_00000\CBR\transmission_device_Gamma.dat

Introduction

In this tutorial, we apply the Contact Block Reduction (CBR) method to a Aharonov-Bohm-type structure with a
large barrier in the middle of the device. This tutorial is based on [MamaluyCBR2003] and [BirnerCBR2009].
The input file Transmission_CBR_Mamaluy_JAP_2003_2D_holes_nnp.in simulates holes instead of electrons.

480 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Simulation setup

First, we look into the structure of the device. Figure 4.14.4.1 shows the calculated conduction band edge of the
device.

Figure 4.14.4.1: The calculated conduction band edge. The center of the device ((𝑥, 𝑦) = (0, 0) (nm)) is AlAs
and the energy is 1.0 (eV). The vicinity of the edges of the device is GaAs and the energy is 0 (eV). The double
potential barrier is set so that the energy is equivalent to 0.4 (eV). Note that the blacked out areas are set up with
barriers of infinite height. bias_00000\bandedges.fld

The image below shows the 3-dimenional conduction band edge. Note that the height of the infinite potential
barriers are set to 2.0 (eV) for convenience.

This device has some features.

The device consists of three contacts that are called ‘source’, ‘gate’ and ‘drain’. They also have leads adjacent to
them, indicated by white lines in Figure 4.14.4.1

In the middle of the device a potential barrier of two-dimensional Gaussian shape effectively expels the electrons
from the center. The energy profile is given by

𝐸𝑐 = 𝐸𝑐,0 exp

(︂
−𝑥

2 + 𝑦2

𝑎2

)︂
,

where 𝐸𝑐,0 = 1.0 (eV) so that the maximum height of the Gaussian barrier becomes 1.0 (eV) at the center of the
device. In this tutorial, 𝑎 = 5 (nm).

In the upper part of the device, a thin tunneling double barrier is present and the height is 0.4 (eV).

These conduction band profiles are achieved by adjusting the database{ } as below.

database{
binary_zb{

name = "GaAs"
conduction_bands{ Gamma{ mass = 0.3 bandgap = 0 } # effective mass 0.3m0
valence_bands{

bandoffset = 0.0 # artificially shifted so that (GaAs conduction␣
→˓bandedge) = 0.0 eV

(continues on next page)

4.14. Transmission and Conductance (CBR method) 481

nextnano++ Documentation, Release 1.25.13

Figure 4.14.4.2: Potential landscape

(continued from previous page)

delta_SO = 0.0
}

}

binary_zb{
name = "AlAs"
conduction_bands{ Gamma{ mass = 0.3 bandgap = 0 } # effective mass 0.3m0
valence_bands{

bandoffset = 1.00 # artificially shifted so that (AlAs conduction␣
→˓bandedge) = 1.0 eV

delta_SO = 0.0
}

}

bowing_zb{
name = "AlGaAs_Bowing_x"
valence = III_V
conduction_bands{ Gamma{ mass = 0.0 bandgap = 0.000 } } # bowing is␣

→˓switched off for this simulation
valence_bands{

bandoffset = 0.000 # artificially shifted so that (Al0.4Ga0.6As␣
→˓conduction bandedge) = 0.4 eV

delta_SO = 0
}

}

(continues on next page)

482 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

bowing_zb{
name = "AlGaAs_Bowing_1_x"
valence = III_V
conduction_bands{ Gamma{ mass = 0.0 bandgap = 0.000 } } # bowing is␣

→˓switched off for this simulation
valence_bands{

bandoffset = 0.000 # artificially shifted so that (Al0.4Ga0.6As␣
→˓conduction bandedge) = 0.4 eV

delta_SO = 0
}

}

ternary2_zb {
name = "Al(x)Ga(1-x)As"
valence = III_V
binary_x = AlAs
binary_1_x = GaAs
bowing_x = AlGaAs_Bowing_x
bowing_1_x = AlGaAs_Bowing_1_x

}
}

In addition, the infinite potential barriers surround the device as shown as blacked out areas in Figure 4.14.4.1.

The effective electron mass is assumed to be constant throughout the device and equal to 0.3𝑚0.

We set the boundary conditions as follows:

• If it is at the boundary, and if it is in contact to a lead, a Neumann boundary condition is set.

• If it is at the boundary, and if it is not in contact to a lead, a Dirichlet boundary condition is set.

quantum{
region{

name = "device"
no_density = yes
x = [$x_contact_left, $x_contact_right]
y = [$y_contact_bottom, $y_quantum_top]
boundary{ x = neumann y = neumann } # boundary condition for CBR = Neumann␣

→˓for propagation direction & Dirichlet for perpendicular direction.
Gamma{ num_ev = $num_eigenstates_device cutoff = 4.0 }
output_wavefunctions{

probabilities = yes
max_num = $num_output_wavefunctions_device
in_one_file = no

}
}

lead 1 is a 1D line (x = $contact_left).
region{

name = "lead_1"
no_density = yes
x = [$x_contact_left, $x_contact_left]
y = [$y_inf_barrier_bottom, $y_inf_barrier_top]
boundary{ x = neumann y = dirichlet }
Gamma{ num_ev = $num_eigenstates_lead1 cutoff = 4.0 }
output_wavefunctions{ probabilities = yes max_num = $num_eigenstates_lead1 }

(continues on next page)

4.14. Transmission and Conductance (CBR method) 483

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

lead 2 is a 1D line (y = $y_contact_bottom).
region{

name = "lead_2"
no_density = yes
x = [$bottom_contact_left, $bottom_contact_right]
y = [$y_contact_bottom, $y_contact_bottom]
boundary{ x = dirichlet y = neumann }
Gamma{ num_ev = $num_eigenstates_lead2 cutoff = 4.0 }
output_wavefunctions{ probabilities = yes max_num = $num_eigenstates_lead2 }

}

lead 3 is a 1D line (x = $x_contact_right).
region{

name = "lead_3"
no_density = yes
x = [$x_contact_right, $x_contact_right]
y = [$y_inf_barrier_bottom, $y_inf_barrier_top]
boundary{ x = neumann y = dirichlet }
Gamma{ num_ev = $num_eigenstates_lead3 cutoff = 4.0 }
output_wavefunctions{ probabilities = yes max_num = $num_eigenstates_lead3 }

}

cbr{
name = "device"
lead{ name = "lead_1" }
lead{ name = "lead_2" }
lead{ name = "lead_3" }
delta_energy = 0.0005 # energy resolution
min_energy = 0.0 # minimum energy
max_energy = 0.5 # maximum energy

}
}

Note the following points.

• To consistent with the results of [MamaluyCBR2003] and [BirnerCBR2009], the quantum region is extended
(1 grid point outside along x and y direction), respect to the device dimensions in the papers.

This is attributed to the difference in the way boundary conditions are set in nextnano++. The details are described
below in attention.

• To set dirichlet boundary conditions at the top and bottom of the device that are no contact with leads, the
quantum region is extended to the infinite potential barrier (1 grid point further outside along y direction),
respect to the device dimensions in the papers.

The difference in the device dimensions from in [MamaluyCBR2003] and [BirnerCBR2009] arise from the reasons
above.

For each energy 𝐸 (energy step is equal to 0.0005) where the transmission coefficient 𝑇 (𝐸) has to be calculated,
a matrix of size 95 × 95 has to be inverted. The size of 95 is determined by the sum of the number of grid points
in each lead that are in contact to the device.

• Lead 1 (Source): 41 grid points

• Lead 2 (Gate): 13 grid points

• Lead 3 (Drain): 41 grid points

– in total: 95 grid points

484 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

– The total CPU time for calculation of the transmission 𝑇 (𝐸) in this example is about 5 seconds for 303
eigenstates.

Note that we do not take into account the increase in grid points due to the increase in the gate length.

Transmission

Figure 4.14.4.3 shows the calculated transmission coefficients of the various lead combinations 𝑇12, 𝑇23, and 𝑇13.
For the orange-dashed lines 100 % (1681 of 1681) of all eigenvectors were used whereas for the light-blue lines
only 18 % (303 of 1681) had to be calculated. You can see that reducing the eigenvectors to 18 % or even 7 % (118
of 1681) of the total eigenvectors does not result in significant changes in 𝑇 (𝐸), especially at lower energies. This
means that one does not have to calculate all eigenvalues of the device Hamiltonian which grossly reduces CPU
time. A small percentage of eigenvalues suffices for 𝑇 (𝐸) in relevant energy range of interest.

Figure 4.14.4.3: The transmission coefficient 𝑇 (𝐸) of a 2D sample with 3 leads. 𝑇12 in (a), whereas 𝑇13 in (b).
bias_00000\CBR\transmission_device_Gamma.dat

The nextnano++ results differ slightly from the [MamaluyCBR2003] and [BirnerCBR2009].

Reasons:
• The potential energy profile in the device and in the leads is not identical, as well as the dimensions of

the barriers.

• The dimensions of the device are not identical as explained (See the attention below for further infor-
mation).

Therefore, the eigenenergies and the wave functions in the device, and in the leads differ slightly which explains
the small deviations.

The 16th eigenstate is a resonance state of the lower transmission path.

• 1st resonance: the 16th eigenstate: 0.119 (eV)

The square of the 16th wave function with the conduction band is shown below.
(bias_00000\Quantum\probabilities_shift_device_Gamma.fld)

Note that the square of the wave function is rescaled so that you can see the shape clearly.

The 26th eigenstate and 29th eigenstate are resonance states of the double barrier.

• 1st resonance:

– the 26th eigenstate: 0.177 (eV) (delocalized)

– the 29th eigenstate: 0.193 (eV) (more localized)

• 2nd resonance:

– the 56th eigenstate: 0.311 (eV) (delocalized)

– the 59th eigenstate: 0.328 (eV) (more localized)

– the 61th eigenstate: 0.336 (eV) (delocalized)

4.14. Transmission and Conductance (CBR method) 485

nextnano++ Documentation, Release 1.25.13

Figure 4.14.4.4: The 16th eigenstate

– the 63th eigenstate: 0.347 (eV) (delocalized)

– the 64th eigenstate: 0.352 (eV) (more localized)

TO BE CHECKED
The follow figure shows the square of the wave function of the 26th eigenstate with the conduction band.
(bias_00000\Quantum\probabilities_shift_device_Gamma.fld) You can clearly see that it is a resonance state of
the double barrier and corresponds to the second peak in the light-blue transmission curve 𝑇13 from source to
draian around 190 (meV).

Note that the square of the wave function is rescaled so that you can see the shape clearly.

Lead modes

Figure 4.14.4.6 shows the lead modes of the gate, and the source (which is identical to the drain). In the transmission
curve 𝑇12(𝐸) = 𝑇23(𝐸), the transmisson shows a step-like behavior which is related to the energies of lead 2
(‘gate’).

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

486 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.14.4.5: The 26th eigenstate

Figure 4.14.4.6: The lead modes of lead 2 (‘gate’) are shown in (a), whereas the lead modes of lead 1, 3 (‘source’,
‘drain’) are shown in (b). bias_00000\Quantum\probabilities_shift_lead_X_Gamma.dat

4.14. Transmission and Conductance (CBR method) 487

nextnano++ Documentation, Release 1.25.13

4.14.5 Transmission through a nanowire (CBR)

• Header

• System

• Input file

• CBR efficiency assessment

• Lead modes

Header

Input Files:
• transmission-nanowire_GaAs_3D_nnp.in

Scope of the tutorial:
• transmission

We apply the Contact Block Reduction (CBR) method to a simple GaAs nanowire of cuboidal shape.

System

We consider a GaAs cuboidal tube of dimensions 10 nm × 10 nm × 20 nm. Two leads of 10 nm × 10 nm each
are attached to the edge of the device. The grid spacing is 1 nm in all directions. The effective electron mass is
assumed to be constant throughout the device and equal to 0.067 𝑚0.

Input file

To simulate 3D (or 2D) system with CBR method in nextnano++ correctly, The quantum regions have to be
appropriately specified in the input file.

quantum{
region{

name = "lead_1"
x = [-6,6]
y = [-6,6]
z = [-0.1,0.1]
boundary{ x=dirichlet y=dirichlet z=cbr }
Gamma{ num_ev = $num_eigenstates_device }

}
}

The perpendicular directions, i.e. x- and y-directions, of the system are elongated by one grid due to the treatment
of edge points in nextano++. Since the simulation is three dimensional, the lead region specified here has to be two
dimensional. The number ±0.1 is chosen to be smaller than the grid spacing, so that the region “lead_1” becomes
a 2D sheet. CBR boundary condition has to be imposed in the propagation direction, i.e. z-direction, whereas
Dirichlet boundary condition is set for perpendicular directions.

cbr{
name = "device"
lead{ name = "lead_1" }
lead{ name = "lead_2" }
delta_energy = $delta_energy
abs_min_energy = $E_min
abs_max_energy = $E_max

}

488 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Here we specify the device region and leads attached to the device. The program calculates transmission through
the region “device”, from “lead_1” to “lead_2”. The resolution, minimum and maximum of the energy axis can
be also tuned here.

CBR efficiency assessment

The biggest advantage of the CBR method is that it can correctly predict the spectrum without calculating all
eigenmodes of the 3D device. That means that, for low energies, one can significantly reduce the simulation load
for the calculation of transmission spectrum Birner2009. To demonstrate it we perform three different simulations,
sweeping the number of modes considered in the calculation. In the input file, the variable $CBR_case switches
the number of eigenmodes.

$CBR_case = 1 # (ListOfValues:1,2,3)

$CBR_light = iszero($CBR_case-1)
$CBR_medium = iszero($CBR_case-2)
$CBR_heavy = iszero($CBR_case-3)

#if $CBR_light $num_eigenstates_device = 200 # 5.6% of all device␣
→˓modes
#if $CBR_light $num_eigenstates_lead = 30 # 17.8% of all lead modes

#if $CBR_medium $num_eigenstates_device = 400 # 11.3% of all device␣
→˓modes
#if $CBR_medium $num_eigenstates_lead = 50 # 30.0% of all lead modes

#if $CBR_heavy $num_eigenstates_device = 600 # 16.9% of all device␣
→˓modes
#if $CBR_heavy $num_eigenstates_lead = 80 # 47.3% of all lead modes

Figure 4.14.5.1 shows the calculated transmission coefficient as a function of energy. The result of nextnano3

is shown for reference. Arrows indicate the cutoff energies, namely the eigenenergy of the highest device mode
considered in each simulation. The transmission coefficient drops when the energy exceeds the cutoff value. In the
low energy, however, it is sufficient to calculate only a part of all eigenfunctions of the device Hamiltonian. Lower
cutoff energy means lower dimension of matrices and vectors in the simulation, e.g. Eq.(36) in Birner2009, which
reduces the calculation load. For example, a simulation performed at nextnano office took

• 42 sec for $CBR_case=1 (black)

• 3 min 14 sec for $CBR_case=2 (blue)

• 11min 17 sec for $CBR_case=3 (red)

Lead modes

The step-like increase of the transmission coefficient is attributed to the discrete energy levels of the lead modes.
Let us have a close look at the first few steps. We can see that T(E) increases by integers.

The lead mode probability distribution |𝜓(𝑥, 𝑦)|2 and corresponding eigenvalues are exported to the following
files:

~\Quantum\wf_probabilities_lead_1_Gamma_0000.fld ~\Quantum\
wf_energy_spectrum_lead_1_Gamma_0000.dat

To see the energy eigenvalues, it is convenient to switch to Show Output File as Text (marked yellow).

Once the energy reaches 76 meV, the first lead mode energy is reached and then this mode transmits perfectly,
giving a transmission of 1.

As can be seen from \Quantum\wf_probabilities_lead_1_Gamma_0000.fld, the second and third lead mode
states are degenerate due to the symmetry of the lead cross-section. Thus they have the same energy 190 meV.
Consequently, the spectrum increases by 2 at the energy of 190 meV. In this fashion, the step-like behavior of the
transmission coefficient is explained by lead eigenmodes.

4.14. Transmission and Conductance (CBR method) 489

nextnano++ Documentation, Release 1.25.13

Figure 4.14.5.1: Transmission coefficient of a GaAs 3D nanowire simulated with three different CBR parameters.
The nextnano3 result is shown for reference. Arrows indicate the cutoff energies, namely the eigenenergy of the
highest device eigenmode considered in each simulation.

490 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.14.5.2: Zoom into the first few steps of T(E). The transmission increases by integer at the eigenenergies
of the lead.

4.14. Transmission and Conductance (CBR method) 491

nextnano++ Documentation, Release 1.25.13

Figure 4.14.5.3: The probability distribution |𝜓(𝑥, 𝑦)|2 of the 2nd lead mode.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.14.6 Conductance of a quantum point contact (gated two-dimensional electron
gas)

. Attention

A tutorial on computing the conductance using CBR method can be found here

Related Files:
• 3D_conductance_in_top_gated_2DEG_nnp.in - simulation of the potential in 2DEG

• 3D_conductance_in_top_gated_2DEG.py - generates all plots

• 3D_conductance_in_top_gated_2DEG_verification.py - does not generate conductance

• 3D_conductance_in_top_gated_2DEG_without_plot.py - generates only conductance

• 3D_conductance_in_top_gated_2DEG_exercise.py - semiclassical and quantum calcula-
tions (exercise)

• 3D_conductance_in_top_gated_2DEG.ipynb - Jupyter Notebook for practicing the tutorial

The Python scripts and the Jupyter Notebook file are available on our GitHub

Scope of the tutorial:
• computing electrostatic potential using nextnano++

• interfacing nextnano++ with Kwant, for computing the conductance between two leads

492 Chapter 4. Tutorials

https://github.com/nextnanopy/nextnanopy/tree/master/templates

nextnano++ Documentation, Release 1.25.13

Main adjustable parameters in the input file:
• calculation with or without Schrödinger - $solve_quantum

• depth of the slice of the 2DEG region - $slice_in_2DEG (see lines 76 and 77)

• the widths of the gates - $gate_width

• the gap beetween the gates - $gap_length

• lowest bias on the top gate - $top_gate_bias_min

• highest bias on the top gate - $top_gate_bias_max

• number os bias sweeps of the top gate - $top_gate_steps

• bias of the bottom gate - $bottom_gate_bias

Relevant output files:
• bias_xxxxx\bandedges_2d_2deg_slice.fld (potential energy profile - semiclassical case)

• bias_xxxxx\Quantum\energy_subbands_quantum_region_Gamma_2d_2deg_slice.fld (po-
tential energy profile - self-consistent quantum case)

• bias_xxxxx\density_electron_1d_section_line_x_center.dat (density of electrons in the
growth direction)

Simulated Structure

Figure 4.14.6.1 presents the simulated structure, where a two-dimensional electron gas (2DEG) is formed at the
interface of the AlGaAs and GaAs (the substrate) materials. The electron density in the 2DEG is enhanced by
doping the region of the AlGaAs with n-type impurities only in the part close to the surface.

A GaAs layer over the n-AlGaAs region acts simply as a cap of the device. On the top of the surface metallic
gates are deposited and can present different geometries. We will choose the gates in the Figure 4.14.6.2 as QPCs,
to which negative bias will be applied in order to deplete electrons at the center of the 2DEG region. Although
these gates pursue one of the simplest geometries, the method here described can also be used for gates with more
complex shapes.

The dopant and surface charges concentrations used in this simulation are realistic, and were obtained by the
calibration method described in [Chatzikyriakou_PhysRevResearch_2022]

The Simulation

The main objective of this tutorial is to simulate the conductance between two leads in the 2DEG region as a
function of the applied bias in the gates deposited at the top of the structure.

Initially we will use nextnano++ to obtain the conduction band in the device changing the applied bias to
the top gate in the range of -1.5 V and 0.0 V. The applied bias to the bottom gate will be kept constant (-
1.1V), through the whole set of simulations. For this first phase of this tutorial, we will use the input file:
3D_conductance_in_top_gated_2DEG_nnp.in.

In order to obtain the trasmission coefficients between two leads in the 2DEG, we will import a slice of the conduc-
tion band in this region into the software Kwant, using the Python script: 3D_conductance_in_top_gated_2DEG.py

Kwant is an open-source tool that performs numerical calculations on tight-binding models. For the installation of
Kwant in your computer, please, follow the instructions on the Kwant webpage.

Phase 1: Obtaining the conduction band in the 2DEG region using nextnano++

The conduction band in the whole device can be obtained as a solution of the 3D-Poisson equation.

For realistic devices, a large number of nodes in the grid is required to evaluate with high accuracy the voltage that
depletes electrons at the center of the 2DEG region. The nextnano++ input file sweeps automatically the value
of the top gate (𝑉𝑔𝑎𝑡𝑒) and generates 2D-slices of the band edges in the 2DEG plane that will be used in the next
phase of the simulation.

4.14. Transmission and Conductance (CBR method) 493

https://kwant-project.org/install

nextnano++ Documentation, Release 1.25.13

Figure 4.14.6.1: Schematics of a side view of the simulated device

Figure 4.14.6.2: Top view of the gates deposited on the top of the simulations

494 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Phase 2: Setting up Kwant

In order to setup Kwant in a consistent way with the configuration of nextnano++ we need to define the next
variables:

• the effective mass of electrons in the 2DEG region ms = 0.067 * 9.109e-31

• lattice constant of the tight-binding system (nm) a = 1

• conversion constant from eV (output of nextnano++) to Kwant energy unit T = hbar*hbar/2/nm/nm/ms/
e

where:

• e = 1.602e-19 is the electron charge (in C),

• hbar = 6.626e-34/2/np.pi is the Dirac constant (in Js),

• h = 6.626e-34 is the Planck constant (in Js),

• nm = 1e-9 is the conversion factor from 1 nanometer to 1 meter (in m),

Additionally, it is convenient to define a smaller portion of the slice of the potential obtained in the previous phase
as the scattering region that will be used by Kwant. Here we will use a square scattering region with size of 400
nm x 400 nm, with the same center as before, the coordinates (0,0).

Phase 3: Computing the conductance coefficients with Kwant

Describing briefly the Kwant script 3D_conductance_in_top_gated_2DEG.py, the program reads the file contain-
ing the potential in the 2DEG region (a 2D-slice at a depth of -146.8 nm under the surface), whose path is specified
in the script through the variable path_extracted_potential. Through interpolation, Kwant maps the values
of the potential into each node of the corresponding 2D-square lattice defined in the previous phase.

This is the basic element for building the system of equations to be solved under the tight-binding approach, whose
the matrix elements and hoppings are set by discretization of the Hamiltonian:

𝐻 = − ℏ2

2𝑚𝑠
(𝛿2𝑥 + 𝛿2𝑦) + 𝑉 (𝑥, 𝑦),

where 𝑉 (𝑥, 𝑦) is the potential extracted from nextnano++. In this initial calculation we will start simulating the
potential without computing Schrödinger equation.

The leads will be considered as ohmic contacts, and are attached to the left (lead 0) and to the right (lead 1) of the
scattering region, as shown in Figure 4.14.6.3.

At this point it is convenient to verify the band edges of both leads, one of them plotted in the Figure 4.14.6.3.
Finally the program solves the system of equations and the conductance from lead 0 to lead 1 is computed, for the
especific potential imported. As example, when applying a voltage of -1.11 V to the upper gate of the structure,
and -1.1 the the lower gate, the conductance between the two leads in the 2DEG is equal to 2.0074 2𝑒2/ℎ

As we mentioned before, QPCs can be a very useful structure to control the conductance of electrons in a 2DEG
region. In this example, we can verify how changes on the bias of one of the gates modifies the transport of electrons
in the 2DEG region.

The Kwant script iteratively will import each potential simulated in nextnano and compute the correspondent con-
ductance. This script requires that you have nextnanopy installed in your machine, that can be downloaded for free
in our nextnanopy repository. In the script it will be required to modify variable path_extracted_potential
with the path where the simulation results of nextnano++ will be stored. As this process will process 101 files, it
could take some minutes to perform the calculations. At the end of the process, a plot will be generated in your
screen.

The Figure 4.14.6.5 presents the channel conductance computed for each value of 𝑉𝑔𝑎𝑡𝑒. The steps in the curve
show the expected quantization for this device.

4.14. Transmission and Conductance (CBR method) 495

https://github.com/nextnanopy

nextnano++ Documentation, Release 1.25.13

Figure 4.14.6.3: Imported conduction band when a bias of -1.11V is applied to the top gate.

Figure 4.14.6.4: Band structure of the lead 0 for top gate voltage equal to -1.11 V.

496 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.14.6.5: Conductance between lead 0 to lead 1 as function of the bias applied to the top gate

Phase 4: Computing conductance with potential from self-consistent Schrödinger-Poisson cal-
culations

Until this point our potential has considered only the solutions of the Poisson equation for evaluation of the density
of electrons in the 2DEG region. Nevertheless, it is expected that the density of states of the semiclassical potential
be substantially different from the case when quantum effects are taken into account, especially at low energies.

Figure 4.14.6.6 presents the density distribution in the growth direction (perpendicular to the 2DEG plane) at the
center of device (𝑥 = 0 nm and 𝑦 = 0)for 𝑉𝑔𝑎𝑡𝑒 = −1.17𝑉 . They correspond to the results from nextnano++
simulations with and without quantum calculations.

First we observe that both distributions present their maxima at different depths of the 2DEG. This result is expected
because the confined states are discrete and present their maxima not so close to the interface. The integration of
the density of states over a triangular-shaped potential for the semiclassical case generates distributions closer to
the deepest part of the potential (close to the interface) when compared with the case including quantization.

Last but not least, we can observe that the peak of the electron distribution for the same value of 𝑉𝑔𝑎𝑡𝑒 is higher
when quantum solution is not taken into account. This practically means that for the semiclassical solution it is
required to apply more negative bias in order to deplete electrons that are accumulated close to the interface. In
another words, it is expected that neglecting quantum effects the depletion of the electrons show occur at higher
values than predicted from the semiclassical approach.

In order to analyse the impact of including quantum effects in the conductance calculations we need to im-
port the final results from nextnano++ values of the eigenstate of the ground state (E1) from the file en-
ergy_subbands_quantum_region_Gamma_2d_2deg_slice.fld in the Quantum folder. The imported potentials used
both cases (with and without quantization) were obtained for a 2D-slice 161.8 nm below the surface, where the
density of electrons for the quantum solution is maximum.

We can observe that at this plane the depletion of electrons in both simulations occurs at the same bias (around
-1.11 V), as discussed and predicted above.

As a final conclusion, for accurate determination of the pinch-off voltages, obtaining the potential from self-
consistent simulations of Schrödinger-Poisson are required.

Exercise:
In order to reproduce the figures of the last section, modify and run the nextnano++ input file
for both cases:

• $solve_quantum = 0 and use the option $slice_in_2DEG = 161.8 at the line 77 (save
the input file with the name 3D_conductance_in_top_gated_2DEG_exercise_nnp.in)

• $solve_quantum = 1 and use the option $slice_in_2DEG = 161.8 at the line 77 (save

4.14. Transmission and Conductance (CBR method) 497

nextnano++ Documentation, Release 1.25.13

Figure 4.14.6.6: Density of electrons in the growth direction at the center of the device (𝑦 = 0 nm and 𝑧 = 0) for
𝑉𝑔𝑎𝑡𝑒 = −1.17𝑉 for semiclassical computation (without quantization) and for self-consistent Schrödinger-Poisson
calculations (with quantization)

Figure 4.14.6.7: Conductance between lead 0 to lead 1 as function of the bias applied to the top gate at the plane
z = 161.8 nm in the 2DEG region with and without quantization along the growth direction (in solid lines). In
dotted lines the conductance without quantization is shown at the depth where the electron density is higher in the
2DEG (146.8 nm below the surface, as shown in Figure 4.14.6.5)

498 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

the input file with the name 3D_conductance_in_top_gated_2DEG_QM_exercise_nnp.in)

Edit the path of the output folders of both simulations in the
script 3D_conductance_in_top_gated_2DEG_exercise.py (variables
path_extracted_potential_Poisson and path_extracted_potential_QM
), and compute the transmission.

This tutorial is based on the nextnano GmbH collaboration in the scope of the UltraFastNano Project aiming at
development of the first Flying Electron Qubit at the picosecond scale, and it is funded by the European Union’s
Horizon 2020 research and innovation program under grant agreement No 862683.

Last update: 2025/06/27

4.15 Transistors

4.15.1 HEMT structure (High Electron Mobility Transistor)
Input files:

• HEMT_1D_nnp.in

• HEMT_2D_nnp.in

• HEMT_3D_nnp.in

Scope:
This tutorial demonstrates how High Electron Mobility Transistors can be modelled with
nextnano++.

HEMT structure

Input file: HEMT_1D_nnp.in

The structure consists of the following material layers:

width [nm] material
1 Schottky barrier 0.2 eV
2 10.0 𝐼𝑛0.532𝐺𝑎0.468𝐴𝑠
3 25.0 𝐴𝑙0.477𝐼𝑛0.523𝐴𝑠
4 50.0 𝐼𝑛0.532𝐺𝑎0.468𝐴𝑠
5 300.0 𝐴𝑙0.477𝐼𝑛0.523𝐴𝑠
6 300.0 InP

The conduction band edge profile without doping is plotted in Figure 4.15.1.1.

Now we add at x = 35 nm a silicon delta doping of 4.5 · 1012 cm-2 which leads to band bending. Instead of choosing
a delta doping we specify a constant doping of 1.5 · 1020 cm-3 that extends over 0.3 nm. (1.5 · 1020 cm-3 · 3 · 10-8

cm = 4.5 · 1012 cm-2)

4.15. Transistors 499

https://ultrafastnano.eu/
https://cordis.europa.eu/project/id/862683

nextnano++ Documentation, Release 1.25.13

Figure 4.15.1.1: Calculated conduction band edge profile.

Figure 4.15.1.2: Calculated conduction band edge profile and probability densities.

We obtain two eigenstates and their corresponding wave functions inside the HEMT channel which leads to a
two-dimensional electron gas (2DEG), see Figure 4.15.1.2. The electron density is plotted in blue.

In the file bias_00000/total_charges.txt we can find the integrated electron and hole densities. The total integrated
density (from 10 nm to 100 nm) which can be measured experimentally is 1.87 · 1012 cm-2 in agreement with the
experiment. Most of the density is located between 45 nm and 95 nm.

2D/ 3D simulations

Input files: HEMT_2D_nnp.in, HEMT_3D_nnp.in

Input files for the same HEMT structure as in 1D, this time for a 2D and 3D simulations, are also available.

• 2D: rectangle of dimension 250 nm x 10 nm

• 3D: cuboid of dimension 250 nm x 10 nm x 10 nm

Last update: nnnn/nn/nn

4.15.2 Two-dimensional electron gas in an AlGaN/GaN FET
Input files:

• Jogai_AlGaNGaN_FET_JAP2003_noGaNcap_Fig4Fig1Fig7_1D_nnp.in

• Jogai_AlGaNGaN_FET_JAP2003_noGaNcap_Fig2Fig3_1D_nnp.in

• Jogai_AlGaNGaN_FET_JAP2003_GaNcap_Fig4_1D_nnp

• Jogai_AlGaNGaN_FET_JAP2003_GaNcap_Fig6Fig5_1D_nnp.in

ò Note

The input files are also available as 2D input file.

Scope:
This tutorial tries to reproduce the results of [Jogai2003].

500 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Introduction

For this one-dimensional simulation of an 𝐴𝑙𝐺𝑎𝑁 / 𝐺𝑎𝑁 heterojunction field effect transistor (HFET) we are
solving self-consistently the Schrödinger-Poisson equation taking into account strain, and piezo- and pyroelectric
charge densities.

At the left boundary we use a Schottky contact boundary condition with a Schottky barrier height of 𝜑𝐵 = 1.4 eV.
Note that in Fig. 1 of [Jogai2003], the Schottky barrier height corresponds to

e𝜑𝐵 = 𝐸𝑐 − 𝐸𝐹

which fixes the conduction band edge energy 𝐸𝑐 above the Fermi energy 𝐸𝐹 , where e is the elementary charge.
Alternative boundary conditions such as a fixed surface charge density or surface states based on incomplete ion-
ization of donor or acceptor states are described in the — FREE — Surface Charges.

Our simulated structure is undoped. Note that the 2DEG is present even in the absence of doping due to piezo-
and pyroelectric interface charge densities. The temperature is set to 300 K in all simulations. We only consider
cation-faced structures, i.e. we have rotated the crystal so that our [000-1] direction points along the positive x
direction.

Figure 4.15.2.1 shows the results of the input file 1DJogai_AlGaNGaN_FET_JAP2003_noGaNcap_Fig4Fig1Fig7_nnp.in.

Figure 4.15.2.1: Calculated conduction and three valence band edges with the probability densities of the two
lowest subbands of a 30 nm 𝐴𝑙0.3𝐺𝑎0.7𝑁 / 40 nm 𝐺𝑎𝑁 heterostructure.

Variation of the 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 layer thickness and alloy content 𝑥 (Fig. 2 and Fig. 3 of [Jogai2003])

Now we try to reproduce Fig. 2 and Fig. 3 of [Jogai2003], with the input file Jo-
gai_AlGaNGaN_FET_JAP2003_noGaNcap_Fig2Fig3_1D_nnp.in. We are calculating the variation of the
2DEG density with the

• 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 layer thickness and

• mole fraction (alloy content 𝑥).

Within the nextnano++ input file, we can perform a sweep over the alloy concentration very conveniently:

$AlloySweepActive = yes # sweep alloy concentration from 0.4 to 0.0␣
→˓(HighlightInUserInterface)

The thickness of the 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 barrier is defined as a variable.

$ThicknessAlGaN = 30.0 # thickness of AlGaN spacer (ListOfValues:6,10,14,18,22,26,
→˓30,34,38)(DisplayUnit:nm)(HighlightInUserInterface)

We use nextnanomat’s Template feature in order to sweep over the 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 barrier thickness. This is shown
in the following screenshot. The input files are created automatically and are added to the “Run” tab.

The 2DEG sheet carrier concentration can be found in this file: bias_00000\total_charges.txt. This file contains
the integrated electron density for the whole simulation region.

4.15. Transistors 501

nextnano++ Documentation, Release 1.25.13

The following figure shows the total integrated electron density as a function of alloy concentration for vari-
ous 𝐴𝑙𝐺𝑎𝑁 thicknesses. Note that these results were obtained by using one input file template only: 1DJo-
gai_AlGaNGaN_FET_JAP2003_nn3_Fig2Fig3.in.

Figure 4.15.2.2: Calculated 2DEG density for different layer widths of 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 as a function of alloy content
𝑥.

For a given barrier thickness, the 2DEG sheet carrier concentration varies almost linearly with alloy concentration
𝑥. The 2DEG density approaches saturation as the barrier thickness is increased. This fact can be better seen
Figure 4.15.2.3 where we show exactly the same data.

Our results seem to be in reasonable agreement to the simulations of [Jogai2003] (Fig. 2 and Fig. 3).

Variation of the Schottky barrier height (Fig. 7 of [Jogai2003])

Using te input file Jogai_AlGaNGaN_FET_JAP2003_noGaNcap_Fig4Fig1Fig7_1D_nnp.in, we vary the Schottky
barrier height 𝑝ℎ𝑖𝐵 and calculate for each value the 2DEG density:

$SchottkyBarrierHeight = 1.4 # Schottky barrier height phi_B = E_c - E_F, used by␣
→˓[Jogai2003], see p. 1634, column 1 (ListOfValues:1.40,1.42,1.
→˓65)(RangeOfValues:From=0.0,To=4.0,Step=0.25)(DisplayUnit:V)

This situation is equivalent to fixing the surface potential to

e𝑝ℎ𝑖𝐵 = 𝐸𝑐 − 𝐸𝐹 .

502 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.2.3: Calculated 2DEG density for different alloy contents 𝑥 of 𝐴𝑙𝑥𝐺𝑎1−𝑥𝑁 as a function of layer
widths.

4.15. Transistors 503

nextnano++ Documentation, Release 1.25.13

Figure 4.15.2.4 shows the calculated 2DEG density as a function of Schottky barrier height, i.e. surface potential.
We used a 30 nm 𝐴𝑙0.3𝐺𝑎0.7𝑁 barrier. Again, the 2DEG sheet carrier concentration can be found in this file:
bias_00000\total_charges.txt. The results are in reasonable agreement to Fig. 7 of [Jogai2003].

Figure 4.15.2.4: Calculated 2DEG density as a function of surface potential e𝜑𝐵 .

AlGaN/GaN FET including a GaN cap layer

Now we compare HFET structures with and without a GaN cap layer by us-
ing the input files Jogai_AlGaNGaN_FET_JAP2003_GaNcap_Fig4_1D_nnp.in and Jo-
gai_AlGaNGaN_FET_JAP2003_noGaNcap_Fig4Fig1Fig7_1D_nnp.in. GaN-capped HFETs have a lower
2DEG density compared to uncapped structures. For the case of a 30 nm 𝐴𝑙0.3𝐺𝑎0.7𝑁 barrier, introducing a GaN
cap layer reduces the density of the 2DEG:

• 5 nm cap: The calculated 2DEG density is n = 1.03 · 1013 cm-2 (n = 1.20 · 1013 cm-2 [Jogai2003]).

• without cap: The calculated 2DEG density is n = 1.25 · 1013 cm-2 (n = 1.47 · 1013 cm-2 [Jogai2003]).

Figure 4.15.2.5 compares the band edges of capped and uncapped HEMT structure.

Figure 4.15.2.5: Calculated conduction and valence band edges of a 𝐴𝑙0.3𝐺𝑎0.7𝑁 / 𝐺𝑎𝑁 FET with (solid lines)
and without (dotted lines) a 5 nm 𝐺𝑎𝑁 cap layer.

Figure 4.15.2.6 shows the band edges and the electron and hole densities for a 14 nm 𝐺𝑎𝑁 cap layer. The
𝐴𝑙0.3𝐺𝑎0.7𝑁 barrier thickness is 30 nm. For 𝐺𝑎𝑁 cap layers thicker than 14 nm, a 2DHG forms. The den-
sity of the 2DHG screens the surface potential so that the density of the 2DEG is maintained at a constant level
even if the 𝐺𝑎𝑁 cap layer thickness increases further.

• The calculated 2DHG density is p = 0.513 · 1012 cm-2 (p = 1.77 · 1012 cm-2 [Jogai2003]).

• The calculated 2DEG density is n = 0.839 · 1013 cm-2 (n = 1.009 · 1013 cm-2 [Jogai2003]).

Variation of the 𝐺𝑎𝑁 cap layer thickness (Fig. 5 of [Jogai2003])

Input file: Jogai_AlGaNGaN_FET_JAP2003_GaNcap_Fig6Fig5_1D_nnp.in

Now we are going to vary the 𝐺𝑎𝑁 cap layer thickness.

504 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.2.6: Calculated conduction and valence band edges of a 𝐴𝑙0.3𝐺𝑎0.7𝑁 / 𝐺𝑎𝑁 FET with 14 nm 𝐺𝑎𝑁
cap.

$ThicknessGaNcap = 5.0 # thickness of GaN cap layer for GaN cap simulation (Fig.␣
→˓4, Fig. 5), (ListOfValues:1,2,3,4,5,7,9,11,12,13,14,15,17,20,25,
→˓30)(DisplayUnit:nm)(HighlightInUserInterface)

Figure 4.15.2.7 shows the 2DEG density vs. 𝐺𝑎𝑁 cap layer thickness for a 30 nm 𝐴𝑙0.3𝐺𝑎0.7𝑁 barrier. Beyond
a 𝐺𝑎𝑁 cap layer thickness of ~13 nm (12 nm [Jogai2003]) the 2DEG density saturates.

Additional comments

In contrast to the article of [Jogai2003], we did not include exchange-correlation effects and we used a single-band
model for the 2DHG rather than a 6-band k.p model.

Last update: nnnn/nn/nn

4.15. Transistors 505

nextnano++ Documentation, Release 1.25.13

Figure 4.15.2.7: Calculated 2DEG density as a function of 𝐺𝑎𝑁 cap thickness.

4.15.3 MOS Capacitor & MOSFET
Section author: Daryoush Nosraty Alamdary

The purpose of this tutorial is to show how the results of our simulation software (which solves the Poisson and
drift-diffusion current equations numerically) compare with analytical equations given in standard text books on
MOSFETs. The analytical equations use certain approximations and assumptions which limit their applicability.
Nevertheless, in most cases the agreement is very good as demonstrated in this tutorial.

Contents

Part 1: Capacitance-voltage characteristics of a 2D MOS capacitor

In the first part of this tutorial we discuss the capacitance-voltage (C-V) characteristics of the MOS capacitor in
a 2D simulation. (For a 1D simulation of the C-V characteristics, see also this tutorial: “Capacitance-Voltage
curve of a “metal”-insulator-semiconductor (MIS) structure”). Our MOS has the same dimensions and properties
(channel length, doping profiles and gate contact type) as the corresponding MOSFET discussed in Part 2.

Part 2: Current-voltage characteristics of a 2D n-Channel MOSFET

In the second part of the tutorial, we start with the design of the MOSFET based on its 2D MOS capacitor, and
then discuss its input and output characteristics and their respective conductances, namely transconductance and
channel conductance.

Part 3: Mobility models and pinch-off in a 2D n-Channel MOSFET

In this part we discuss and compare the effect of different mobility models on the output characteristics of the
MOSFET and how they affect properties such as pinch-off, saturation, etc.

References

1. [Goetzberger] A. Goetzberger, M. Schulz, Fundamentals of MOS Technology, In: H. J. Queisser (eds) Fes-
tkörperprobleme 13, Advances in Solid State Physics 13, Springer, Berlin, Heidelberg, 309-336 (1973),
https://doi.org/10.1007/BFb0108576

2. [Wu] Y.-C. Wu, Y.-R. Jhan, 3D TCAD Simulation for CMOS Nanoeletronic Devices, Springer, Singapore
(2018)

3. [Sze] S. M. Sze, K. K. NG, Physics of Semiconductor Devices (3rd ed.), John Wiley, New York (2007)

4. [Brews] J. R. Brews, W. Fichtner, E. H. Nicollian, S. M. Sze, Generalized guide for MOSFET miniaturization,
IEEE Electron Device Letters 1, 2 (1980) https://doi.org/10.1109/EDL.1980.25205

5. [Miura-Mattausch] M. Miura-Mattausch, H. J. Mattausch, N. D. Arora, C. Y. Yang, MOSFET modeling gets
physical, IEEE Circuits and Devices Magazine 17, 29 (2001) https://doi.org/10.1109/101.968914

506 Chapter 4. Tutorials

https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_MIS_CV.htm
https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_MIS_CV.htm
https://doi.org/10.1007/BFb0108576
https://doi.org/10.1109/EDL.1980.25205
https://doi.org/10.1109/101.968914

nextnano++ Documentation, Release 1.25.13

2D MOS Capacitor

Input files:

• MOS_CV_5 nmSiO2_5 nmCont_Dop1e16_QM_1D_fine_grid.in

• MOS_CV_5 nmSiO2_5 nmCont_Dop1e16_QM_1D.in (nonuniform grid)

• MOS_CV_5 nmSiO2_5 nmCont_Dop1e16_QM_2D.in

• MOS_CV_5 nmSiO2_5 nmCont_Dop1e16_QM_2D_periodic_x.in (uniform grid along x direction with pe-
riodic boundary conditions, quasi-1D simulation)

In this tutorial we illustrate the simulation and analysis of an N-channel MOSFET (Metal-Oxide-Semiconductor
Field-Effect Transistor) in 2D as implemented in CMOS technologies and nanodevice fabrication. The first step
in simulating the MOSFET is the construction and the simulation of the corresponding MOS capacitor, i.e. the
Metal-Oxide-Semiconductor device, which can act as a capacitor on its own, and is an integral part of the MOSFET.
The gate contact on this capacitor is the same gate contact as of the MOSFET, and it underlies the same physics in
both the MOS and the MOSFET. The 2D sketch of the MOS capacitor is illustrated in the following figure Figure
4.15.3.1

Figure 4.15.3.1: The geometry of the 2D MOS design, and its equivalent geometry from the output file regions.vtr
(colored differently in post-processing). The blue circle indicates the position of the origin of our (𝑥, 𝑦) coordinate
system.

In this tutorial we use a p-doped bulk-Si MOS with a Schottky contact at the gate (instead of a poly-Si contact),
and ohmic contact at the substrate. Therefore, the effect of poly-Si depletion at the gate is not present in either
of the devices in order to produce the C-V characteristics of our capacitor, which then is the same MOS device
used within the N-Ch MOSFET. The bulk p-doping level is 1× 1016cm−3, and the oxide layer which consists of
SiO:sub:2 has a thickness of 𝑑ox = 5nm. The length of the channel is 𝐿G = 100nm, the substrate has a height of
𝐻Substrate = 200nm. The importance of the C-V characteristics of the MOS device derives from the fact, that the
charge inversion layer, that is responsible for conduction in the MOSFET, is generated by the capacitive properties
of the MOS devices.

Low-Frequency Capacitance

In what follows are the results of our numerical calculations. Concretely, we solve the coupled Schrödinger, Poisson
and current equations in two dimensions. We compare our results with the analytic formulas given in standard text
books.

The low-frequency capacitance of a MOS capacitor can be measured experimentally with a low frequency signal.
In the simple case scenario, the interface trapped charges (charges trapped in the oxide) usually play no role in the

4.15. Transistors 507

nextnano++ Documentation, Release 1.25.13

capacitance of the device and are not considered in our simulations. Therefore the total capacity of the device is a
series connection of the oxide capacitance and the depletion layer capacitance,

𝐶tot =
𝐶ox𝐶D

𝐶ox + 𝐶D
. (4.15.3.1)

The oxide capacitance is the capacitance of the oxide layer, which is independent of the bias, and is simply calcu-
lated according to 𝐶ox = 𝜀ox/𝑑ox. This gives a capacitance per unit area (F/cm2). Multiplying this value with
the length 𝐿G and width 𝑊 of the gate gives a capacitance in units of F.

The depletion layer capacitance is calculated using the charge in the depletion layer as defined in equation (4.15.3.2),

𝑄D = 𝑞𝑊D𝑁Sub,𝑊D =

√︃
𝜀2s
𝐶2

ox

+
2𝜀s𝑉

𝑞𝑁Sub
− 𝜀s
𝐶ox

, (4.15.3.2)

where𝑊D is the width of the depletion layer, 𝜀s is the dielectric constant of the semiconductor and 𝜀ox the dielectric
constant of the oxide. The depletion layer capacitance is then given by the derivative 𝜕𝑄D/𝜕𝜓s, where 𝜓s is the
surface potential. Further details on the surface potential can be found in the appendix section. Therefore, the total
capacitance calculated according to these formulas would approximately approach the 𝐶ox at its maximum, would
have a flat-band capacitance𝐶FB given by the expression in equation (4.15.3.3) , i.e. the capacitance at the voltage,
which creates the flat-band condition in the MOS band structure,

𝐶FB(𝜓s = 0) =
𝜀s𝜀ox

𝜀s𝑑ox + 𝜀ox𝐿D
, 𝐿D =

√︃
𝑘B𝑇𝜀s
𝑞2𝑁Sub

, (4.15.3.3)

with 𝐿D as the Debye screening length. The Debye length for our MOS capacitor amounts to ≈ 40.8nm, and with
that the flat-band capacitance is calculated to be 𝐶FB ≈ 1.85mF/m

2, the equivalent of 1.85pF/cm if the channel
length is 100nm. The C-V curve of the MOS, taking the entire substrate for charge integration, with 𝜕𝑄Sub/𝜕𝑉Bias

is shown in figure Figure 4.15.3.3. Note that the output of the simulations, however, is only the total charge (per
cm in 2D), as shown in figure Figure 4.15.3.2, which needs to be (first multiplied with the elementary charge |𝑞|,
and then) derived with respect to the bias voltage:

Figure 4.15.3.2: The total charge carriers per cm of the MOS, integrated in the substrate, vs. the applied gate bias.

In the above figure the 𝐶*
FB is marked with * because the value measured differs from the calculated value. Later

we will show how the C-V curve could be measured, so that the value of the flat-band capacitance is consistent
with (4.15.3.3).

There are three values which we read from the graph (actually four but since we have the band edges here in the
simulation output, we just need three). The first is the oxide capacitance 𝐶ox, which is approximately the ceiling

508 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.3: The C-V characteristics of the 2D MOS with 𝑁Sub = 1016cm−3 doping concentration in the
p-doped silicon substrate, channel length of 100 nm, a Schottky barrier of 𝜑B = 3.95eV, and a charge integration
region equal to the entire substrate. (Note that the flat-band voltage has been chosen from the observation of the
band edges in the simulation output, which are flat for the bias value of −0.1V).

of the curve. The second is the flat-band capacitance 𝐶FB, corresponding to the value of the flat-band voltage 𝑉FB
(read from the status of the band edges in the simulation output). And the third is the threshold voltage 𝑉Th, which
is the onset of the strong inversion. The flat-band condition in the 1-dimensional band edges output is illustrated
in figure Figure 4.15.3.4:

Figure 4.15.3.4: The alignment of conduction and valence band edges with respect to the Fermi levels of the 2D
MOS under the flat-band condition along a one-dimensional slice along the y direction. (The lowest conduction
band edge is labeled with X.

The bias voltage that results in a band structure in the figure Figure 4.15.3.4, is called the flat-band voltage 𝑉FB.
This voltage is related to, and is a part of the definition of the threshold voltage,

𝑉Th = 𝑉FB + 2𝜓B +

√
4𝜀Si𝑞𝑁Sub𝜓B

𝐶ox
. (4.15.3.4)

The 𝜓B is the distance of the semiconductor Fermi level to the mid-point of the band gap, and it is estimated that
the onset of the strong inversion is at the point when the surface potential 𝜓s ≈ 2𝜓B. This surface potential is

4.15. Transistors 509

nextnano++ Documentation, Release 1.25.13

estimated to be

𝜓s(stronginversion) ≈
2𝑘B𝑇

𝑞
ln

(︂
𝑁Sub

𝑛𝑖

)︂
(4.15.3.5)

Calculating this expression for our system, the surface potential amounts to ≈ 0.713V, while the expression√
4𝜀Si𝑞𝑁Sub𝜓B/𝐶ox ≈ 0.073V, which is actually the voltage drop across the oxide layer 𝑉ox. Therefore tak-

ing the flat-band voltage 𝑉FB = −0.1V, we arrive at a threshold voltage 𝑉Th ≈ 0.7V, which is somewhat lower
than the 0.73V read from the curve. Indeed the value of the threshold voltage is strongly affected by the value of
the Schottky barrier.

The height of the Schottky barrier used here, however, has to reflect the metal-SiO:sub:2 interface barrier, and
not the metal-semiconductor barrier. This barrier depends on the metal and its work function that is used, and is
therefore different for different metals. It is also mentioned in [Wu], that “the work function of the metal gate has
to be properly defined in order to achieve the expected threshold voltage VTh”. Even though that the barrier
heights for metals such as aluminum have been reported to be around 3.15eV, the barrier height of metals such as
gold (Au), and silver (Ag), have been reported to be around 4.0eV [Goetzenberger]. Here, in order to arrive at a
threshold voltage of 0.7V, the barrier had to be chosen 3.95eV.

The Schottky Barrier, Doping Concentration, Depletion Region

In the following part we look at a set of figures, which illustrate various parameter changes, which then lead to
variations in the three important values which we want to read from the C-V curve. First would be the threshold
voltage, and the flatband voltage, both of which could be influenced by the height of the Schottky barrier, and the
doping concentration in the bulk-semiconductor, as figure Figure 4.15.3.5 illustrates:

Figure 4.15.3.5: The comparison of the C-V characteristics of the 2D MOS for varying Schottky barrier and the
substrate doping concentration, and their effects on the threshold voltage (vertical blue lines), and the flatband
voltage (vertical red lines)

As it could be seen in the above figure Figure 4.15.3.5, both the barrier height and the doping concentration shift the
threshold voltage 𝑉Th, and the flatband voltage 𝑉FB, however the flatband voltage is more affected by the barrier
height rather than the doping concentration. It is also worth mentioning, that the doping concentration alone also
affects the minimum capacitance in both low-frequency regime, and the high frequency regime, namely 𝐶min, and
𝐶

′

min, which are the bottom limits of the C-V curve (𝐶 ′

min is directly inversely related to the maximum depletion
region width, and apparently so is the 𝐶min).

In the next set of figures we see, how changing the charge integration region can affect the C-V curve, which then
would answer why the 𝐶*

FB in our original curve did not exactly match the calculated flatband capacitance 𝐶FB.
The following figure Figure 4.15.3.6, illustrates the effect of changing the charge integration region on the flatband
capacitance 𝐶FB:

And figure Figure 4.15.3.7 shows the C-V curve of the MOS capacitor for a charge integration region of 𝑊int =
300nm:

510 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.6: The comparison of the C-V characteristics of the 2D MOS for varying the width of the charge
integration region.

Figure 4.15.3.7: The comparison of the C-V characteristics of the 2D MOS for varying the width of the charge
integration region.

4.15. Transistors 511

nextnano++ Documentation, Release 1.25.13

Now it seems that the value of the flatband capacitance 𝐶𝐹𝐵 in the C-V curve (1.84pF/cm) agrees very well with
the calculated value. The reason for that is that, as mentioned in equation (4.15.3.2), the charge in the depletion
region is directly proportional to the width of the depletion region. This width has a maximum which is given by:

𝑊D,𝑚𝑎𝑥 ≈

√︃
2𝜖𝑠𝜓𝑠(strong inv.)

𝑞𝑁A
≈

√︃
2𝜖𝑠𝑘B𝑇 ln(𝑁A/𝑛𝑖)

𝑞2𝑁A

(4.15.3.6)

which turns out to be ≈ 303nm in our MOS capacitor. Therefore, it should be noted, that in order to be able to
reach the flatband capacitance defined by the formalism, the charge integration region should be greater or equal
to the maximum depletion region width 𝑊D,𝑚𝑎𝑥. Note that the charge carrier integration has to be specifically
mentioned as a region with the following flags in the <structure{ }_integrate> group:

region{
rectangle{ # Si Charge Carrier Integration Zone
x = [-$L_Oxide_Ch/2 , :remove_enter:
$L_Oxide_Ch/2]
y = [-$H_Substrate, 0]

}
binary{
name = "Si"

}
integrate{

electron_density{} # n-charge carriers
hole_density{} # p-charge carriers
label = "Si_Substrate"

}
}

The total charge is then 𝑞(−𝑝tot+𝑛tot). The derivative of this charge with respect to the voltage bias sweep results
in the C-V curve, as mentioned before.

Appendix: 2D MOS

The MOS capacitor is a 2D device in its correct form for simulations (with the optional 3rd dimension if need
be. . .). The width of the substrate needs to be somewhat larger than the channel length, so that the depletion layer
charges have enough space to expand, also the boundary conditions have to be set to non-periodic in the simulation.
That is because even though the channel length is set by the length of the gate-contact, and the inversion layer is
bounded by this length, this is not the case for the charges in the depletion layer. Figure Figure 4.15.3.8 illustrates
this phenomenon:

If we set the substrate width to the length of the channel, which basically would mean that the MOS could also be
simulated in 1D, the C-V curve would look like the following in figure Figure 4.15.3.9

As seen in the C-V curve, not only the oxide capacitance 𝐶ox is somewhat less than what it should be, the flatband
capacitance 𝐶𝐹𝐵 (1.57pF/cm) does not agree, within an acceptable margin of error, with the calculated value.

With regards to the surface potential𝜓s, it is worth mentioning, that this potential can be measured by measuring the
electrostatic potential at the semiconductor-oxide interface, as function of the gate-voltage. For that in nextnano++,
one needs to perform a bias sweep at the gate-contact using the template, and make a 1D-section slice of the
simulation in the section{ } group, mentioning a range in y-direction around 𝑦 = 0, so that exactly one grid point
falls within this range:

output{
section1D{ # output a 1D section of the simulation area (1D slice)
name = "surface_potential" # name of section enters file name
x = 0
range_y = [-0.2, 0.0] # 1D slice at x = 0 through the middle of the channel

however limited to the range in y
}

}

512 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.8: The spatial distribution of charge carriers (electrons) in the inversion layer during inversion, com-
pared to the ones (holes) in the depletion region during depletion.

Figure 4.15.3.9: The C-V curve of the quasi 1-D Simulations of the MOS (this is when we set the length of the
oxide and the channel-length equal in a 2D simulation and set the boundary condition in x-direction as periodic).

4.15. Transistors 513

nextnano++ Documentation, Release 1.25.13

Using the post-processing in the template, one can then construct a curve, which should look like the one shown
in figure Figure 4.15.3.10

Figure 4.15.3.10: The surface potential, at the semiconductor-oxide interface 𝜓s, as a function of the gate.voltage
𝑉G

Such a curve would go through the origin for an ideal MOS device, however depending on how the electrostatic
potential is calculated at the contacts, this curve could go higher or lower on the y-axis. The transition from
accumulation to strong inversion of the total capacitance happens basically in the region of the potential, where the
line is drawn, for which ∆𝜓𝑠 ≈ 2𝜓𝐵 .

The last remark regarding the capacitance of the MOS could be that, even though the classical formula of parallel
plates capacitor is also here applied to the oxide capacitance, in small dimensions and in few nanometer regime,
other effects such as tunneling current, and thermionic emissions could play a significant role. Additionally, since
the quantum mechanical charge distribution distances itself from the semiconductor-oxide interface (as we shall
see in the inversion layer comparison of the MOSFET), these effects would significantly reduce the maximum
capacitance of the MOS. As we could see from the C-V curve the flatband capacitance is less than 30% of the
oxide capacitance, even though one would expect that the 𝐶FB be somewhere around 80% of the 𝐶ox. Therefore
if the aforementioned effects be taken under consideration, it could very well be that the 𝐶ox fall to half of its
parallel-plate value.

2D N-Ch MOSFET

Input files:

• nMOSFET_2D_Dop-16-20_Schottky_noQM.in

• nMOSFET_2D_Dop-16-20_Schottky_QM.in

• nMOSFET_2D_Dop-16-20_Schottky_QM_decomposition.in

The MOSFET is a transistor, which is made of a MOS capacitor in the middle and a source-drain channel for
conduction. The channel of the MOSFET, which is probably the most important aspect of the MOSFET, extends
from source to drain, and is created by a charge carrier inversion layer in the MOS. In this tutorial we simulate an
N-channel MOSFET based on the proposed model in [Wu]. As parameters, we vary the oxide thickness, channel
length and the doping profiles and investigate how these changes affect the simulation results. These quantities are
defined as follows:

𝑑oxide = 𝑡ox = 5nm, 𝐿Ch = 100nm, 𝑁+ = 1020cm−3, 𝑃 = 1016cm−3.

The overall geometry of the simulated N-Ch MOSFET in this tutorial is illustrated in the following figure Figure
4.15.3.11:

514 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.11: The geometry of the N-Ch MOSFET design, and its corresponding geometry from the output
file user_index.vtr. The individual regions can also be found in the output file regions.vtr.

The drain-source current of the MOSFET is given by equation (4.15.3.7)

𝐼DS =
𝑊

𝐿
𝜇eff
𝑛 𝐶ox

{︃
(𝑉GS − 𝑉Th)𝑉DS −

[︃
1

2
+

√
4𝜖Si𝑞𝑁Sub𝜓B

𝐶ox

]︃
𝑉 2
DS

}︃
(4.15.3.7)

where the threshold voltage 𝑉Th is the same threshold voltage for the MOS as defined in equation (4.15.3.4). For
the limit of 𝑉DS ≪ (𝑉GS − 𝑉Th) equation (4.15.3.7) reduces to:

𝐼DS =
𝑊

𝐿
𝜇eff
n 𝐶ox(𝑉GS − 𝑉Th − 𝑉DS

2
)𝑉DS (4.15.3.8)

For the input characteristics, this equation becomes a function of the gate voltage 𝑉GS with the drain-source
voltage 𝑉DS kept constant. For the output characteristics, however, this current becomes a function of the drain-
source voltage at constant gate voltage. (But rather for a set of gate voltages.) As can be seen the current is directly
proportional to the effective mobility 𝜇eff , and the oxide capacitance of the MOS capacitor 𝐶ox. Note that 𝐶ox is
the oxide capacitance per unit area in 3D (and per channel length in 2D), and therefore has the units of𝐹/(length)2.

Input Characteristics

Using the Masetti mobility model, we have calculated the input characteristics of the MOSFET classically, which
is shown in figure Figure 4.15.3.12 on a linear scale,

and in figure Figure 4.15.3.13, on a logarithmic scale:

The above input characteristics were calculated without the shift in the drain contact. This could modify the results
in a certain way that is worth noting. More on this could be found in the Appendix: MOSFET . According to
[Sze], the extrapolation of the linear region meets the x-axis at 𝑉Th + 𝑉D

2 . Having set the 𝑉DS, to 0.2V, for the
calculation of the input characteristics, the value is very well expected to be ≈ 0.8V, since the threshold voltage
𝑉Th was calculated to be ≈ 0.7V. However we also used a small backgate bias 𝑉BS = −0.1V in the above

4.15. Transistors 515

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.12: The input characteristics of the N-Ch MOSFET calculated classically with Masetti mobility,
showing the position of the threshold voltage 𝑉𝑇ℎ.

Figure 4.15.3.13: The input characteristics of the N-Ch MOSFET calculated classically with Masetti mobility,
showing the drift and diffusion current regions on the logarithmic scale.

516 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

calculations, which slightly modifies the threshold voltage, by changing the voltage drop in the oxide to,

𝑉ox =

√︀
2𝜀Si𝑞𝑁Sub(2𝜓B − 𝑉BS)

𝐶ox
≈ 0.08V,

compared to 𝑉ox = 0.073V. However the difference is negligible in our case. Note that the above input character-
istics were calculated without a shift in the drain contact. This can also modify the results to a certain degree as
explained in the Appendix: MOSFET section.

However the input characteristics could also be calculated quantum mechanically, since we only have to define
the inversion layer region as a quantum region. The prediction is that the charge carrier inversion layer would
shift slightly away from the oxide, since the wave function amplitude would have to fall to zero at the oxide-
semiconductor interface. This phenomenon is illustrated in figure Figure 4.15.3.14

Figure 4.15.3.14: The comparison of the charge inversion layer of the N-Ch MOSFET calculated classically (right),
and quantum mechanically (left) at 𝑉GS > 𝑉Th and 𝑉DS = 0.2V.

The following set of curves in figure Figure 4.15.3.15 are the comparison of the input characteristics calculated
classically and quantum mechanically, with and without quantum decomposition method:

Figure 4.15.3.15: The comparison of the input characteristics of the MOSFET calculated classically and quantum
mechanically wit (a) linear and (b) logarithmic scales.

As the simulations shows, there is a slight difference in the input characteristics, most importantly for the leakage
current, the one below the threshold voltage. It turns out to be lower for the quantum mechanical input character-
istics. Moreover, comparison above shows that using the quantum decomposition method triggered by a keyword
quantize_y{} gives almost the same IV curves as in the case of solving the Schrödinger equation in 2D while
notably reducing time and memory required for the computation.

Output Characteristics

The output characteristics of the MOSFET is the I-V characteristics of the drain current 𝐼DS vs. the source drain
voltage 𝑉DS, for certain constant gate voltage. Therefore the output characteristics could be viewed as a double
sweep, and considering the total simulation time, it is a heavy load on the simulator. With that in mind its worth
mentioning that the issue of convergence becomes very important for the output characteristics, in the sense that
if the simulation parameters are not chosen correctly the simulations may never converge. More on that could be

4.15. Transistors 517

nextnano++ Documentation, Release 1.25.13

found in the Appendix: MOSFET . The output characteristics of the MOSFET calculated with the Masetti mobility
are shown in figure Figure 4.15.3.16:

Figure 4.15.3.16: The output characteristics of the N-Ch MOSFET calculated classically with Masetti mobility,
showing the linear and the saturation regions of the output characteristics.

The slope of the black line which covers the linear region of all the curves, can be used to calculate the channel
specific resistivity. Now, if we take the width of the MOSFET to be 15nm, the output characteristics could be
expressed in Amperes, as shown in figure Figure 4.15.3.17:

Figure 4.15.3.17: The output characteristics of the N-Ch MOSFET calculated classically with Masetti mobility,
showing the linear and the saturation regions of the output characteristics for a width of 15nm.

From the readings on the curve we can estimate the specific channel resistivity,

1

𝑅specific
=

𝐿

𝑊

𝐼DS

𝑉DS
→ 𝑅specific = 1.8kΩ.

As mentioned before, the output characteristics can be divided into two regions, the ohmic region and the saturation
region. The transition to the saturation region happen at the 𝑉DS,sat, which is give by equation (4.15.3.9):

𝑉DS,sat =
𝑉GS − 𝑉Th

𝑀
,𝑀 = 1 +

𝐾

2
√
𝜓B

,𝐾 =
√︀
𝜀𝑠𝑞𝑁A/𝐶ox (4.15.3.9)

This value obviously is meaningful for 𝑉GS > 𝑉Th, as it is zero for 𝑉GS = 𝑉Th, and the𝑀 factor is a dimensionless
factor equal to ≈ 1.051 for our system. The saturation current is then defined as the current that is measured at

518 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

𝑉DS,sat, for each 𝑉GS as defined in equation (4.15.3.10):

𝐼DS,sat =
𝑊

2𝑀𝐿
𝜇eff
𝑛 𝐶ox(𝑉GS − 𝑉Th)

2 =
𝑊𝑀

2𝐿
𝜇eff
𝑛 𝐶ox𝑉

2
DS,sat (4.15.3.10)

and plotting this current over the output characteristics, the curve crosses each 𝐼DS, exactly at the corresponding
𝑉DS,sat for that output current, as shown in figure Figure 4.15.3.18

Figure 4.15.3.18: The output characteristics of the N-Ch MOSFET calculated classically with Masetti mobility for
a width of 15nm, and the saturation current 𝐼DS,sat plot.

If we take the effective mobility to be field-independent (which is the case in our simulations), the above 𝐼DS,sat

curve could be fitted with 𝐼DS,sat = 𝐴 · 𝑉 2
DS,sat formula, where 𝐴 is estimated at 𝐴 ≈ 2.475 · 10−5. Note that, the

quadratic curve does not meet the output current curves at the points, where they are supposed to meet (at 𝑉 2
DS,sat

voltages), because, as we can see, the output charateristic curves do not really saturate after drain source voltage
reaches 𝑉DS,sat. This is due to a short channel effect called drain-induced barrier lowering (or punch-through),
which we will talk about in last section. When this effect diminishes (as we shall see), the quadratic curve meets
the output-curves exactly at the saturation voltage point 𝑉DS,sat.

From the fit parameter estimate, and the rest of the known parameters, we can however estimated the effective
mobility 𝜇eff

𝑛 independent of the field for the short channel case in an approximate way (and compared it later on
with the long-channel variant). Taking the oxide capacitance to be 𝐶ox ≈ 6.6mF/m2, the effective mobility of the
electrons is then estimated to be

𝜇eff
𝑛 ≈ 525

cm2

V · s
,

The calculated bulk mobility from the simulations is given to be ≈ 933cm2/Vs in the p-doped substrate, and
≈ 567cm2/Vs at 𝑦 = 0, which is the semiconductor-oxide interface.

Transconductance and Channel Conductance

In many cases, a MOSFET is used for signal amplification, as opposed to switching function, which is the case in
CMOS, and digital logic circuits. For this purpose quantities such as transconductance and channel-conductance
become important. The transconductance is defined as the derivative of the output current 𝐼DS with respect to the
gate voltage 𝑉GS, for a constant source-drain voltage 𝑉DS:

𝑔𝑚 =
𝜕𝐼DS

𝜕𝑉GS

⃒⃒⃒⃒
𝑉DS=const.

Figure Figure 4.15.3.19 shows the tranconductance curve and its maximum value:

4.15. Transistors 519

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.19: The transconductance of the MOSFET as a a derivative of the source-drain current 𝐼DS with
respect to the gate voltage 𝑉GS.

The maximum value of the transconductance read from the curve amounts to ≈ 7.7A/Vcm. However, it could
also be calculated manually using the equation (4.15.3.11), since we now know the value of the effective mobility:

𝑔𝑚 =
𝜕𝐼DS

𝜕𝑉GS

⃒⃒⃒⃒
𝑉DS=const.

=
𝑊

𝐿
𝜇eff
𝑛 𝐶ox𝑉DS (4.15.3.11)

which amounts to ≈ 7.9A/Vcm for an eliminated 𝑊 (𝑊 = 1). In contrast we have the channel conductance,
which is the derivative of the source-drain current 𝐼DS with respect to the source drain voltage 𝑉DS, at a constant
gate voltage 𝑉GS,as defined in equation (4.15.3.12):

𝑔D =
𝜕𝐼DS

𝜕𝑉DS

⃒⃒⃒⃒
𝑉GS=const.

=
𝑊

𝐿
𝜇eff
𝑛 𝐶ox(𝑉GS − 𝑉Th) (4.15.3.12)

which is in turn a function of the gate voltage 𝑉GS. Figure Figure 4.15.3.20 illustrates this conductance for a set of
gate voltages:

Figure 4.15.3.20: The channel conductance of the MOSFET as a derivative of the source-drain current 𝐼DS with
respect to the source-drain voltage 𝑉DS.

Note that all of the curves in the above figure are from the same family. they are only stretched and displaced with
respect to each other since the arguement (𝑉GS − 𝑉Th) acts as a displacement and multiplication factor for the
curves for each 𝑉GS.

520 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Finally we have for 𝑉DS ≥ 𝑉DS,sat, the saturation transconductance which is derivative of the quadratic current
output equation 𝐼DS in (4.15.3.13) with respect to 𝑉GS:

𝑔𝑚 =
𝜕𝐼DS

𝜕𝑉GS

⃒⃒⃒⃒
𝑉DS≥𝑉DS,sat

=
𝑊

𝑀𝐿
𝜇eff
𝑛 𝐶ox(𝑉GS − 𝑉Th) (4.15.3.13)

which would be straight line with respect to 𝑉DS, and 𝑉GS.

Comparison of Different Mobility Models

The effect of the correct mobility model for the simulations of such devices as MOSFETs cannot be overstated.
It is an established fact, that the best mobility models used for simulating the current transport in the channel are
those that are field dependent, and therefore are modified along the channel as a result of the perpendicular (and
also parallel) field. The simplest of these models is the velocity saturation model which sets a maximum value for
the drift velocity as the function of the field, and with that the mobility is limited by the maximum velocity. There
are of course also more complicated models such as the enhanced Lombardi model, or inversion layer mobility
models, which also take into account the scattering of the charge carriers at the semiconductor-oxide interface.
These are very specialized models, specifically designed for the simulation of such devices as MOSFETs, and
other field effect devices, and are implemented in specialized commercial TCAD tools used by industry. Here we
are limited to the already implemented mobility models, which hopefully in the near future will expand. These
are the Masetti model, Arora model, Minimos model, and constant mobility model. Figure Figure 4.15.3.21
illustrates the effect of different mobility models on the input characteristics of the MOSFET:

Figure 4.15.3.21: The input characteristics of the MOSFET calculated classically with different mobility models,
in normal and logarithmic scales.

In the above curves, interestingly enough the Masetti model seems to reach the saturation much sooner than the
other ones, and the constant mobility model seems to be a straight line, even though the value of the constant
mobility is much lower in the inversion layer than the rest of the mobility models (460cm2/Vs compared to 900−
1000cm2/Vs). The reason for that is that the constant mobility model defines the same electron mobility in the
inversion layer, which is a p-doped region, as well as in the source and drain contact regions, which are heavily
n-doped regions, whereas the other doping dependent mobility models have significantly different values for these
regions, and the fact is that, in order for the current to flow, it must reach the contacts, which are the heavily n-
doped regions. That is why the constant mobility produces a different input characteristics curve than the other
mobility models. Also regarding the Masetti model, the reason that this model reaches the saturation faster could
be attributed to the ratio of the mobility in the p-doped region with respect to the n-doped region, which for the
Masetti model is ≈ 12, while it is ≈ 10 for the Minimos and Arora models. Obviously, this ratio is 1 for the
constant mobility model.

The following figure Figure 4.15.3.22 shows the output characteristics calculated with the constant mobility model
set at 𝜇0 ≈ 460cm2/Vs:

We can now compare this to the Masetti mobility as the example of doping dependent models. Figure Figure
4.15.3.23 shows the comparison for a selection of the 𝑉GS values:

As the curves suggest, the difference is negligible for very high and very low gate voltages. The difference becomes
significant only for 1.5 ≤ 𝑉GS ≤ 2.5V.

4.15. Transistors 521

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.22: The output characteristics of the MOSFET calculated classically with the constant mobility
model, taking the width 𝑊 to be 15nm.

Figure 4.15.3.23: The comparison of the output characteristics of the MOSFET calculated classically with constant
mobility and Masetti models, for a selection of gate voltages, and the width 𝑊 = 15nm.

522 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Furthermore, it is worth mentioning, that a good mobility model for the inversion layer in the MOSFET should
have two field dependencies, one being the perpendicular field originating from the gate, and the other one the
parallel field coming from the source-drain bias. The velocity saturation method, which has recently been imple-
mented would only have one of these components, namely the parallel field dependency, and since it is still at the
experimental level, we did not put any results simulated with that. However the implementing velocity saturation
would have a distinguishable effect on the output characteristics of the short channel MOSFET.

Channel Length Modulation and Pinch-Off effect

• nMOSFET_2D_Dop-16-20_Schottky_Class_VG-2.0_Pinch-off.in

One last effect that is worth talking about in the context of the output characteristics, is the pinch-off effect, i.e.
the effective shortening of the channel length, which is known as the channel length modulation. It is said that
the pinch-off effect steps in at the onset of saturation 𝑉DS ≈ 𝑉DS,sat. Figure Figure 4.15.3.24 shows the electron
density along the channel for 3 different source-drain voltages (𝑉DS = 0.0V, 𝑉DS = 0.6V, 𝑉DS = 1.5V) at a fixed
gate voltage 𝑉GS = 2.0V:

Figure 4.15.3.24: The comparison of the electron density distribution in the channel for 𝑉DS = [0.0, 0.6, 1.5]V at
the gate voltage of 𝑉GS = 2.0V, showing the pinch-off effect and the effective channel shortening. The 3 pictures
of the left show the electron density n(x,y) which is contained in the file density_electron.vtr. The 3 pictures of the
right show the content of the file density_electron_1d_middle_line_x_direction.dat which contains a slice along
the x direction for constant y value where y lies in the channel for the pictures on the left.

Then the saturation current equation takes the following form:

𝐼DS,sat =
𝑊

2𝑀𝐿
𝜇eff
𝑛 𝐶ox𝑉

2
DS,sat(1 + 𝜆𝑉𝐷𝑆)

4.15. Transistors 523

nextnano++ Documentation, Release 1.25.13

with 𝜆 ≈ ∆𝐿/𝐿 ·𝑉DS. However this is not an analytical approach, and can possibly lead to inconsistencies. There
is a more precise way to calculate the effective channel length, if we take into consideration the depletion widths
of the source and drain under potential difference. Figure Figure 4.15.3.25 illustrates these depletion widths:

Figure 4.15.3.25: The illustration of the shortening of the effective channel length due to the expansion of the drain
and source depletion widths.

Using the built-in potential of the p-n junction at the source and drain 𝜓bi ≈ 0.9V, and the surface potential
𝜓s = 2𝜓B ≈ 0.713V, we can estimate the length of the effective channel, taking the depletion widths to be
approximately equal to 𝑦S and 𝑦D for source and drain, within the inversion layer (meaning that the widths also
include the surface potential at the semiconductor-oxide interface), as defined in equation (4.15.3.14),

𝑦S ≈
√︂

2𝜀s
𝑞𝑁A

(𝜓bi − 𝜓s − 𝑉BS), 𝑦D ≈
√︂

2𝜀s
𝑞𝑁A

(𝜓bi + 𝑉D − 𝜓s − 𝑉BS). (4.15.3.14)

From which then results the effective channel length (as also illustrated in figure Figure 4.15.3.25), as follows:

𝐿eff = 𝐿
′
= 𝐿− 𝑦S − 𝑦D

However, this analysis has an indirect implication with regards to the channel length. Namely, for given source and
drain depletion regions there is a minimum channel length. And indeed there is such a consideration, which is said
to separate the long channel scenario from the short channel one, meaning a channel above this minimum length
is considered a long channel (and not a short channel), and the above considerations apply only to long channel
MOSFETs. As we will later see there are also other effects and considerations which will apply to the case of short
channels (together known as the short channel effects). The minimum channel length for the long channel case is
then given by the following empirical formula in (4.15.3.15),

𝐿min = 𝐶
[︁
𝑟𝑗𝑑ox(𝑊S +𝑊D)

2
]︁1/3

, (4.15.3.15)

where 𝐶 is a constant, and 𝑊S and 𝑊D are the depletion widths of source and drain,

𝑊𝑆 =

√︂
2𝜖𝑠
𝑞𝑁𝐴

(𝜓bi − 𝑉BS),𝑊D =

√︂
2𝜀s
𝑞𝑁A

(𝜓bi + 𝑉D − 𝑉BS). (4.15.3.16)

If we take 𝑉D = 0.2V, then we have 𝑊S = 359nm, and 𝑊D = 393nm, while for the same 𝑉D = 0.2V,
the 𝑦S = 192nm, 𝑦D = 198nm. It makes sense to claim, that a negative effective channel length makes no
sense, therefore 𝐿min ≥ 𝑦S + 𝑦D. In [Brews] it is mentioned, that the constant 𝐶 for device parameters of:
𝑑ox = 25nm, 𝑟𝑗 = 330nm, 𝑁A = 1014cm−3, 𝑉DS = 1V, 𝑉BS = 0, through single point fitting, was measured to
be 0.41A1/3. For this value of the constant, our 𝐿min would have to be 198nm, which is almost half the value of
𝑦S + 𝑦D. However, for a value of 𝐶 = 0.8A1/3, we would have a 𝐿min = 390nm. Though if we take the fact,
that we increase our drain source voltage all the way to 𝑉DS = 2.0V, then 𝑦D would go as high as 540nm. Then it
would be safe to claim, that we need our channel to be at least ≈ 600nm. Now let us examine the consistency of
the 𝑦S, and 𝑦D values, for a channel length of 𝐿 = 2000nm. The following figure Figure 4.15.3.26 illustrates the
pinch-off effect and channel length modulation in the same MOSFET model with a 𝐿G = 2𝜇m:

524 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.26: The illustration of the pinch-off effect, and the channel length modulation, in the N-Ch MOSFET
with a channel length of 𝐿G = 2𝜇𝑚, calculated classically.The depletion widths at the source and drain, 𝑦S and
𝑦D, estimated from the analytical formulas given above, are indicated.

4.15. Transistors 525

nextnano++ Documentation, Release 1.25.13

So therefore, according to the calculations in figure Figure 4.15.3.26, the effective channel length should be 𝐿eff ≈
1330nm. Furthermore, it seems that the effects at the boundaries are not compatible with the calculations. However,
the shortening of the boundaries due to the applied voltage at the drain is somehow in line with the depletion length
𝑦D.

Short Channel Effects, DIBL and Punch-Through

So as we established in the previous section, our MOSFET, with a 100nm channel, length would be below the
long channel limit, and therefore would experience short channel effects. The most important of these effects is
known as the drain induced barrier lowering (DIBL), which causes the injection of extra charge carriers, resulting
in the increasing of the output current even after the saturation 𝐼DS,sat(𝑉DS,sat). This phenomenon is known as
the punch-trough effect and is present in our output characteristics in figures Figure 4.15.3.16 and Figure 4.15.3.17
of the output characteristics section. The DIBL effect is shown in figure Figure 4.15.3.27, comparing two channel
lengths:

Figure 4.15.3.27: The illustration of the drain induced barrier lowering (DIBL) in 100nm gate-length MOSFET,
compared to the 2000nm gate-length variant (where there are no barrier lowering).

In order to recognize the punch-through effect, the sweep of the gate-length should be performed at high drain-

526 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

source voltages (for example 𝑉DS = 2.0V) with the input characteristics on a logarithmic scale, which then show
if the drift current is limited due to the gate length of the MOSFET. Figure Figure 4.15.3.28 shows this effect:

Figure 4.15.3.28: The punch-through effect for a set of channel lengths in MOSFET apparent in the input charac-
teristics (calculated with minimum density of 10𝑒4).

As it could be seen in Figure 4.15.3.28, the MOSFET with gate-length of 𝐿𝐺 ≤ 400nm would definitely suffer
from the punch-through effect. However, one could be safe with a channel length of 500nm or 600nm. Let us now
examine the effect of channel length on the normal input characteristics, namely at low drain source voltage. Using
the Masetti mobility, the effect of increasing the channel length is illustrated in figure Figure 4.15.3.29:

Figure 4.15.3.29: The effect of increasing the channel length on the input characteristics at 𝑉DS = 0.2V.

So therefore we expect, that our input characteristics will be the same for a channel length of 400nm or above using
any of the mobilities (Masetti, or constant, or any other), as long as there is no field-dependent saturation in the
mobility model. In the following figure Figure 4.15.3.30 let us estimate the threshold voltage for an ideally long
channel MOSFET variant (𝐿G = 600nm):

From which it could be concluded, that the threshold voltage is 𝑉Th ≈ 0.87V. Consequently the output character-
istics for the 𝐿G = 600nm MOSFET is shown in figure Figure 4.15.3.31:

As we can see in the above figure, the quadratic curve fits the output current curves exactly at the proper voltage
point, which is 𝑉DS,sat. The fit factor for this MOSFET variant is ≈ 6.19 × 10−6. Using this fitting factor, and

4.15. Transistors 527

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.30: The input characteristics of the long-channel𝐿G = 600nmMOSFET, calculated with the Masetti
mobility, showing the value of the threshold voltage 𝑉Th.

Figure 4.15.3.31: The output characteristics of the long-channel𝐿G = 600nm MOSFET, showing the diminishing
of DIBL effect.

528 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

taking into consideration the new channel length 𝐿𝐺 = 600nm, we get for the effective mobility:

𝜇eff
𝑛 ≈ 788

cm2

V · s

The calculated mobility from the simulation is once again 933cm2/Vs in the substrate, however it is 576cm2/Vs
at 𝑦 = 0 coordinate.

Appendix: MOSFET

In the last section we found out, from the comparison of the input characteristics at high drain-source voltage
𝑉DS = 2V, that the MOSFET device with a gate length of smaller than 𝐿 ≤ 400nm, would suffer from the
punch-through effect. However, if we further shorten our gate length below 100nm, the situation would even be
worse. Namely the leakage current would be so high, that even at very low source-drain voltages 𝑉DS = 0.2V,
the MOSFET would conduct, even at gate-voltages below the threshold voltage 𝑉GS < 𝑉Th, and therefore the
switching capability of the MOSFET would be diminished and eliminated. Figure Figure 4.15.3.32 illustrates this
phenomenon:

Figure 4.15.3.32: The comparison of input characteristics of the N-Ch MOSFET calculated quantum mechanically
with the Masetti mobility, showing the leakage current in the input characteristics.

As the above input characteristics curves show, for gate-length below 100nm there is basically no valid switching
function possible, as the drift current has already started at 𝑉GS = 0V for 𝐿𝐺 = 75nm. This is basically to say
that, at higher drain-source voltages the leakage curremt is actually more dominant to the channel inversion layer
current, which can be switched on and off. It is also worth noting that the leakage current takes place inside the
bulk of the MOSFET at the bottom of source drain doped region as figure Figure 4.15.3.33 shows:

Figure 4.15.3.33: The norm of the leakage current in 𝐿𝐺 = 75nm MOSFET, at zero gate-voltage 𝑉𝐺𝑆 = 0,
flowing within the bulk.

If we even consider the 𝐿𝐺 = 25nm MOSFET, there are certain quantum mechanical affects could be observed.

4.15. Transistors 529

nextnano++ Documentation, Release 1.25.13

Using the energy_resolved_density{ }, one could observe spacial confinement within the channel at different energy
levels. The code has to include the following lines:

classical{
...
...

energy_distribution{
min = -0.5
max = 1.0
energy_resolution = 0.001
only_density_quantum_regions = yes

}

energy_resolved_density{
min = -0.5
max = 1.0
energy_resolution = 0.001
only_density_quantum_regions = yes
output_energy_resolved_densities{}

}

}

But to be able to see the quantum mechanical effects, lets us first take a look at the classical energy resolved densities
in the channel and the source-drain doping regions (for that the only_density_quantum_regions flag has to
be set to no in the energy_resolved_density{} group). The classical energy resolved densities are shown in
figure Figure 4.15.3.34:

Now let us look at the same energy resolved densities in the MOSFET source and drain region, obtained using the
quantum mechanics alone:

In the above figure we can clearly see that compared to the classical density, the quantum mechanical density
indicate quantum confinement in the source drain doping regions. Furthermore, as we shall see in figure Figure
4.15.3.36, also the density in the inversion layer shows quantum confinement for different discrete energy levels:

As we can see there is clearly two different quantum confined modes in the inversion layer of the channel for this
MOSFET.

With regards to the issue of convergence for the output characteristics, the convergence parameters become very
relevant, since for the wrong set of parameters, the simulations may very well never converge and if so might take a
significant amount of time. The key parameter to keep in mind is the ‘’alpha_fermi” parameter in current-poisson{
} calculations, which would decide the fate of the calculations. This parameter needs to be chosen corrently, and
also since it will be dynamically reduced, the alpha_scale parameter also need to be set appropriately, with a
relatively small alpha_iterations (default is 1000, which is very high!!!), so that a quick adjustment can be
achieved if the parameter is too large. One also needs to significantly increase the number of iterations from the
default 100, to a few thousand. This so called under-relaxation parameter for the quasi-Fermi level is important
due to the fact that it decides the volume of the search for the solutions.

Last update: nnnn/nn/nn

4.15.4 Two-dimensional electron gas in a Si MOSFET

• Header

• Introduction

530 Chapter 4. Tutorials

https://www.nextnano.com/nextnanoplus/software_documentation/input_file/run.htm
https://www.nextnano.com/nextnanoplus/software_documentation/input_file/run.htm

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.34: The classical energy resolved density in the 𝐿G = 25nm MOSFET at three different energy
levels.

4.15. Transistors 531

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.35: The quantum mechanical energy resolved density in the MOSFET source and drain regions,
showing spacial quantum confinement at discrete energy levels.

532 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.3.36: The quantum mechanical energy resolved density in the inversion layer of the MOSFET-channel,
at two different energy levels, showing the standing wave pattern, which indicates quantum confinement.

4.15. Transistors 533

nextnano++ Documentation, Release 1.25.13

• Layer sequence

• Calculations

• Results

• Electron sheet density in the inversion channel as a function of applied gate voltage

Header

Files for the tutorial located in nextnano++\examples

• 2DEG_Si_MOSFET_1D_nnp.in

Main adjustable parameters in the input file:
• parameter $min_density_e

• parameter $max_density_e

• parameter $min_density_h

• parameter $max_density_h

Relevant output files:
• bias_*\bandedges.dat

• bias_*\Quantum\probabilities_shift_Quantum_region_X1.dat

• bias_*\Quantum\probabilities_shift_Quantum_region_X2.dat

• bias_*\Quantum\density_electron.dat

• integrated_density_electron.dat

Introduction

In this tutorial, you can learn how to obtain carrier sheet densities in the inversion layer of MOSFET.

Layer sequence

The table below shows the materials, their widths, and their dopant concentrations for this tutorial.

material width (nm) doping
contact 10
p-Si 99 5× 1017 cm−3

SiO2 5
n-Si (poly-Si) 54 3× 1019 cm−3

Gate contact 1

The applied gate voltage leads to confined electron states at the p-Si/SiO2 interface (n-type inversion layer)
whereas the holes are repelled from the p-Si/SiO2 surface towards the interior of the device (i.e. to the left side).

An applied source-drain voltage in the plane of the inversion layer will lead to a flow of current which depends on
the sheet density in the inversion layer. The magnitude of the current is governed by the applied gate voltage, i.e.
the gate controls the sheet density and thus switches the current on or off (MOSFET, metal-oxide-semiconductor
field effect transistor).

534 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Calculations

The temperature was set to 300 K. Self-consistent solution of the 1D-Schrödinger-Poisson equation within single-
band effective-mass approximation (using ellipsoidal effective mass tensors) for the (Delta) conduction band edges.

We vary the gate voltage from 0 V to 2.5 V in steps of 0.1 eV.

Results

The following two figures show the band profiles and the electron density for two different gate voltages:

Figure 4.15.4.1: 0.7 V (The electron ground state is above the electron Fermi level 𝐸𝐹,𝑛)

Figure 4.15.4.2: 2.5 V (The electron ground state is below the electron Fermi level𝐸𝐹,𝑛 and thus occupied, leading
to a large quantum mechanical density)

Figure 4.15.4.1: The calculated band edges are shown in (a). The quasi Fermi level of electrons𝐸𝐹,𝑛 drops 0.7 eV
from p-Si to n-Si due to the gate bias. The calculated electron density 𝑛 is overlaid on the band diagram in (b).

The amplitude of the ground state 𝜓2
1 is above 𝐸𝐹,𝑛 as you can see.

Figure 4.15.4.2: The calculated band edges are shown in (a). The quasi Fermi level of electrons𝐸𝐹,𝑛 drops 2.5 eV
from p-Si to n-Si due to the gate bias. The calculated electron density 𝑛 is overlaid on the band diagram in (b).

The amplitude of the ground state 𝜓2
1 is below 𝐸𝐹,𝑛 as you can see.

In the figures above, cb and vb represent the conduction band and the valence band, respectively.

In the poly-silicon on the right side of the SiO2 barrier, the electrons get depleted from the oxide interface.

Due to the fact that the quasi Fermi level is nearly constant outside the SiO2 barrier, almost no current is flowing.
Inside the SiO2 barrier, the quasi Fermi level has a step-like feature. However, as the electron density is close to
zero inside the barrier, almost no current is eventually flowing.

The ground state electron level is associated with the longitudinal electron mass (𝑚longitudinal = 0.916 𝑚0).
On the other hand, the second and the third eigenstate (which are degenerate) are associated with the transversal

4.15. Transistors 535

nextnano++ Documentation, Release 1.25.13

electron mass (𝑚transversal = 0.190 𝑚0). Due to this degeneracy, only two rather than three Schrödinger equations
have to be solved: (a) 𝑉 (𝑧),𝑚 = 𝑚transversal = 0.190 𝑚0 (b) 𝑉 (𝑧),𝑚 = 𝑚longitudinal = 0.916 𝑚0 The potential
𝑉 (𝑧) that enters into the Schrödinger equation is the same in these two cases.

The eigenvalues for 𝑚longitudinal are contained in bias_*\Quantum\probabilities_shift_Quantum_region_X1.dat.
The eigenvalues for 𝑚transversal are contained in bias_*\Quantum\probabilities_shift_Quantum_region_X2.dat.

At 2.5 eV, the energy spacing between the two lowest electron states is of the order 100 meV (in the case of
the longitudinal effective mass). At 2.5 eV, the energy spacing between the two lowest electron states is of the
order 130 meV (in the case of the transversal effective mass). At 2.5 eV, the energy spacing between the electron
ground state of the longitudinal effective mass and the ground state of the transversal effective mass is of the order
70 meV. Thus, in this case, one can safely assume that only first subband is occupied, i.e. the electron ground
state with the longitudinal mass.

(to be fixed)

Electron sheet density in the inversion channel as a function of applied gate voltage

The file bias_*\Quantum\density_electron.dat` contains the electron density across the MOSFET. Since the p-Si
region, where the inversion channel is located, extends from 𝑥 = 0 nm to 𝑥 = 99 nm, you have to integrate
the electron density over the region to obtain the sheet density. To do it on nextnano++, structure{ region {
integrate } } is used as following (structure{ region{ integrate{ } } }).

109 region{
110 line{ x = [$itf_start_contact, $itf_p_Si_SiO2] }
111 binary{ name = "Si" }
112 doping{
113 constant{
114 name = "B_acceptor"
115 conc = $acceptor_conc
116 }
117 }
118 integrate{ electron_density{} }
119 }

The output is in the file integrated_density_electron.dat.

Figure 4.15.4.3 shows the electron sheet density of the p-Si inversion layer.

Figure 4.15.4.3: The electron sheet density of the p-Si inversion layer is shown.

536 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

To obtain the capacitance-voltage characteristics, you have to calculate the derivative of the sheet density.

Last update: 18/12/2024

4.15.5 Electron wave functions of a 2D slice of a Triple Gate MOSFET
In this tutorial we demonstrate the 2D simulation of a Triple Gate MOSFET. We solve the two-dimensional
Schrödinger and Poisson equations self-consistently for a 2D slice. We would see the difference between the
electron densities caluculated quantum mechanically and classically.

The relevant input files are as follows:

• 2DSi_TGMOS_2Dcut_atGate_cl_nnp.in

• 2DSi_TGMOS_2Dcut_atGate_qm_nnp.in

• 2DSi_TGMOS_2Dcut_atGate_qm_iso_nnp.in

• 3DSi_TGMOS_5 nm_SD0V_G0V_qm.in

• 3DSi_TGMOS_5 nm_SD0V_G05V_qm.in

If you want to obtain the input files that are used within this tutorial, please contact support [at] nextnano.com.

2D Simulation

Structure

A Triple Gate MOSFET is a nanowire if the dimensions along the x and y directions are only a few nanometers,
thus quantization effects have to be taken into account. The structure considered is as follows:

• The Si channel has a rectangular shape with a width of 5 nm and a height of 5 nm.

• The Si channel is surrounded by SiO2 (thickness 1.5 nm).

The Si/SiO2 nanowire is surrounded by a Gate (at the left and right side, and at the top).

The following schematic shows a 2D slice of a 3D Triple Gate MOSFET.

Simulation Details

In this tutorial we will only simulate this 2D slice and not the whole 3D structure.

We apply a voltage of 0.5 V to the Gates and solve the two-dimensional Schrödinger and Poisson equations
self-consistently (including the SiO2 region).

There are six equivalent conduction band minima in silicon (Delta valleys). Since the constant energy surfaces are
ellipsoids, the mass tensor has the following two kinds of effective masses:

• The longitudinal mass is 0.916𝑚0.

• The transversal mass is 0.190𝑚0 (2 directions).

Therefore, we need to solve three 2D Schrödinger equations with different effective mass tensor orientations.

Our Schrödinger equations are numbered X1, X2, X3.

• X1/deg1: a) 𝑚𝑥𝑥 = 𝑚𝑙 = 0.916𝑚0, 𝑚𝑦𝑦 = 𝑚𝑡 = 0.190𝑚0

• X2/deg2: b) 𝑚𝑥𝑥 = 𝑚𝑡 = 0.190𝑚0, 𝑚𝑦𝑦 = 𝑚𝑙 = 0.916𝑚0

• X3/deg3: c) 𝑚𝑥𝑥 = 𝑚𝑦𝑦 = 𝑚𝑡 = 0.190𝑚0

The potential 𝐸𝑐(𝑥, 𝑦) that enters the Schrödinger equation is the same in these three cases.

4.15. Transistors 537

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.1: 2D slice of a 3D Triple Gate MOSFET

Figure 4.15.5.2: constant energy surface of Si conduction band

538 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

ò Note

The cases a) and b) are not identical (i.e. degenerate) because the potential is not symmetric with respect to
exchanging x and y coordinates.

The following keyword and specifier can be used to output the effective mass tensors (1/𝑚𝑖𝑗).

nextnano++
output{

...
material_parameters{

...
charge_carrier_masses{

boxes = yes
}

}
}

Results

Electron wave functions |𝜓2|

• 2DSi_TGMOS_2Dcut_atGate_qm_nnp.in, *_nn3.in

The lowest eigenstates for the cases a), b) and c) are the following:

• X1/deg1: a) 𝑚𝑥𝑥 = 𝑚𝑙 = 0.916𝑚0, 𝑚𝑦𝑦 = 𝑚𝑡 = 0.190𝑚0

Figure 4.15.5.3: 𝐸1,𝑋1 = −26 meV, 𝐸2,𝑋1 = −1 meV, 𝐸3,𝑋1 = 77 meV

Here, the heavier mass is along the x direction, and the lighter mass along the y direction. The en-
ergy spacing between the two lowest subbands is about 24 meV. The eigenvalues are contained in
bias_00000/Quantum/energy_spectrum_quantum_region_X1_00000.dat/Schroedinger_1band/ev2D_cb003_qc001_sg001_deg001_dir_Kx001_Ky001_Kz001.dat.

• X2/deg2: b) 𝑚𝑥𝑥 = 𝑚𝑡 = 0.190𝑚0, 𝑚𝑦𝑦 = 𝑚𝑙 = 0.916𝑚0

Here, the lighter mass is along the x direction, and the heavier mass along the y direction. The en-
ergy spacing between the two lowest subbands is about 35 meV. The eigenvalues are contained in
bias_00000/Quantum/energy_spectrum_quantum_region_X2_00000.dat/Schroedinger_1band/ev2D_cb003_qc001_sg001_deg002_dir_Kx001_Ky001_Kz001.dat.

• X3/deg3: c) 𝑚𝑥𝑥 = 𝑚𝑦𝑦 = 𝑚𝑡 = 0.190𝑚0

These eigenvalues have the lighter mass in the x and y directions. Consequently, their en-
ergies are much higher than in the other two Schrödinger equations. The energy spacings
between the lowest subbands is of the order 140-150 meV. The eigenvalues are contained in
bias_00000/Quantum/energy_spectrum_quantum_region_X3_00000.dat/Schroedinger_1band/ev2D_cb003_qc001_sg001_deg003_dir_Kx001_Ky001_Kz001.dat.

4.15. Transistors 539

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.4: 𝐸1,𝑋2 = −28 meV, 𝐸2,𝑋2 = 6 meV, 𝐸3,𝑋2 = 82 meV

Figure 4.15.5.5: 𝐸1,𝑋3 = 16 meV, 𝐸2,𝑋3 = 167 meV, 𝐸3,𝑋3 = 173 meV

540 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(Compare the wave functions and the energies with the isotropic case as discussed further below.)

Electron density

The resulting electron density has the following shape, see Figure 4.15.5.6:

The units are 1×1018cm-3. The density has been calculated by occupying the eigenstates with respect to the Fermi
level which is at 0 eV. Note that the quantum mechanical density is close to zero near the Si/SiO2 interfaces because
the wave functions tend to zero at the SiO2 barriers.

Figure 4.15.5.6: electron density

Figure 4.15.5.7 shows the same quantum mechanical electron density together with two slices through the conduc-
tion band edges. The units are in eV and the conduction band offset between SiO2 and Si is 3.1 eV. At the gates, the
conduction band edge is set to -0.5 eV, representing the applied bias of 0.5 eV. One can clearly see that for silicon
in the middle of the nanowire the conduction band has its highest value and its lowest value close at the Si/SiO2
interface.

If one had neglected the effect of quantum confinement, then the resulting classical electron density would have
peaks near the Si/SiO2 interfaces as is shown in Figure 4.15.5.8.

• 2DSi_TGMOS_2Dcut_atGate_cl_nnp.in, *_mm3.in

Obviously, a realistic calculation of such transistors cannot be based on classical densities. The full 2D (or better
3D) Schrödinger equations have to be solved. The IV characteristics of such a quantum-mechanically calculated
Triple Gate MOSFET transistor will be discussed in another tutorial.

4.15. Transistors 541

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.7: electron density and slices through the conduction band edges

542 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.8: classical electron density calculated by 2DSi_TGMOS_2Dcut_atGate_cl.in

4.15. Transistors 543

nextnano++ Documentation, Release 1.25.13

Isotropic electron masses

Very often, for simplicity, an isotropic electron mass for the Schrödinger equation is assumed. E.g. the DOS
(density of states) electron mass of Si in the Delta minima can be calculated as follows:

𝑚*
𝑒,𝐷𝑂𝑆 = (𝑚𝑙𝑚

2
𝑡)

1/3 = (0.9160.192)1/3𝑚0 = 0.321𝑚0

In this case, only one Schrödinger equation has to be solved (in contrast to three equations as described above).

The wave functions and energies in this case are:

• 𝑚𝑥𝑥 = 𝑚𝑦𝑦 = 𝑚𝐷𝑂𝑆 = 0.321𝑚0

Figure 4.15.5.9: 𝐸1 = −21 meV, 𝐸2 = 69 meV, 𝐸3 = 75 meV, 𝐸3 = 166 meV

Figure 4.15.5.10: 𝐸5 = 262 meV, 𝐸6 = 270 meV, 𝐸7 = 360 meV, 𝐸8 = 360 meV

The wave functions |𝜓2| look very similar as in the case of “X3/deg3: c)” (see above) where the masses are
isotropic in the (x,y) plane but here, the energy spacings between different subbands are smaller (around 90-100
meV) because the DOS mass is larger than the transversal masses.

The eigenvalues are contained in bias_00000/Quantum/energy_spectrum_quantum_region_X3_00000.dat/Schroedinger_1band/ev2D_cb003_qc001_sg001_deg001_dir_Kx001_Ky001_Kz001.dat.

3D simulation of the Triple Gate MOSFET

The following figures show the results of the self-consistent 3D Schrödinger-Poisson solution of this Triple Gate
structure (Si channel length = 25 nm, source region length = 10 nm, drain region length = 10 nm, constant doping
profile in source and drain region with a doping concentration of 1× 1020 cm-3 (fully ionized)

The plots show the isosurfaces of the electron densities along 2D slices through the Triple Gate MOSFET. Figure
4.15.5.12 and Figure 4.15.5.13 also show 1D slices of the conduction band profiles and 1D slices of the electron
densities in the middle of the device.

The classical densities would look similar to the classical densities of the 2D calculations shown above.

544 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.11: The whole 3D structure of this triple gate MOSFET and electron density through a 2D slice

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.15.6 Single-electron transistor - laterally defined quantum dot
Input files:

• SET_Scholze_IEEE2000_1D_nnpp.in

• SET_Scholze_IEEE2000_3D_cl_nnpp.in

• SET_Scholze_IEEE2000_3D_top_gates_cl_nnpp.in

ò Note

If you want to obtain the input files that are used within this tutorial, please check if you
can find them in the installation directory. If you cannot find them, please submit a Support
Ticket.

Scope:
In this tutorial, we simulate an𝐴𝑙𝐺𝑎𝐴𝑠/𝐺𝑎𝐴𝑠 heterostructure grown along the z direction. The
tutorial is based on [Scholze2000].

Introduction

The 𝐴𝑙𝐺𝑎𝐴𝑠/ 𝐺𝑎𝐴𝑠 heterostructure leads to a two-dimensional electron gas (2DEG). By applying a gate voltage
on top of the structure in the (𝑥, 𝑦) plane, one is able to deplete the 2DEG and a laterally defined QD is formed.
By adjusting the gate voltage, one is able to tune the number of electrons that are inside the QD.

Figure 4.15.6.1 shows the conduction band edge 𝐸c (𝑥, 𝑦) and the electron density 𝑛(𝑥, 𝑦) for the 2DEG plane,
i.e. at 𝑧 = 8 nm below the 𝐺𝑎𝐴𝑠/ 𝐴𝑙𝐺𝑎𝐴𝑠 heterojunction.

4.15. Transistors 545

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.12: closed channel, 𝑉𝑆𝐷 = 0.0V, 𝑉𝑆𝐺 = 0.0V

546 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.5.13: open channel, 𝑉𝑆𝐷 = 0.0V, 𝑉𝑆𝐺 = 0.5V

4.15. Transistors 547

nextnano++ Documentation, Release 1.25.13

Figure 4.15.6.1: Conduction band edges (green), electron density (red) and geometry of the top gates (blue).

We divide the tutorial into two parts:

• In part 1, we simulate the heterostructure along the 𝑧 direction and neglect the gates. (1D simulation: self-
consistent Schrödinger-Poisson equation), SET_Scholze_IEEE2000_1D_nnpp.in

• In part 2, we solve the 3D Poisson equation to study the effect of the gates. (3D simulation: only Poisson
equation using a classical density), SET_Scholze_IEEE2000_3D_top_gates_cl_nnpp.in

Part 1: 1D simulation (self-consistent Schrödinger-Poisson)

Figure 4.15.6.2 shows the calculated conduction band edge and the electron density of the heterostructure. The
results are similar to Fig. 4 in [Scholze2000].

At the left boundary, a Schottky barrier of 0.6 V has been assumed. At 𝑧 = 20 nm, a 𝛿-doping layer is present.
The Fermi level is assumed to be constant at 𝐸F = 0 eV. The ground state wave function (Ψ1) is ~8 meV below the
Fermi level and dominates the electron density. The first excited state (Ψ2) is ~3 meV above the Fermi level, the
second excited state (not shown) is 19 meV above the Fermi level.

Part 2: 3D simulation with top gates (Poisson equation only)

Figure 4.15.6.3 shows the 3D structure that we are going to simulate.

Figure 4.15.6.4 shows two 2D slices through the lateral (𝑥, 𝑦) plane at a distance of 8 nm below the 𝐴𝑙𝐺𝑎𝐴𝑠/
𝐺𝑎𝐴𝑠 interface. The results are similar to Fig. 5 in [Scholze2000]. At the top, the four gates are shown.

Last update: nnnn/nn/nn

548 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.6.2: Conduction band edge profile (black), electron density (green) and Fermi levels (cyan) of 1D
simulation.

Figure 4.15.6.3: Device structure (3D)

4.15. Transistors 549

nextnano++ Documentation, Release 1.25.13

Figure 4.15.6.4: In the middle, the electron density is shown. The electron density has been calculated classically.
At the bottom, the conduction band edge is shown.

550 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.15.7 — DEV — Ultrathin-body DG MOSFET with 2-nm channel

. Warning

This tutorial is under development.

Tags: #FET

Contents

• Double Gate MOSFET

• Input file

• Electron densities

• I-V characteristics

Files for the tutorial located in nextnano++\examples\transistors

• DG-MOSFET-2-nm_zb_IV_2D_classical.in (Figure 4.15.7.2, Figure 4.15.7.4, Figure 4.15.7.7)

• DG-MOSFET-2-nm_zb_IV_2D_quantum.in (Figure 4.15.7.2, Figure 4.15.7.6)

• DG-MOSFET-2-nm_zb_IV_3D_classical.in (Figure 4.15.7.2, Figure 4.15.7.4, Figure 4.15.7.7)

Parameters
• $Temperature – temperature of the crystal and electrons

• $SourceDrainVoltage – bias between the source and drain

• $DopingConcentration – doping concentration of the source and drain

Output files
• Structure\last_region.avs.fld (Figure 4.15.7.2)

• Structure\contact.avs.fld (Figure 4.15.7.2)

• bias_xxxxx\density_electron.avs.fld (Figure 4.15.7.4, Figure 4.15.7.5, Figure 4.15.7.6)

• IV_characteristics.dat (Figure 4.15.7.7)

Double Gate MOSFET

This tutorial aims to simulate the I-V characteristics of a double gate metal oxide semiconductor field effect tran-
sistor (DG MOSFET). The main idea of a DG MOSFET is to control the Si channel very efficiently by choosing
the Si channel width to be very small and by applying a gate contact to both sides of the channel. This concept
helps to suppress short channel effects and leads to higher currents as compared with a MOSFET having only one
gate.

The geometry of the simulated Double Gate MOSFET structure is shown in Figure 4.15.7.1. The width of the Si
channel is 2 nm. The distance between the two gates is 6 nm, i.e., the isolating SiO2 is 2 nm thick on each side.
The width of the two gates is 20 nm. The distance between source and drain is 60 nm. The widths and the lengths
of source, drain, left, and right doped source regions are 10 nm x 10 nm each. The length of the 2 nm Si channel
(without the square doped source and drain regions) is 40 nm.

4.15. Transistors 551

nextnano++ Documentation, Release 1.25.13

Figure 4.15.7.1: Geometry of the simulated Double Gate MOSFET.

The material regions defined in the input file for the nextnano++ simulations are shown in Figure 4.15.7.2. The
blue squares (Si) are n-doped with a concentration of 1 · 1020 cm−3. The 2 nm channel is n-doped with the same
concentration from 20 nm to 30 nm and from 50 nm to 60 nm.

A constant bias of 0.0 V and 0.2 V is applied to source and drain, respectively. At the two gates we apply Schottky
barriers of 3.443 eV, and sweep over the applied bias from 0V to 1V.

Figure 4.15.7.2: Schematic top view of the material regions defined in the nextnano++ simulations.

The numerical grid employed in the simulations is shown in Figure 4.15.7.3.

Input file

For the simulations, the following parameters, which are specified in the corresponding input file DG-MOSFET-2-
nm_zb_IV_2D_classical.in, are used:

• The lattice temperature is taken to be 300 Kelvin.

• The classical current and nonlinear Poisson equations are solved self-consistently without including the effect
of strain.

• A two-dimensional simulation is performed. The overall simulation domain, that is the real space region in
which the device is defined, is taken to be a rectangle having the size 22 nm x 80 nm.

Electron densities

In Figure 4.15.7.4 the electron density inside the MOSFET structure at 0V is shown. The corresponding data is
contained in the file bias_00000\density_electron.avs.fld.

In Figure 4.15.7.5 the electron density inside the MOSFET structure at 0.2V is shown. The corresponding data

552 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.7.3: Grid lines of the Double Gate MOSFET

Figure 4.15.7.4: Electron density in units of 1 · 1018cm−3 at 0V gate voltage.

4.15. Transistors 553

nextnano++ Documentation, Release 1.25.13

is contained in the file bias_00002\density_electron.avs.fld. One can clearly see that the electron density has the
highest values at the Si− SiO2 interfaces.

Figure 4.15.7.5: Electron density in units of 1 · 1018cm−3 at 0.2V gate voltage.

For comparison, Figure 4.15.7.6 shows the quantum mechanical electron density inside the MOSFET structure
at 0.2V. The corresponding input which includes the quantum mechanical computation of the charge density is
DG-MOSFET-2-nm_zb_IV_2D_quantum.in. One can clearly see that the electron density has the highest values
in the middle of the channel and not at the Si − SiO2 interfaces. This is because the wave functions tend to zero
at the Si− SiO2 interfaces. The peak values in the source and drain regions are due to classical densities because
the quantum region did not extend over the whole source and drain regions.

I-V characteristics

In order to test the implementation of the three-dimensional drift-diffusion current, we performed a
three-dimensional simulation of the Double Gate MOSFET. The corresponding input file is IV_DG-
MOSFET_Si_3D_classical_nnp, where we assume complete ionization of the doping atoms. We further assume
that the structure is homogeneous along the 𝑧-direction and assume the 𝑧-direction to be 10 nm long with grid
spacing of 2 nm. The calculated current values in units of [A] can be found in IV_characteristics.dat. The current
has to be divided by the length of the device along the 𝑧-direction, i.e. by 10 nm, in order to obtain it in units of
[A/m]. Figure 4.15.7.7 confirms that the 3D results are in agreement with the 2D results.

This tutorial also exists for nextnano3.

Last update: 21/10/2024

4.15.8 Ultrathin-body DG MOSFET with 5-nm channel

. Warning

This tutorial is under development.

Tags: #FET

554 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.7.6: Quantum mechanical electron density in units of 1 · 1018cm−3 at 0.2V gate voltage.

Figure 4.15.7.7: Comparison of the current-voltage characteristics between 2D and 3D simulations.

4.15. Transistors 555

nextnano++ Documentation, Release 1.25.13

Contents

• Introduction

• Structure

• Electron density and conduction band profile

• Electron wave functions

• I-V characteristics

Files for the tutorial located in nextnano++\examples\transistors

• DG-MOSFET-5-nm_zb_IV_Birner_APPA_2006_2D_cl.in (Figure 4.15.8.1, Figure 4.15.8.2, Figure
4.15.8.3, Figure 4.15.8.4, Figure 4.15.8.7)

• DG-MOSFET-5-nm_zb_IV_Birner_APPA_2006_2D_qm.in (Figure 4.15.8.1, Figure 4.15.8.2, Figure
4.15.8.3, Figure 4.15.8.4, Figure 4.15.8.5, Figure 4.15.8.6, Figure 4.15.8.7)

Parameters
• $temperature – temperature of the crystal and electrons

• $source_drain_voltage – bias between the source and drain

• $doping_conc – doping concentration of the source and drain

Output files
• Structure\last_region.avs.fld (Figure 4.15.8.1)

• Structure\contact.avs.fld (Figure 4.15.8.1)

• bias_xxxxx\bandedges_1d_along_y.dat (Figure 4.15.8.2, Figure 4.15.8.3, Figure 4.15.8.4)

• bias_xxxxx\density_electron_1d_along_y.dat (Figure 4.15.8.2, Figure 4.15.8.3, Figure 4.15.8.4)

• bias_xxxxx\Quantum\probabilities_quantum_region_Delta*.fld (Figure 4.15.8.5, Figure 4.15.8.6)

• IV_characteristics.dat (Figure 4.15.8.7)

Introduction

This tutorial is related to the following publication: [BirnerAPhys2006] and it shows comparison of and quantum-
mechanical simulations of an ultrathin-body double gate metal oxide semiconductor field effect transistor (DG
MOSFET).

Structure

The main idea of a DG MOSFET is to control the Si channel very efficiently by choosing the Si channel width to
be very small and by applying a gate contact to both sides of the channel. This concept helps to suppress short
channel effects and leads to higher currents as compared with a MOSFET having only one gate. The structure in this
tutorial consists of an intrinsic Si channel having the length 25 nm and the width 5 nm, as shown in Figure 4.15.8.1.
The channel is connected to heavily n-type doped source and drain regions of length 10 nm each (constant doping
profile with a concentration of 1 · 1020 cm−3, fully ionized). The gates have a length of 25 nm and are separated
from the Si channel by a 1.5 nm thick SiO2 layer with static dielectric constant 𝜖 = 3.9.

In the simulations, a grid spacing of 1 nm and 0.5 nm are chosen for the 𝑥- and 𝑦-direction, respectively.

We apply a voltage of 𝑉SD = 0.5V to the drain contact. The gate voltage is varied from -0.3 V to 1.0 V in steps
of 0.1 V. At the gate a Schottky barrier of 3.075 eV is chosen to mimic the gate electrode work function which has
been assumed to be 4.1 eV.

556 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.8.1: Geometry of the DG MOSFET, which consists of source contact, n-type doped source region (Si),
Si channel (undoped), n-type doped drain region (Si), drain contact, SiO2 insulator, top gate and bottom gate.

For the mobility we employ the arora mobility model. In this model, the mobility is assumed to depend on tem-
perature (𝑇 = 300K) and on the ionized dopants (𝑁D), but is independent of the electric field. Thus, we have two
different electron mobilities:

• n-type doped Si region: 64.47 cm2/Vs

• intrinsic Si region: 1429.2 cm2/Vs

Electron density and conduction band profile

Figure 4.15.8.2 shows a slice through the middle of the device along the 𝑦-direction, i.e. through the gate contacts.
The source drain voltage is 𝑉SD = 0.5V, and the gate voltage is 𝑉G = 0.7V. Two results are shown.

First, classical calculation with self-consistent solution of the two-dimensional Poisson and current equations.
Here, the current equation is solved within a drift-diffusion model based on the classical density. For the classical
calculation the input file DG-MOSFET-5-nm_zb_IV_Birner_APPA_2006_2D_cl.in should be used.

Second, quantum mechanical calculation with self-consistent solution of the two-dimensional Poisson, Schrödinger
and current equations. Here, the current equation is solved within a drift-diffusion model based on
the quantum mechanical density. For the quantum mechanical calculation the input file DG-MOSFET-5-
nm_zb_IV_Birner_APPA_2006_2D_qm.in should be used.

The Fermi level is almost flat, i.e. constant (-0.249 eV) and very similar in both simulations. The conduction
band edge in the Si channel is lower in the case of the quantum mechanical simulation. The main difference can
be attributed to the electron density. The classical density has its maximum at the Si/SiO2 interface, because
𝐸F,n − 𝐸C has its maximum there. The quantum mechanical density is practically zero at the Si/SiO2 interface,
because the wave functions tend to zero due to the SiO2 barrier. One can clearly see that the electron density has
the highest values in the middle of the channel and not at the Si/SiO2 interfaces.

Figure 4.15.8.3 and Figure 4.15.8.4 show the conduction band edge, charge densities and Fermi levels at the voltage
of 𝑉G = 0.3V (closed channel) and 𝑉G = 1.0V (open channel), respectively. The quantum mechanical density
has different shapes at different voltages (one maximum in the middle vs. two maxima off-the-center). Note that
the axes for the electron density are scaled differently.

Electron wave functions

In our simulations we only consider electron states from the Delta{} conduction band. There are three Schrödinger
equations that have to be solved each time having the following mass tensors that enter the Hamiltonian 𝐻(𝑥, 𝑦):

1. 𝑚𝑥𝑥 = 𝑚longitudinal and 𝑚𝑦𝑦 = 𝑚𝑧𝑧 = 𝑚transversal,

2. 𝑚𝑦𝑦 = 𝑚longitudinal and 𝑚𝑥𝑥 = 𝑚𝑧𝑧 = 𝑚transversal,

3. 𝑚𝑧𝑧 = 𝑚longitudinal and 𝑚𝑥𝑥 = 𝑚𝑦𝑦 = 𝑚transversal,

with 𝑚longitudinal = 0.916𝑚0 and 𝑚transversal = 0.190𝑚0. Note that 𝑚𝑧𝑧(𝑥, 𝑦) does not enter the Hamiltonian,
but 𝑚𝑧𝑧(𝑥, 𝑦) is used to calculate the quantum mechanical density (𝑘‖ dispersion). The quantum mechanical
density for such a two-dimensional simulation is proportional to the square root of 𝑚𝑧𝑧(𝑥, 𝑦). More precisely, the

4.15. Transistors 557

nextnano++ Documentation, Release 1.25.13

Figure 4.15.8.2: Conduction band profile, electron density and Fermi energy across the DB MOSFET structure at
gate voltage 𝑉G = 0.7V.

Figure 4.15.8.3: Conduction band profile, electron density and Fermi energy across the DB MOSFET structure at
gate voltage 𝑉G = 0.3V.

558 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.15.8.4: Conduction band profile, electron density and Fermi energy across the DB MOSFET structure at
gate voltage 𝑉G = 1V.

quantum mechanical density is obtained for each grid point by evaluating

𝑛(𝑥, 𝑦) = 𝑔spin,valley

√︂
𝑚𝑥𝑥𝑘B𝑇

2𝜋ℏ2
∑︁
𝑖

⃒⃒
𝜓𝑖(𝑥, 𝑦)

⃒⃒2 ℱ−1/2

[︀
(𝐸F − 𝐸𝑖)/𝑘B𝑇

]︀
,

which implies:

• summation over all eigenstates 𝑖

• evaluation of the square of the wave function
⃒⃒
𝜓𝑖(𝑥, 𝑦)

⃒⃒2
• weighting

⃒⃒
𝜓𝑖(𝑥, 𝑦)

⃒⃒2 with the Fermi-Dirac integral ℱ−1/2

[︀
(𝐸F − 𝐸𝑖)/𝑘B𝑇

]︀
, which includes the Γ(1/2)

pre-factor of the Fermi-Dirac integral

• multiplication by a factor which includes the square root of𝑚𝑥𝑥𝑘B𝑇/(2𝜋ℏ2) and the spin and valley degen-
eracy 𝑔spin,valley.

Most of the wave functions are located in the source and drain region. In Figure 4.15.8.5 and Figure 4.15.8.6, the
lowest wave functions 𝜓2, which contribute to the quantum mechanical charge density in the region where the 1D
slice was taken (i.e. in the middle of the device (𝑉G = 0.7V, 𝑉SD = 0.5V)), are shown. The Fermi energy along
the 1D slice through the middle of the device lies at -0.249 eV. The states are labelled from top to bottom:

• deg1: 35th state with 𝐸35 = −0.215 eV (𝜓2 is zero at the 1D slice which can be seen in Figure 4.15.8.6)

• deg1: 32nd state with 𝐸32 = −0.224 eV (25 meV above Fermi level)

• deg3: 13th state with 𝐸13 = −0.226 eV (23 meV above Fermi level)

• deg2: 32nd state with 𝐸32 = −0.250 eV (below Fermi level, corresponding to 2nd subband)

• deg2: 25th state with 𝐸25 = −0.277 eV (below Fermi level, corresponding to 1st subband)

ò Note

The states are sorted by eigenenergies, but their distance is not equivalent to their energy spacing.

Here, deg1 are the states originating from the valleys having the light, transversal mass perpendicular to the channel
(i.e. these states have higher energies), deg3 are the states originating from the valleys having the light, transversal
mass in the plane of the channel 𝑚𝑥𝑥 = 𝑚𝑦𝑦 = 𝑚transversal = 0.190𝑚0 (high energies due to light masses) and
deg2 are the states originating from the valleys having the heavy, longitudinal mass perpendicular to the channel
as is the case in standard MOSFETs (i.e. these are the states that are occupied because the energies are the lowest).

4.15. Transistors 559

nextnano++ Documentation, Release 1.25.13

Figure 4.15.8.5: Wave functions located inside the Si-channel for 𝑉G = 0.7V and 𝑉SD = 0.5V.

Figure 4.15.8.6: Wave functions located inside the Si-channel for 𝑉G = 0.7V and 𝑉SD = 0.5V (side-view).

560 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

I-V characteristics

The current-voltage (I-V) characteristic can be found in the following file: IV_characteristics.dat. The drain voltage
has been kept constant at 0.5 V and the gate voltage varied from -0.3 V to 1.0 V. The resulting I-V curve is plotted
in Figure 4.15.8.7. Due to the influence of quantum mechanics the current densities obtained from the quantum
mechanical calculations are lower than from the classical calculations.

Figure 4.15.8.7: Comparison between classical and quantum mechanical calculation of the I-V characteristics.

Note that the absolute magnitude of the current is determined mostly by the mobility model. By using a more
realistic mobility model that takes into account the dependency of the parallel and perpendicular electric fields, a
smaller current would be obtained.

Last update: 21/10/2024

4.16 Magnetic Effects

4.16.1 Fock-Darwin states of a parabolic, anisotropic (elliptical) potential in a
magnetic field

• 1D parabolic confinement along the x direction with ℏ𝜔0 = 4.6 meV (1D simulation)

• 1D parabolic confinement along the y direction with ℏ𝜔0 = 6.1 meV (1D simulation)

• 2D parabolic, anisotropic (elliptical) confinement with ℏ𝜔𝑥 = 4.6 meV and ℏ𝜔𝑦 = 6.1 meV - Fock-
Darwin-like spectrum (2D simulation)

In this tutorial we study the electron energy levels of a two-dimensional parabolic, anisotropic (elliptical) confine-
ment potential that is subject to a magnetic field. Such a potential can be constructed by surrounding GaAs with
an AlxGa1-xAs alloy that has a parabolic alloy profile in the (x,y) plane.

4.16. Magnetic Effects 561

nextnano++ Documentation, Release 1.25.13

It is a good idea to get familiar with the results of a 2D parabolic and isotropic confinement beforehand: Fock-
Darwin states of a 2D parabolic potential in a magnetic field

The input files used in this tutorial are the followings:

• 1DGaAs_ParabolicQW_infinite_4_6meV.in

• 1DGaAs_ParabolicQW_infinite_6_1meV.in

• 2DGaAs_BiParabolicEllipticQD_Austing_nnp.in

First, it is necessary to study the energy states of a 1D parabolic confinement.

1D parabolic confinement along the x direction with ℏ𝜔0 = 4.6 meV (1D simulation)

• 1DGaAs_ParabolicQW_infinite_4_6meV.in

For similar results and a discussion, we refer to this tutorial: Parabolic Quantum Well (GaAs / AlAs)

1D parabolic confinement along the y direction with ℏ𝜔0 = 6.1 meV (1D simulation)

• 1DGaAs_ParabolicQW_infinite_6_1meV.in

For similar results and a discussion, we refer to this tutorial: Parabolic Quantum Well (GaAs / AlAs)

2D parabolic, anisotropic (elliptical) confinement with ℏ𝜔𝑥 = 4.6 meV and ℏ𝜔𝑦 = 6.1 meV - Fock-
Darwin-like spectrum (2D simulation)

• 2DGaAs_BiParabolicEllipticQD_Austing.in/*_nnp.in

The electron effective mass in GaAs is 𝑚*
𝑒 = 0.067𝑚0. We assume this value for the effective mass in the whole

region (i.e. also inside the AlGaAs alloy).

Ground state wave function (:math:`psi^2`)
The following figure shows the parabolic, anisotropic (elliptical) conduction band edge confinement potential, as
well as the ground state wave function (𝜓2) at 𝐵 = 0 T calculated in nextnano++. In the middle of the sample the
conduction band edge is at 0 eV and at the boundary region the conduction band edge has the value 0.84 eV. The
radii of the ellipse are 300 nm along the x axis and 226 nm along the y axis. The parabolic confinement along the
x direction is: ℏ𝜔𝑥 = 4.6 meV

The parabolic confinement along the y direction is: ℏ𝜔𝑦 = 6.1 meV

Thus the ellipticity is roughly 4/3.

Fock-Darwin spectrum

At zero magnetic field, the eigenvalues for such a system are given by:

𝐸𝑛𝑥,𝑛𝑦
= (𝑛𝑥 +

1

2
)ℏ𝜔𝑥 + (𝑛𝑦 + 𝜔

1

2
)ℏ𝜔𝑦𝑛𝑥 = 𝑛+

1

2
|𝑙| − 1

2
|𝑙|𝑛𝑦 = 𝑛+

1

2
|𝑙|+ 1

2
|𝑙|

𝑓𝑜𝑟 𝑛 = 0, 1, 2, 3, ... 𝑙 = 0,±1,±2, ...

where 𝑛 is a radial quantum number, 𝑙 an angular momentum quantum number, 𝜔𝑥 and 𝜔𝑦 oscillator frequencies.

For more details, see A.V. Madhav, T. Chakraborty, Physical Review B 49, 8163 (1994).

562 Chapter 4. Tutorials

https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_ParabolicQW.htm
https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_ParabolicQW.htm

nextnano++ Documentation, Release 1.25.13

The eigenvalue spectrum of a 2D parabolic and isotropic potential shows a shell-like structure: Energy levels of
an “artificial atom” - 2D harmonic potential . For the anisotropic elliptical potential, this degeneracy at 𝐵 = 0 T
is lifted.

The following figure shows the calculated Fock-Darwin-like spectrum, i.e. the eigenstates as a function of magnetic
field magnitude. This is the result of nextnano3 and each of these states is two-fold spin-degenerate. However, a
magnetic field lifts this degeneracy (Zeeman splitting) but this effect is not taking into account in this tutorial.

Such a spectrum can be related to experimental transport measurements which give insight into the single-particle
energy spectrum of a quantum dot.

The rectangles in the above figure are related to the figures of the following publications:

cyan rectangle: Fig.2 of

Two-level anti-crossings high up in the single-particle energy spectrum of a quantum dot
C. Payette, D.G. Austing, G. Yu, J.A. Gupta, S.V. Nair, B. Partoens, S. Amaha, S. Tarucha
arXiv:0710.1035v1 [cond-mat.mes-hall] (2007)

green rectangle and red rectangle: Fig.2(b) and Fig.3(a) of

Probing by transport the single-particle energy spectrum up to high energy of one quantum dot with the ground
state of an adjacent weakly coupled quantum dot
D.G. Austing, G. Yu, C. Payette, J.A. Gupta, M. Korkusinski, G.C. Aers
physica status solidi (a), 508 (2007)

(Comments on red rectangle: In Fig. 3(a) of the publication by Austing et al., the ground state energy has been
subtracted from the excited states. Thus the slope of the energy spectrum look slightly different.)

4.16. Magnetic Effects 563

https://www.nextnano.com/nextnano3/tutorial/3Dtutorial_ArtificialAtom.htm
https://www.nextnano.com/nextnano3/tutorial/3Dtutorial_ArtificialAtom.htm
https://arxiv.org/abs/0710.1035v1

nextnano++ Documentation, Release 1.25.13

564 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

It is interesting to note that there are exact crossings in the calculated spectrum whereas the experiment reveals
anti-crossings. In the first reference, this difference on crossings is regarded as a crue to investigate the devia-
tions between the confining potential of realistic dots used in the experiment and the idealistic parabolic potential
assumed in the calculation.

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.16.2 Fock-Darwin states of parabolic, isotropic potential in a magnetic field

• Header

• Introduction

• 2D parabolic confinement with ℏ𝜔0 = 4 meV

– Results

• 2D parabolic confinement with ℏ𝜔0 = 3 meV - Fock-Darwin spectrum

– Results

Header

Input files
• 2DGaAs_BiParabolicQW_4meV_GovernalePRB1998_nnp.in

• 2DGaAs_BiParabolicQW_3meV_FockDarwin_nnp.in

Introduction

In this tutorial, we study the electron energy levels of a two-dimensional parabolic confinement potential that is
subject to a magnetic field. Such a potential can be constructed by surrounding GaAs with an AlxGa1-xAs alloy
that has a parabolic alloy profile in the (x,y) plane.

The magnetic field B is oriented along the z direction. B is the rotation of the vector potential A so, in this case, we
can always take the z-component of the vector potential as 0. Thus the motion in the z direction is not influenced
by the magnetic field and that of a free particle with energies and wave functions given by:

𝐸𝑧 =
ℏ2𝑘2𝑧
2𝑚*

𝑒

𝜓(𝑧) = exp(±𝑖𝑘𝑧𝑧)

For that reason, we do not include the z direction into our simulation domain, and thus only simulate in the (x,y)
plane (two-dimensional simulation).

This tutorial consists of two parts. First we benchmark the nextnano++ code to the numerical calculation in
[GovernalePRB1998]. Second we reproduce some figures of [KouwenhovenRPP2001].

The figures provided in this tutorial is the results of nextnano++ input files.

ò Note

When magnetic_field is specified in a 2D or 3D simulation of nextnano++, the Pauli equation, in which
both spin eigenfunctions are taken into consideration, is calculated instead of Schrödinger equation. Since the
splitting of energy levels due to the spin is small compared to the difference of energy levels, we call the two
states split from 𝑖th eigenstates as “𝑖th eigenstates with up-spin” or “𝑖th eigenstates with down-spin”.

4.16. Magnetic Effects 565

nextnano++ Documentation, Release 1.25.13

2D parabolic confinement with ℏ𝜔0 = 4 meV

We want to benchmark the nextnano++ code to the numerical calculation in [GovernalePRB1998].

Input file 2DGaAs_BiParabolicQW_4meV_GovernalePRB1998.in/*_nnp.in aims to reproduce the figures of eigen-
values, ground state and 14th excited state probability densities, and ground state energy as a function of magnetic
field magnitude (Fig.1, 2, 3 and 4 of the paper).

The GaAs sample extends in the x and y directions (i.e. this is a two-dimensional simulation) and has the size
of 240 nm x 240 nm. At the domain boundaries we employ Dirichlet boundary conditions to the Schrödinger
equation, i.e. infinite barriers. The grid is chosen to be rectangular with a grid spacing of 2.4 nm, in agreement
with [GovernalePRB1998].

A two-dimensional parabolic confinement potential is constructed by surrounding GaAs with an AlxGa1-xAs alloy
that has a parabolic alloy profile in the (x,y) plane. This is chosen so that the eclectron ground state has the energy:
𝐸1 = ℏ𝜔0 = 4 meV (without magnetic field).

The magnetic field is oriented along the z direction, i.e. it is perpendicular to the simulation plane which is oriented
in the (x,y) plane). (In nextnano++, the direction is automatically set to the direction perpendicular to the simu-
lation plane.) We calculate the eigenstates for different magnetic field strengths (1 T, 2 T, . . . , 20 T), i.e. we make
use of the magnetic field sweep. Since nextnano++ does not have this feature for magnetic_field so far, please use
the “Template” feature of nextnanomat (See the last section of — FREE — Double Quantum Well .)

global{
...
magnetic_field{

strength = $STRENGTH
#direction = [,,] # We must not specify this in 1D or 2D simulation

}
}

Magnetic length and cyclotron frequency
A useful quantitiy is the magnetic length (or Landau magnetic length) which is defined as:

𝑙𝐵 =

(︂
ℏ

𝑚*
𝑒𝜔𝑐

)︂1/2

=

(︂
ℏ

|𝑒|𝐵

)︂1/2

It is independent of the mass of the particle and depends only on the magnetic field strength:

• 1 T: 𝑙𝐵 = 25.6556 nm

• 2 T: 𝑙𝐵 = 18.1413 nm

• 3 T: 𝑙𝐵 = 14.8123 nm

• . . .

• 20T: 𝑙𝐵 = 5.7368 nm

The electron effective mass in GaAs is 𝑚*
𝑒 = 0.067𝑚0. We assume this value for the effective mass in the

whole region (i.e. also inside the AlGaAs alloy). In the above formula, 𝜔𝑐 is the cyclotron frequency:

𝜔𝑐 =
|𝑒|𝐵
𝑚*
𝑒

Thus for the electrons in GaAs, where 𝑚*
𝑒 = 0.067𝑚0, it holds for the different magnetic field strengths:

• 1 T: ℏ𝜔𝑐 = 1.7279 meV

• 2 T: ℏ𝜔𝑐 = 3.4558 meV

• 3 T: ℏ𝜔𝑐 = 5.1836 meV

• . . .

• 20T: ℏ𝜔𝑐 = 34.5575 meV

566 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Results

Lowest 15 eigenvalues
The following figure shows the lowest fifteen eigenvalues for a magnetic field magnitude of 𝐵 = 10 T. It
is in perfect agreement with Fig. 1 of [GovernalePRB1998]. The ground state has the energy 𝐸1↑ = 9.38
meV and 𝐸1↓ = 9.55 (at 𝐵 = 10 T). The spin-split energy, 𝑒ℏ𝐵2𝑚*

𝑒
is 0.174 meV, is calculated from our result

as 0.174 meV which is constant in all of the pair of spin states.

Probability densities (𝜓2)
The following figure shows the probability density of the ground state with up-spin (𝜓2) for a magnetic field
magnitude of 𝐵 = 10 T. It is in perfect agreement with Fig. 2(a) of [GovernalePRB1998]. The ground
states has the energy 𝐸1,↑ = 9.38 meV and 𝐸1,↓ = 9.55 (at 𝐵 = 10 T).

The left, vertical axis shows 𝜓2 in units of nm-2 (the peak value is 0.00267 nm-2).

In the same figure, the parabolic conduction band edge confinement potential is also shown. The above axis
shows the colormap of the conduction band edge values. In the middle of the sample the conduction band
edge is 0 eV, and at the boundary region, the conduction band edge has the value 0.1014 eV.

The following figure shows the probability density (𝜓2) of the 14th excited state (up-spin) (i.e. 𝐸15,↑) for a
magnetic field magnitude of 𝐵 = 10 T. It is in perfect agreement with Fig. 3(a) of [GovernalePRB1998].
14th excited states have the energy 𝐸15,↑ = 21.71 and 𝐸15,↓ = 21.88 meV (at 𝐵 = 10 T). The left, vertical
axis shows 𝜓2 in units of nm-2 (the peak value is 0.000283 nm-2).

In the same figure, parabolic conduction band edge confinement potential is also shown. The above axis
shows the colormap of the conduction band edge values. In the middle of the sample the conduction band
edge is 0 eV, and at the boundary region, the conduction band edge has the value 0.1014 eV.

Ground state energy vs. magnetic field magnitude
The following figure shows the ground state energy as a function of magnetic field magnitude. It is in perfect
agreement with Fig.4 of [GovernalePRB1998]. The ground state has the energy 𝐸1 = 4.04 meV (spin-
degenerated).

The following figure shows the magnetic field stlength dependence of the spin-split energy (𝐸1,↓ − 𝐸1,↑).
The formula of the split energy in the Pauli equation is 𝑒ℏ𝐵

2𝑚*
𝑒
. We can see the proportionality is reproduced

in our calculation. The factor is calculated as 0.0174 [meV/T].

2D parabolic confinement with ℏ𝜔0 = 3 meV - Fock-Darwin spectrum

Next we reproduce some of the figures of [KouwenhovenRPP2001].

Input file 2DGaAs_BiParabolicQW_3meV_FockDarwin.in/*_nnp.in aims to reproduce the figures of the eigenval-
ues as a function of magnetic field magnitude and the probability densities of some of eigenstates (Figs. 5(a) and

4.16. Magnetic Effects 567

nextnano++ Documentation, Release 1.25.13

568 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

4.16. Magnetic Effects 569

nextnano++ Documentation, Release 1.25.13

6(a) (which are analytical results) of the paper).

The GaAs sample extends in the x and y directions (i.e. this is a two-dimensional simulation) and has the size
of 600 nm x 600 nm. At the domain boundaries we employ Dirichlet boundary conditions to the Schrödinger
equation, i.e. infinite barriers.

A two-dimensional parabolic confinement potential is constructed by surrounding GaAs with an AlxGa1-xAs alloy
that has a parabolic alloy profile in the (x,y) plane. This is chosen so that the eclectron ground state has the energy:
𝐸1 = ℏ𝜔0 = 3 meV (without magnetic field) in agreement to the paper.

The eigenvalues of a two-dimensional parabolic potential that is subject to a magnetic field can be solved analyti-
cally. The spectrum of the resulting eigenstates is known as the Fock-Darwin states (1928):

𝐸𝑛,𝑙 = (2𝑛+ |𝑙|+ 1)ℏ[𝑤2
0 +

1

4
𝜔2
𝑐]

1/2 − 1

2
𝑙ℏ𝜔𝑐 𝑓𝑜𝑟 𝑛 = 0, 1, 2, 3, ... 𝑎𝑛𝑑 𝑙 = 0,±1,±2, ...

Note that the last term is 𝜔𝑐 and not 𝜔0 as in [KouwenhovenRPP2001]. (𝜔𝑐 = |𝑒|𝐵
𝑚*

𝑒
= cyclotron frequency, as

described before.)

Each of these states is two-fold spin-degenerate. A magnetic field lifts this degeneracy (Zeeman splitting). This
effect is taking into account only in the input file of nextnano++ but this splitting is small compared to the scale
of 𝐸𝑛,𝑙.

The degeneracy of the eigenvalues for zero magnetic field is as follows:

• the ground state is not degenerate

• the second state is two-fold degenerate

• the third state is three-fold degenerate

• the forth state is four-fold degenerate

• . . .

Applying a magnetic field, these degeneracies are lifted as the following fugure.

Results

Fock-Darwin spectrum
The following figure shows the calculated Fock-Darwin spectrum, i.e. the eigenstates as a function of mag-
netic field magnitude. The figure is in excellent agreement with Fig. 5(a) of [KouwenhovenRPP2001].

Probability densities (𝜓2)
The following figure show the probability densities (𝜓2) of some of these eigenstates for a magnetic field of
𝐵 = 0.05 T. All of them are the up-spin states. The label of the colorbar shows the actual number of each
eigenstates specified in the data file. For example, 5th state in this figure has the label “Psi^2_9[nm^-9]”.

The figures are in excellent agreement with Fig. 6(a) of [KouwenhovenRPP2001].

The parabolic conduction band edges are also shown.

Fock-Darwin spectrum in a very high magnetic fields

The following figure shows the magnetic field dependence of the lowest 30 eigen values (0~4T) and
lowest 60 eigenvalues (4~70T). We can see that eventually all states are becoming degenerate Landau
levels for very high magnetic fields. The reason is that the electrons are confined only by the magnetic
field and not any longer by the parabolic conduction band edge.

The red line shows the fan of the lowest Landau level at 1/2ℏ𝜔𝑐. The higher lying states (not shown)
will collect in the second, third, . . . , and higher Landau fans (not shown).

The left part of the figure (black region) contains exactly the same Fock-Darwin spectrum that has
been shown in the figure further above (from 0 T to 3.5 T).

This tutorial also exists for nextnano3.

570 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.16.2.1: left: (𝑛, 𝑙) = (0, 0) (1st), right: (𝑛, 𝑙) = (0, 1) (2nd)

Figure 4.16.2.2: left: (𝑛, 𝑙) = (0, 2) (4th), right: (𝑛, 𝑙) = (1, 0) (5th)

4.16. Magnetic Effects 571

nextnano++ Documentation, Release 1.25.13

Figure 4.16.2.3: left: (𝑛, 𝑙) = (2, 0) (13th), right: (𝑛, 𝑙) = (2, 2) (18th)

572 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: nnnn/nn/nn

4.16.3 Landau levels of a bulk GaAs sample in a magnetic field
In this tutorial, we study the electron energy levels of a bulk GaAs sample that is subject to a magnetic field.

The input files are the followings:

• 2DBulkGaAs_LandauLevels_nn3.in / *_nnp.in

Simulation details

The magnetic field is oriented along the z direction. The motion in the z direction is not influenced by the magnetic
field and is thus that of a free particle with energies and wave functions given by:

𝐸𝑧 =
ℏ2𝑘2𝑧
2𝑚*

𝜓(𝑧) = exp(±𝑖𝑘𝑧𝑧)

For that reason, we do not include the z direction into our simulation domain, and thus only simulate in the (x,y)
plane (two-dimensional simulation).

This plane has the size of 300 nm × 300 nm and consists of GaAs. At the domain boundaries we employ Dirichlet
boundary conditions to the Schrödinger equation, i.e. infinite barriers.

We calculate the eigenstates for different magnetic field strengths (1 T, 2 T, 3 T).

global{
...
magnetic_field{

strength = $B # [T]
}

}

Magnetic length and cyclotron frequency
A useful quantitiy is the magnetic length (or Landau magnetic length) which is defined as:

𝑙𝐵 =

(︂
ℏ

𝑚*
𝑒𝜔𝑐

)︂1/2

=

(︂
ℏ

|𝑒|𝐵

)︂1/2

It is independent of the mass of the particle and depends only on the magnetic field strength:

• 1 T: 𝑙𝐵 = 25.6556 nm

• 2 T: 𝑙𝐵 = 18.1413 nm

• 3 T: 𝑙𝐵 = 14.8123 nm

In the above formula, 𝜔𝑐 is the cyclotron frequency:

𝜔𝑐 =
|𝑒|𝐵
𝑚*
𝑒

Thus for the electrons in GaAs, where 𝑚*
𝑒 = 0.067𝑚0, it holds for the different magnetic field strengths:

• 1 T: ℏ𝜔𝑐 = 1.7279 meV

• 2 T: ℏ𝜔𝑐 = 3.4558 meV

• 3 T: ℏ𝜔𝑐 = 5.1836 meV

4.16. Magnetic Effects 573

nextnano++ Documentation, Release 1.25.13

Results

The calculated energy spectra for different magnetic fields (1 T, 2 T, 3 T) are as follows:

Landau levels
The Landau levels are analytically given by

𝐸𝑛 =

(︂
𝑛− 1

2

)︂
ℏ𝜔𝑐

where 𝑛 = 1, 2, 3, ...

574 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The number of states for each Landau level can be calculated as follows (see P.Y. Yu, M. Cardona, Fundamentals
of Semiconductors, p. 536, 3rd ed.):

𝑁 = 𝐿𝑥𝐿𝑦
|𝑒|𝐵
ℎ

=
𝐿𝑥𝐿𝑦
2𝜋𝑙2𝐵

where 𝐿𝑥 and 𝐿𝑦 are the lengths in the x and y directions (300 nm in this example) and 𝑙𝐵 is the magnetic length.
Here we ignore spin.

• 𝑁 (1 T) = 21.76 ~ 22 states per Landau level (in the figure above: 42)

• 𝑁 (2 T) = 43.52 ~ 44 states per Landau level (in the figure above: 86)

• 𝑁 (3 T) = 65.29 ~ 65 states per Landau level (in the figure above: 130)

When magnetic_field{} is specified, nextnano++ caculates the Schrödinger-Pauli equation, which takes into
account the spin. Since the interaction energy between the spin and magnetic field is small compared to the sepa-
ration of Landau levels, the number of states per Landau level calculated by nextnano++ is almost double of the
analytical result that ignores the spin.

Energy eigenvalues
For the calculations, we used the symmetric gauge 𝐴 = − 1

2𝑟 × 𝐵 = 1
2𝐵 × 𝑟 leading to the following energies

(see J.H. Davies, The Physics of Low-Dimensional Semiconductors, p. 222):

𝐸𝑛,𝑙 =

(︂
𝑛+

1

2
𝑙 +

1

2
|𝑙| − 1

2

)︂
ℏ𝜔𝑐

One can see that all states having a negative value of 𝑙 are degenerate with the states with 𝑙 = 0, i.e. the allowed
energies are independent of 𝑙 if 𝑙 < 0 (for the same 𝑛). The energies increase if 𝑙 increases (for 𝑙 > 0 and for the
same 𝑛).

This tutorial also exists for nextnano3.

Last update: nnnn/nn/nn

4.16. Magnetic Effects 575

https://en.wikipedia.org/wiki/Pauli_equation#:~:text=In%20quantum%20mechanics%2C%20the%20Pauli,with%20an%20external%20electromagnetic%20field.&text=It%20was%20formulated%20by%20Wolfgang%20Pauli%20in%201927.

nextnano++ Documentation, Release 1.25.13

4.16.4 Hole wave functions in a quantum wire subjected to a magnetic field

. Attention

This tutorial is under construction

Input files:
• QWR-magnetic-field_InAs_2D_sg_nnp.in

• QWR-magnetic-field_InAs_2D_6kp_nnp.in

Scope:
This tutorial aims to calculate the hole wavefunctions in a quantum wire, which is subject to an
applied magnetic field.

Output files:
• bias_00000/Quantum/energy_spectrum_quantum_region_HH_00000.dat

• bias_00000/Quantum/probabilities_quantum_region_HH.fld

• bias_00000/Quantum/energy_spectrum_quantum_region_kp6_00000.dat

• bias_00000/Quantum/probabilities_quantum_region_kp6_00000.fld

Structure

Similar to the 1D confinement in a quantum well, it is possible to confine electrons or holes in two dimensions, i.e.
in a quantum wire. The quantum wire structure which is simulated in this tutorial is depicted in Figure 4.16.4.1.
The quantum wire consists of InAs (blue area) and is confined by GaAs barriers (red area). Its size is 10 nm x 10
nm whereas the whole simulation dimension is 30 nm x 30 nm.

Figure 4.16.4.1: Simulated quantum wire (blue region) consisting of InAs surrounded by GaAs (red).

In our simulations we apply Dirichlet boundary conditions to the quantum region (𝜓 = 0 at the boundary). The
quantum region is defined only in the area of the quantum wire, i.e. from 10 nm to 20 nm in both 𝑥 and 𝑦 direction.
These two conditions lead to an infinite GaAs barrier, which forces the wave functions to zero at the InAs/GaAs

576 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.2: Possible configuration of rectangular grid lines. Here, the grid spacing is 0.5 nm, thus the quantum
wire (blue area) consists of 21 x 21 = 400 grid points.

quantum wire boundaries. Of course, this is not a realistic assumption, but we simplify the sample to make the
tutorial easier.

The energy levels and the wave functions of a rectangular quantum wire of length 10 nm with infinite barriers can
be calculated analytically. This way we can compare our numerical calculations to analytical results. A discussion
of the analytical solution of the 2D Schrödinger equation of a particle in a rectangle (i.e. quantum wire) with
infinite barriers can be found in e.g. [MitinKochelapStroscio1999].

The potential inside the quantum wire is assumed to be 0 eV. As effective mass we take the isotropic heavy hole
effective mass of InAs, i.e. 𝑚*

hh = 0.41𝑚0. The solution of the Schrödinger equation leads to the following
eigenvalues (where 𝑚*

hh is assumed to be negative):

𝐸𝑛1,𝑛2
=

ℏ2𝜋2

2𝑚*
hh

(︂
𝑛21
𝐿2
𝑥

+
𝑛22
𝐿2
𝑦

)︂
= −9.17meV ·

(︀
𝑛21 + 𝑛22

)︀
,

where 𝐿𝑥 and 𝐿𝑦 (with 𝐿𝑥 = 𝐿𝑦 = 10nm) are the lengths along the 𝑥 and 𝑦 direction, respectively. Here, 𝐸𝑛1,𝑛2

is the heavy hole energy in the two transverse directions, or the total heavy hole energy for 𝑘𝑧 = 0. In the effective
mass approximation, the total heavy hole energy is given by

𝐸hh = 𝐸𝑛1,𝑛2
+

ℏ2𝑘2𝑧
2𝑚*

ℎℎ

,

where 𝑘𝑧 is the wavevector along 𝑧 leading to a one-dimensional 𝐸(𝑘𝑧) dispersion, and 𝑛1, 𝑛2 are two discrete
quantum numbers due to confinement in two directions.

Generally, the energy levels are not degenerate, i.e. all energies are different. However, some energy levels with
different quantum numbers coincide, if the lengths along two directions are identical (𝐸𝑛1,𝑛2 = 𝐸𝑛2,𝑛1) or if their
ratios are integers. In our quadratic quantum wire, the two lengths are identical. Consequently, we expect the

4.16. Magnetic Effects 577

nextnano++ Documentation, Release 1.25.13

following degeneracies:

𝐸11 = −0.018343 eV (groundstate)

𝐸12 = 𝐸21 = −0.045857 eV

𝐸12 = 𝐸21 = −0.045857 eV

𝐸22 = −0.073372 eV

𝐸13 = 𝐸31 = −0.091715 eV

𝐸23 = 𝐸32 = −0.119229 eV

𝐸14 = 𝐸41 = −0.155915 eV

· · ·
𝐸18 = 𝐸81 = 𝐸47 = 𝐸74 = −0.596145 eV (Here, the degeneracy is a coincidence.)

The calculated eigenvalues for the 10 nm quadratic quantum wire can be found in the file
bias_00000/Quantum/energy_spectrum_quantum_region_HH_00000.dat. The numerical results obtained
by nextnano++ with 0.10 nm grid spacing are:

𝐸11 = 0.018341 eV

𝐸12 = −0.045845 eV (two− fold degenerate)

𝐸21 = −0.045845 eV (two− fold degenerate)

𝐸22 = −0.073348 eV

𝐸13 = −0.091653 eV (two− fold degenerate)

𝐸31 = −0.091653 eV (two− fold degenerate)

𝐸23 = −0.119156 eV (two− fold degenerate)

𝐸32 = −0.119156 eV (two− fold degenerate)

𝐸14 = −0.155721 eV (two− fold degenerate)

𝐸41 = −0.155721 eV (two− fold degenerate)

The differences between the analytical and numerical results are highlighted in red.

Single-band effective-mass approximation

The corresponding input file is QWR-magnetic-field_InAs_2D_sg_nnp.in

Hole wave functions (without magnetic field)

To turn off the magnetic field in the simulation, the variable $magnetic_field_on should be set to 0 in the input
file.

The following figures show the probability densities 𝜓2 of the four lowest energy confined hole eigenstates in an
infinitely deep 10 nm x 10 nm InAs quantum wire. Due to the symmetry of the quantum wire, the 2nd and the 3rd
eigenstate are degenerate.

Note that these wave functions were obtained by using a single-band effective mass approximation for the holes. A
more accurate and more realistic treatment would have been to use 6-band k.p. Note that the wire has been assumed
to be unstrained (which is a rather unphysical situation) for the purpose to make this tutorial easier to understand.

Hole wave functions (with magnetic field)

To include the magnetic field in the simulation, the variable $magnetic_field_on should be set to 1 in the input
file. Here, we assume a field strength of 1 T.

$magnetic_field_on = 1 # choose 1 (magnetic field on) or 0 (magnetic field␣
→˓off)
$magnetic_field_strength = 1.0 # Strength of the magnetic field [T]

578 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.3: Probability density 𝜓11(𝑥, 𝑦)
2 of the 1st heavy hole state.

Figure 4.16.4.4: Probability density 𝜓12(𝑥, 𝑦)
2 of the 2nd heavy hole state.

4.16. Magnetic Effects 579

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.5: Probability density 𝜓21(𝑥, 𝑦)
2 of the 3rd heavy hole state.

Figure 4.16.4.6: Probability density 𝜓22(𝑥, 𝑦)
2 of the 4th heavy hole state.

580 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The 𝑔-factor is explicitly set to 0 to avoid Zeeman splitting of the energy levels.

database{
binary_zb {

name = InAs
valence_bands{

HH{ mass = 0.41 g = 0}
}

}
}

In the following figures the probability densities 𝜓2 of the four lowest energy confined hole eigenstates of the
infinite InAs quantum wire under applied magnetic field are shown. The magnetic field leads to an additional
confinement in addition to the wire potential. However, for the first and forth eigenstate, the confinement does
not play an important role, whereas for the second and third it does. The effect is more dominant onto the wave
functions but not so pronounced onto the values of the eigenenergies. We observe that the degeneracy of the 2nd

and 3rd eigenstate is slightly lifted in comparison to the case where no magnetic field is applied.

Figure 4.16.4.7: Probability density 𝜓11(𝑥, 𝑦)
2 of the 1st heavy hole state with magnetic field applied.

In Figure 4.16.4.11, the probability density of the 2nd eigenstate is plotted from a different perspective.

6-band k.p approximation

The corresponding input file is QWR-magnetic-field_InAs_2D_6kp_nnp.in. Here, we used the following Dressel-
haus parameters for InAs: 𝐿 = −55.0, 𝑀 = −4.0 and 𝑁 = −55.2.

Hole wave functions - (without magnetic field)

The following figures show the probabilities densities 𝜓2 of the four lowest energy confined hole eigenstates in a
finite 10 nm x 10 nm InAs quantum wire. This time we used 6-band k.p theory to describe the hole states. Here,
the second and the third eigenstate are no longer degenerate.

Last update: nnnn/nn/nn

4.16. Magnetic Effects 581

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.8: Probability density 𝜓12(𝑥, 𝑦)
2 of the 2nd heavy hole state with magnetic field applied.

Figure 4.16.4.9: Probability density 𝜓21(𝑥, 𝑦)
2 of the 3rd heavy hole state with magnetic field applied.

582 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.10: Probability density 𝜓22(𝑥, 𝑦)
2 of the 4th heavy hole state with magnetic field applied.

Figure 4.16.4.11: Probability density 𝜓12(𝑥, 𝑦)
2 of the 2nd heavy hole state with magnetic field applied (viewed

from a different perspective).

Figure 4.16.4.12: Probability density of the 1st/2nd heavy hole state with energy eigenvalue -0.0171 eV.

4.16. Magnetic Effects 583

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.13: Probability density of the 3rd/4th heavy hole state with energy eigenvalue -0.0282 eV.

Figure 4.16.4.14: Probability density of the 5th/6th heavy hole state with energy eigenvalue -0.0294 eV.

584 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.16.4.15: Probability density of the 7th/8th heavy hole state with energy eigenvalue -0.0367 eV.

4.16.5 — DEV — Vertically coupled quantum wires in a longitudinal magnetic
field

. Attention

This tutorial is under construction

Input files:
• Double-QW_AlGaAs-GaAs_1D_nnp.in - (double square well potential)

• Parabolic-QW_1D_nnp.in - (parabolic quantum well)

• Coupled-QWRs_AlGaAs-GaAs_Mourokh_APL_2007_2D_nnp.in - (quantum wire)

Scope:
In this tutorial we study the electron energy levels of two coupled quantum wires as a function of
a longitudinal (i.e. perpendicular) magnetic field. We will compare our numerical results with
analytical calculations published in [Mourokh2007], as well as with experimental data published
in [Fischer2006].

Related output files:
• \bias_00000\Quantum\energy_spectrum_quantum_region_Gamma_00000.dat - (eigen-

state energies)

Structure

The following figure shows the layout of the structure in the (𝑥, 𝑧) plane. The blue regions are the barrier materials
(Al0.32Ga0.68As) and the red regions are 14.5 nm GaAs quantum wells that are stacked along the 𝑥 direction and
separated by a 1 nm thin Al0.32Ga0.68As tunnel barrier.

The confining potential along the 𝑦 direction is assumed to be parabolic, i.e. of the form 𝑉 (𝑦) = 𝐶𝑦2. The
constant 𝐶 is chosen such that the separation ∆𝐸𝑦 of the confined eigenstates is 10meV. From the analytical
solution of Schrödinger’s equation for a parabolic potential we know that the separation of the eigenstates is given
by [Davies1998]

∆𝐸𝑦 = ℏ𝜔0 = ℏ
√︂

2𝐶

𝑚* .

4.16. Magnetic Effects 585

nextnano++ Documentation, Release 1.25.13

Figure 4.16.5.1: Quantum wire structure.

Therefore, we have

𝐶 =
𝑚*

2

(︂
∆𝐸𝑦
ℏ

)︂2

≈ 0.4396 eV/m2.

In nextnano++ we can create the parabolic potential by using a ternary alloy with artificial material parameters
which allows for quadratic interpolation of the conduction band edge energy.

Comparison with analytical results

The following figure shows the confined eigenstates𝐸𝑧 of the coupled, symmetric QW system (1D simulation along
the 𝑥 direction). Note that the states have bonding and antibonding character. The following material parameters
were used:

• conduction band offset between GaAs and Al0.32Ga0.68As: CBO = 0.27882 eV

• electron effective mass GaAs: 𝑚e = 0.067𝑚0

• electron effective mass Al0.32Ga0.68As: 𝑚e = 0.09356𝑚0

Magnetic field
The magnetic field is oriented along the 𝑧 direction, i.e. it is perpendicular to the simulation plane which is oriented
in the (𝑥,:math:y) plane. We calculate the eigenstates for different magnetic field strengths (0T, 0.5T, 1.0T, . . . ,
16T).

A useful quantity is the magnetic length (or Landau magnetic length) which is defined as

𝑙B =

√︂
ℏ

𝑚e𝜔c
=

√︃
ℏ

|𝑒|𝐵

It is independent of the mass of the particle and depends only on the magnetic field strength:

• 1 T: 𝑙B = 25.6556 nm

• 2 T: 𝑙B = 18.1413 nm

• 3 T: 𝑙B = 14.8123 nm

586 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• . . .

• 20 T: 𝑙B = 5.7368 nm

The electron effective mass in GaAs is 𝑚e = 0.067𝑚0. Another useful quantity is the cyclotron frequency:

𝜔c =
|𝑒|𝐵
𝑚e

Thus, for the electrons in GaAs, it holds for the different magnetic field strengths:

• 1 T: ℏ𝜔c = 1.7279meV

• 2 T: ℏ𝜔c = 3.4558meV

• 3 T: ℏ𝜔c = 5.1836meV

• . . .

• 20 T: ℏ𝜔c = 34.5575meV

The one-dimensional parabolic confinement (conduction band edge confinement) was chosen so that the electron
ground state has the energy of 𝐸1 = ℏ𝜔0 = 5meV in the 1D simulation. In the 2D simulation, the ground state
has the energy: 𝐸1 = 18.64meV (without magnetic field) which corresponds approximately to

𝐸1 ≈ 𝐸𝑦,1 + 𝐸𝑧,1 = 5.03 eV + 13.86meV = 18.89meV.

(In 2D, we use a different grid resolution compared to 1D simulations.)

Comparison with experimental results

More realistic situation,

We introduce doping in the structure. Form of two delta peaks We apply a gate contact at the top of the device
(which is intended to control the energy states of the electrons)

We solve the self-consistent Schrödinger Poisson equation self-consistently.

(In comparison to the analytical results/ calculation where we do not solve Poisson equation and therefore the effect
of space charges is not included). Including the effect of space charges and the applied bias, leads to the vanishing
alignment of the energy states. Non-zero anti-crossing between the tunneling states.

Last update: 17/07/2024

4.17 Numerics

4.17.1 General
This set of tutorials focus on explaining numerical side of simulations with nextnano++ from the practical point
of view.

Convergence

Introduction

Simulations of Schrödinger-Poisson converge self-consistently, and almost automatically, thanks to an algorithm
proposed some years ago by Alex Trellakis, one of our talented developers. This algorithm was implemented in
nextnano++ and has been very successful for several devices. However, when the current equation is included
in this system, the convergence to the solution becomes a challenge due to the nature of this equation. For some
devices, the system of equations becomes very unstable and a certain ability to reach the convergence is required.
Especially for systems where the carrier density fluctuates from large values to almost zero in certain regions or
interfaces, the process of obtaining convergence becomes more critical and acting in a strategic way is very helpful.

4.17. Numerics 587

nextnano++ Documentation, Release 1.25.13

Setting the input file for performing self-consistent current-Schrödinger-Poisson computations

Self-consistent current-Schrödinger-Poisson computations can be specified in the section run{ } of the input file,
through the statements

• current_poisson{ }

• quantum_current_poisson{ }

The first statement is mandatory, and it provides a first estimate of the electrostatic potential and the (quasi-)Fermi
levels, even before including the quantum calculations to the system. In principle, this is the minimum information
required to start the simulations. All numerical parameters are adjusted automatically internally in the code until the
solution is found or the maximum number of iterations is reached. Unfortunately, given the huge variety of devices
the program can simulate, universal parameters are not possible to be predicted in advance. For this reason, in order
to give to the user more control of the convergence process, some parameters can optionally be specified within
the subsection quantum_current_poisson{ }. Some examples are the following parameters: alpha_Fermi,
residual, residual_fermi and iterations.

It is not our purpose to describe each of these parameters in this document, but to provide some guidance how to
control the numerical process with the minimum effort as possible. The list of all parameters, its description, range
of values and default can be found on the section run{ }.

Talking about convergence

Before proceeding, it is important to discuss what the expression “to get convergence” means. Actually,
nextnano++ has to solve three groups of equations for electrons and for holes: current (also called, continuity)
equation, Schrödinger equation and Poisson equation. As default the values of carrier densities, Fermi levels and
potential are kept iteratively consistent from one step to the other. Internally the program computes for each equa-
tion a so-called cost function, that represents a metric of how close the obtained solutions are close to the “exact”
one. For example, one way the cost function can be defined is by the difference of left and the right of each equation.
Then, after each iteration the results of the cost function are called residuals.

Getting convergence means to find the conditions that minimize the cost functions. A good analogy of this process
is the task of finding the deepest location of a valley in a mountain chain. In order to reach this valley, having some
strategy concerning the necessary moves in some direction can reduce the time and the number of steps to conclude
this task. If each step is too large, we can overfly the valley, if it is too small, we can take a long time to reach
it. This is the role of the alpha_Fermi parameter in the current_poisson and quantum_current_poisson
solvers: large values of alpha_Fermi can make the minimum invisible, and if it is too small can take a long time
for simulations. Additionally, especially when the value of alpha_Fermi is small, it is possible that the number of
iterations, given by the parameter iterations, is not enough to reach this minimum.

This analogy with a mountain chain is actually very simplistic, because the program deals with finding a minimum
of cost functions in a multi-dimensional space and a non-linear system of equations, which makes this task more
complex and, for this reason, provides more accurate results than any analytical model.

Keeping this in mind, setting the right parameters is usually an iterative process. One procedure that can be used for
reducing the simulation time is by displaying the results “on-the-fly” within our graphical interface (nextnanomat)
in two different ways.

The first method is to check the numerical values displayed in the “Simulation” tab of the graphical interface
(nextnanomat). The evolution of the residuals is printed out as soon as they are computed. If some of the residuals
are not reducing from one iteration to the next one after certain time, it is recommended to stop the simulation and
restart a new one with different parameters.

The second method involves plotting the files interation_current_poisson.dat and
iteration_quantum_current_poisson.dat. By default, these files are generated automatically by the
program, unless “output_log = no” is specified in current_poisson{ } and quantum_current_poisson{ }
subsections. They can be displayed in the browser menu for the “Output” tab of nextnanomat. As in the previous
method, if the residuals are reducing too slow, it is recommended to restart a new simulation that can accelerate
the process.

588 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Recommended strategy

As mentioned before, for some devices, the value of the parameters appearing in current_poisson{ } and
quantum_current_poisson{ } subsections that bring the algorithm into a quick convergence belong to a very
small region of the parameter-space, and tuning these parameters can require certain ability and time. The program
contains internally several default parameters that are suitable for many devices, but due to the huge variety of
configurations that a device can present, it is possible that, for some devices they have to be adjusted manually.

We recommend beginning with the following steps which can assist you to control the simulation: they are not
universal, but they can provide some ideas about the procedure.

1 - Simplify the system
Start finding a suitable electrostatic potential. In other words, comment out all the lines except
strain{ } and current_poisson{ } subsections in the run{ } section of the input file.

2 - Set minimum_density_* or maximum_density_*
Set the minimum_density_* to a large value, i.e. 1e12 or even larger, if necessary. This param-
eter can be found within the current{} section of the input file. Nevertheless, for some condi-
tions, where the density of carriers is expected to be low, the values for minimum_density_*
and maximum_density_* should be reduced, for example to 1e-2 and 1e16. In this situ-
ation, the most critical value is the maximum_density_*. One typical example where the
maximum_density_* should be reduced are simulations for which the current in expected be
almost zero, like in a diode or transistor operating under the threshold bias.

3 - Adjust parameters of current_poisson simulation
A complete control of the simulation can be obtained by choosing new target residuals
(residual and residual_fermi) and the number of iterations (iterations). The smaller
the residuals, the larger the runtime will be. Choose a certain number of iterations, and after the
simulation verify, by reading the log file, if it is necessary to increase this number.

In the latest versions of nextnano++, a new method was developed that can reduce the simulation
time. Please set fast_poisson = yes inside current_poisson{ } in order to activate the
new method.

After each simulation it is recommended to gradually reduce the value of the
minimum_density_*, for example, by a factor of ten until the system again does not
converge. At this point, change the values of alpha_fermi and current_iterations until
the code converge again. In the next section an intuitive approach of how these parameters can
be smartly changed is presented.

For fast simulations, choose the value of alpha_Fermi as large as possible (the maximum value
is 1.0). If this value generates overflow, a message will appear in the graphical interface and
the simulation will stop. In this case, it is recommended to reduce the value of alpha_Fermi
for example to: 0.5, 0.1, 0.05, and so on. Simulation rarely converges for values close to 1 (the
default value).

If the simulation is still not converging, increase the minimum_density_*, and simulate again
using alpha_Fermi equal to 0.5 or less. There is no recipe valid for all devices.

At the end of this process, for certain values of the residuals, the value of the
minimum_density_* should be as small as possible. Taking some time to find a larger value of
alpha_Fermi bringing the system to convergence will speed up the rest of the simulations.

4 - Self-consistent quantum calculations
Follow the same procedure as before, but do not change the parameters of the
current_poisson{ } subsection. Usually, it is a good strategy to start with larger
residuals within the quantum_current_poisson{ } subsection than the one used in
current_poisson{ }.

Having obtained some initial results, even before reaching convergence, it is always helpful to
check if the occupation number of all bands decays to zero, or at least, several orders of magnitude
from the initial values. If necessary, increase the number of events in the specific band where the
occupation number is not small enough. Keep in mind that the self-consistent solution contains

4.17. Numerics 589

nextnano++ Documentation, Release 1.25.13

all information about the states that can be populated for the system under certain conditions (for
example, a certain applied bias).

5 - Alternative solution
The self-consistent simulation of the three groups of equations can result in a numerically un-
stable solution for some systems under certain conditions. For this reason, the option of limiting
how far the quasi-Fermi levels can move above the highest contact of below the lowest one has
been implemented. This is still a new feature under development and it is only recommended in
the case of devices presenting materials with huge band gaps and extreme photogeneration. Set
fermi_limit to a value in the range 0 and 10 eV for this kind of simulations. The default value
is 2 eV.

Getting some intuition. . .

As mentioned above, depending on the nature of the device and the specific operation conditions (temperature or
bias), it is necessary to guide the tool to get convergence. Let us see some practical examples.

Here we will illustrate how the evolution of the residuals in a current-Schrödinger-Poisson can evolve dur-
ing the convergence process for two different devices. The images correspond to the plot of the data from
interation_current_poisson.dat, and iteration_quantum_current_poisson.dat files, that can be
found in the output folder of the simulation.

Figure 4.17.1.1 corresponds to the residual evolution of a system that converges faster: all residuals drop around
one order of magnitude every ten iterations. The default parameters within the code brings the system almost
automatically to the minimum of the residuals.

Figure 4.17.1.1: Residual evolution for a system A exhibiting quick convergence.

In contrast, Figure 4.17.1.2 shows the final result for a different device after the system gets convergence. In this
case, in the input file were especified that residual_fermi is equal to 10−7 eV and residual (density) as 105/𝑐𝑚3.
The value of alpha_Fermi is 0.01. Although it was specified a total of 2000 iterations, the convergence was
achieved in around 400 steps. It is important to notice that only after 180 iterations the system starts reducing the
residuals in several orders of magnitude.

For some devices, setting the values of alpha_iterations and alpha_scale can result in a better performance.
The value of alpha_iterations is related to the moment where the alpha_Fermi shall start to gradually reduce,
and the value alpha_scale is the rate of reduction between two successive iterations. There is no rule for the
direction they should be changed. It is necessary to test some cases and look at the effect on the residuals.

590 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.1.2: Residual evolution for a system B with slow convergence. In the input file were speci-
fied residual_fermi = 10^-7 eV, residual (density) = 10^5 /cm^3, and iterations = 2000. The
alpha_Fermi parameter was set to 0.01.

Sometimes the number of iterations is not enough to reach the convergence. Figure 4.17.1.3 and Figure 4.17.1.2
plot the results of the same system B but differ in their number of iterations. Figure 4.17.1.3 is simulated with
only 150 iterations. As it was shown in Figure 4.17.1.2, only after 180 iterations the residuals start to decrease.
Hence Figure 4.17.1.3 does not show converging behavior. In this kind of simulations, there are no criteria for
knowing at which point this will happen: it requires experience or can be done by trial and error.

A pseudo-non-convergence can also happen when small residuals are specified in the input file. Returning to the
Figure 4.17.1.2 it can be observed that, choosing residual_fermi as 10-^10 eV would probably result in a non-
convergence: the residual_fermi does not decrease at a high rate after 350 iterations. Then, increasing the
number of iterations in this case would not solve the problem.

Another situation is when the value of alpha_Fermi is too small: it looks like the residuals do not decrease, like in
Figure 4.17.1.4. In this example, alpha_Fermi was reduced from 0.01 (value used for Figure 4.17.1.2 and Figure
4.17.1.3) to 0.0001, and after 2000 iterations the system does not converge. Here we used the system B of the
previous two images.

There are other patterns for finding convergence, but here only the most relevant ones have been shown.

Sweeping parameters

It is very common to use a sweep of specific variables within the input file, for example bias or any other user
defined parameter.

It is important to have in mind that any change in the input file is equivalent to a simulation of a new system (for
example when modifying doping), or the operation condition (temperature or bias). There is no mathematical
reason that the solutions of two systems should be similar. In other words, it is not expected that all solutions using
different conditions will converge under the same criteria, for the entire range of variation of the sweep parameters.
Eventually, for example, a sweep of bias from 0 to 8 Volts can use the same parameters for the whole simulation,
but this is not the most common case.

A good strategy is to start the sweep of the parameters and verify at which value the solution does not longer
converge. For saving time it is recommended to split the range of variation in two parts, and to follow the simulation
only using the values of the parameter (for example, bias) that have still not converged. Trying to make the solution
converge for a wide range of values for the sweep variable, using with a unique set of residuals and alpha_fermi,
can become a very hard task, without the recommended range splitting.

4.17. Numerics 591

nextnano++ Documentation, Release 1.25.13

Figure 4.17.1.3: Residual evolution of system B with 150 iterations, exhibiting a pseudo-non-convergence be-
havior. Specifications in the input file: residual_fermi = 10^-7 eV, residual (density) of 10^5 /cm^3, and
iterations = 150. The value of alpha_Fermi is 0.01.

Figure 4.17.1.4: Residual evolution for a system exhibiting pseudo-non-convergence. Specifications in the input
file: residual_fermi =10^-7 eV, residual (density) = 10^5 /cm^3, and iterations = 2000. The
alpha_Fermi parameter was reduced to 0.0001.

592 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

. . . and when nothing works

Our concern, in the development of our code, is to make it as accurate and fast as possible. Some simulations can
be performed in a simple notebook, especially for 1D simulations.

Unfortunately, for some devices under specific conditions, making the system of Current-Schrödinger-Poisson
converge in few iterations is a very specialized and time-consuming task. Observing the needs of our customers,
nextnano is offering our customers the opportunity to perform this task on demand. Please consult our schedules
and fees when an extra assistance is required. Our experts in simulation can assist you to boost your project!

Residuals

• Quasi-Fermi Levels

• Carrier Densities

• Electric Potential

• Self-Consistent Simulations

The residuals specified in the input file are numbers defining accuracy of the simulation; we refer to them further as
the desired residuals. The convergence process is terminated when all the residuals reach the values of the desired
residuals or lower. Reaching lower values of the residuals provides more accurate solution, however, at expense of
longer runtime.

The evolution of residuals is stored in real-time of the simulation run in files iteration_current_poisson.dat or
iteration_quantum_current_poisson.dat. They can be directly monitored in nextnanomat during the simulation.

Our suggestion is to begin simulations using the default values, defined according to the dimensionality of the
simulation domain. To obtain a compromise between the accuracy of the solutions and the simulation time, one
can adjust the desired residuals.

Quasi-Fermi Levels

The residuals of each quasi-Fermi level are computed as a maximum norm of the difference of values obtained in
two consecutive iterations at every grid point. Therefore, this value directly corresponds to the highest local change
of the quasi-Fermi levels in the simulated structure after each iteration of our algorithm.

The desired residual for the quasi-Fermi levels in the input file can be specified by assigning a value to the variable
residual_fermi within the group run{ }.

Once having the simulation done, the accuracy of the solution can be estimated by investigating the file band-
edges.dat where both quasi-Fermi levels are outputted. Changes of the levels and related changes of the carrier
concentrations, especially in the region of interest of the modeled structure, can be used to decide whether the
simulation reached the desired accuracy or it should be refined.

Carrier Densities

The residuals of each carrier densities are computed as a 1-norm of the difference of values of the carrier densities
(multiplied by volumes assigned to each grid point) obtained in consecutive iterations at every grid point. Therefore,
this value corresponds to a cumulative change of entire carrier distributions between two consecutive iterations. In
other words, it is an integrated absolute value of a difference of carrier distributions computed in two consecutive
iterations.

The desired value for the residuals of the densities can be specified in the input file using a variable residual
within the section run{ }.

In order to evaluate the accuracy of the solutions for your needs, it is convenient to verify the final densities and
charges in the output files:

• density_electron.dat

4.17. Numerics 593

https://nextnano.atlassian.net/servicedesk/customer/portals
https://en.wikipedia.org/wiki/Norm_(mathematics)#Maximum_norm_(special_case_of:_infinity_norm,_uniform_norm,_or_supremum_norm)
https://en.wikipedia.org/wiki/Norm_(mathematics)#Taxicab_norm_or_Manhattan_norm

nextnano++ Documentation, Release 1.25.13

• density_holes.dat

• total_charges.txt

Changes of orders of magnitude of integrated carriers in various important regions of the simulation should be
taken into account based on these files to decide if more accurate solutions are required by reducing the respective
residuals.

Electric Potential

The residual for potential is computed in the exact same way as for the quasi-Fermi levels. It is computed as a
maximum norm of the differences of values obtained in consecutive iterations at every grid point. Therefore, this
value directly corresponds to the highest change of the electric potential after each iteration of our algorithm.

The desired value for the residual of the electric potential is only available internally in the code and is well con-
trolled by the algorithm.

It is recommended to see the file potential.dat to estimate the accuracy of the computed electrostatic potential.

Self-Consistent Simulations

The guidelines described above should be treated as a basic example aiming at developing intuition and under-
standing of how the simulation behaves from the numerical point of view. As all the residuals are interdependent
in a specific way, it is important to have at least basic understanding of the dependencies between currents, car-
rier concentrations, electrostatic potential, and quasi-Fermi levels for the structure design of the interest for every
simulation run, especially within a self-consistent algorithm.

4.17.2 Big 3D systems
These tutorials cover topic of practical approach to simulations of big 3D systems aiming at specified accuracy
within possibly short time.

Approaching large 3D designs with Schrödinger-Poisson self-consistent solver

Large memory consumption and long runtimes are usually the challenge when performing 3D-simulations of large
devices with high accuracy.

Based in our experience simulating large number of devices, we created a methodology that will assist you to set
up the input files in a very efficient way. Figure 4.17.2.1 summarizes the three phases in the development of these
files:

• reduction of the dimensionality

• optimization of the grid for electrostatics problems

• setting up the input file for the quantum computations

The main idea in all steps is to define the necessary grid in the shorter time as possible. We will focus on the use
coarse grids for identifying regions that are more relevant from our simulations.

Reducing the dimensionality of the problem by creating 1D- and 2D- versions of the system are generally very
useful to identify which regions do not require a fine grid. Additionally, by convenient application of boundary
conditions, some regions can be completely eliminated from the simulation domain. A typical example is the
substitution of substrate by an adequate boundary condition, that in nextnano++ we denominate contact.

It is important to optimize the grid always step by step: first one dimension, and then, the next.

Even for self-consistent solution of the Schrödinger-Poisson equations we always suggest to set up the input file
solving only the Poisson equation, even when not accurate enough. These solutions can be very useful for identify-
ing unnecessary regions to be eliminated from the simulation domain, and to refine the grid only where is actually
necessary.

Our focus will be the evolution of the residuals at the beginning of the convergence process. Then, as we mentioned
above, it is not expected to obtain accurate results, but only the trends of these residuals.

594 Chapter 4. Tutorials

https://en.wikipedia.org/wiki/Norm_(mathematics)#Maximum_norm_(special_case_of:_infinity_norm,_uniform_norm,_or_supremum_norm)

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.1: Methodology for 3D-simulation of large devices.

If no quantum computations are required this would be the point to reduce the residuals in the convergence process
for obtaining the results with the accuracy desired.

Similarly, as done in the two previous steps, the definition of the quantum region can be the secret to the final tuning
of the 3D-input file. Starting with the results of the electrostatic problem we can identify the regions of interest for
such simulations where the grid has to be refined. The identification of a suitable number of eigenvalues for the
self-consistent simulations is a crucial procedure that must be performed. It is also important to be aware of the
boundary conditions that are adequate at the bounds of the quantum region.

We can take advantage of the one symmetry that the device can present for making a first exploration of these
issues. This will save you memory and time.

Each of these procedures are explained in details and with a practical example in three independent tutorials:

Reducing dimensionality of large 3D designs

Optimizing electrostatics simulation for large 3D designs

Optimizing Schrödinger-Poisson self-consistent solver for electrostatic quantum dots

where the other guidelines concerning how to simulate large devices in three dimensions efficiently.

Last update: 15/07/2024

4.17. Numerics 595

nextnano++ Documentation, Release 1.25.13

Reducing dimensionality of large 3D designs

• Header

• Device to be simulated

• Reducing the dimensionality of the problem

• Learning from 1D Simulations

• Refining grid in 2D Simulations

Header

Files for the tutorial located in nextnano++\examples\numerics

• large-3D-systems-reduction_1D_nnp.in

• large-3D-systems-reduction_2D_nnp.in

• large-3D-systems-reduction_3D_nnp.in

Scope of the tutorial:
• Guidelines for reducing dimensionality of 3D-input files

• Refining the grid line spacing efficiently

• Impact of the grid resolution and the number of nodes in the grid on the simulation time

Introduced Keywords:
• global{ simulate1D }

• global{ simulate2D }

• global{ simulate3D }

• grid{ xgrid{ } ygrid{ } zgrid{ } }

• quantum{ region{boundary_conditions{}} }

• strain{ growth direction }}

• structure{ line{} }

• structure{ rectangle{} }

• structure{ cuboid{} }

Relevant output Files:
• \bias_00000\bandedges.dat

• \bias_00000\bandedges_1d_xz_Si_2DEG.dat

• large-3D-systems-reduction_2D_nnp.log

Accurate simulations depend on finding a compromise between a very fine grid, the memory consumption and the
corresponding runtime. Nevertheless tuning the grid resolution for 3D simulations of large devices can become
highly time expensive, when a methodological approach is missing.

The purpose of this tutorial is to provide some suggestions with the aim of reducing the time for choosing a suit-
able grid and of its impact on the solutions. It is part of the methodology Approaching large 3D designs with
Schrödinger-Poisson self-consistent solver, that we strongly recommend being followed.

In this first step we will show what we can learn from simulations in 1D and 2D of the device, for building a suitable
grid when modeling the most important regions on it.

596 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

To make it very practical, we will introduce in the next section a structure that can be used in a semiconductor-
based quantum computer as an example. The quantum operations are performed by handling the bias of gates on
the top of the device, that controls the transport of the carriers through the active region. This is a typical device
where all transport of carriers is electrostatically dominated. For this reason, a consistent simulation of the charge
distribution and the potential in the device is imperative to reach accuracy enough to identify the most important
modes of operation at each position.

Most of these devices can present hundreds of nanometers than represent a heavily time-consuming procedure when
performing 3D simulations. The suggestions presented below will assist you to define the grid that can reduce the
bottlenecks of larger simulations. There is not a unique way to do it, but it has been used for numerous cases, not
only for quantum computing, and provided very good results in most of them.

Device to be simulated

Figure 4.17.2.2 presents a simplified version of a device that consists basically of a 7 nm-Si layer buried in a
silicon dioxide structure [Kriekouki2022]. This silicon layer will be used as the channel where electrons can
transit through.

Gates (FGS, FGD, LG1, LG2, LG3) are deposited at few nanometers of top of the interface of the Si channel with
the surrounding oxide gates. By applying specific combinations of biases to these gates it is possible to change
the electrostatic potential and, in this way, to control the states present in the structure for each configuration. The
source and drain contacts can be seen as the reservoirs that will provide the carriers that will propagate in the
channel.

Additionally, applying bias to a back gate under the thick layer of oxide under the Si-channel can allow or prevent
the transport through the device.

The dimensions of this device to be simulated is the order of 400 nm x 800 nm x 70 nm. The last dimension (
70 nm) does not include the back gate and substrate regions that, as we will see soon, can be removed from the
simulation domain. Nevertheless, the relevant results in the active regions are very localized and can require grid
resolutions of order of few nanometers or smaller.

Figure 4.17.2.2: Device to be simulated. The Si-channel is buried in the oxide. FGS, FGD, LG1, LG2, and LG3
are used to shape the electrostatic potential.The back gate is used to allow or to interrupt the transport of electrons
through the channel. The source and drain are the reservoirs of carriers.

Reducing the dimensionality of the problem

Before setting up input files for 3D simulations we recommend to start with 1D or 2D computations. Even when
quantum computations are necessary, use only semiclassical models (Poisson), just enough to identify the most
relevant aspects of the transport in some critical regions.

You can either start designing the 3D version and reduce it to the 1D and 2D versions, or to develop first the 1D
version and expand it to the final 3D structure.

For making the design more flexible, use variables to represent the most important coordinates of the structure.
Name the variables according its 3D representation in the device reference frame, in contrast to the simulation
reference frame. The simulation system is defined in the global{ } section of the input file. Figure 4.17.2.3
presents the most important coordinates in the device coordinate system, used in all versions of the input files of
our example.

4.17. Numerics 597

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.3: Device reference system and most important coordinates used for 1D and 2D simulations: (a) the
3D representation, (b) structure definition, and (c) structure after applying boundary conditions to the contacts and
gates. Dotted lines (in red) represent sections defined in the input files.

598 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Here is an example how to perform the modification from 3D to 2D input file. Suppose that one region is defined
in the 3D input file by:

cuboid{
x = [$x_3F, $x_3L]
y = [$y_4GS, $y_4GD]
z = [$z_EG, $z_2F] # growth direction in the simulation reference system for␣

→˓3D simulations
}

where the growth direction is along the z-axis (vertical) in the device coordinate system.

This has to be translated to a 2D-input file as:

rectangle{
x = [$y_4GS, $y_4GD]
y = [$z_EG, $z_2F] # growth direction in the simulation reference system for␣

→˓2D simulations
}

and to a 1D-input file as:

line{
x = [$z_EG, $z_2F] # growth direction in the simulation reference system for␣

→˓1D simulations
}

Avoid renaming variables when changing from one dimension to another.

Why this is important?

In nextnano++ the growth direction is aligned to different axis, depending on the dimensionality of the simulation.
For 1D simulations, the x-axis of the simulation system is the growth direction. Nevertheless, when we change
to the 2D version, the code interprets that the y-axis as the growth direction. Finally, 3D simulations assumes (
implicitly) that the growth direction is aligned to the z-axis of the simulation system.

In the general case, the crystal orientation in the simulation system shall be changed every time we make a change
of dimensionality, in the global{ } section of the input file. This shall be also be taking into account concerning
the strain{ } section of the input file, when strain calculations are necessary (that in this not the case in this example
).

Then, reducing or expanding the input files to another dimensions will require changes in the next sections of the
input file:

• in global: simulate1D{}, simulate1D{}, simulate1D{}, and changing the crystal orientation (when
necessary)

• in grid: xgrid{ }, ygrid{ }, zgrid{ }

• in quantum (when present): region{}, boundary_conditions

• in strain (when present): growth direction

• in structure: line{}, rectangle{}, cuboid or another shapes

• in contacts

Last but not least, also regions that must not appear in the plane (for 2D) or line (for 1D) of the simulations must
be eliminated from the section structure{ }, quantum{ } and contacts{ }.

As example, large-3D-systems-reduction_1D_nnp.in and large-3D-systems-reduction_2D_nnp.in are input files for
1D and 2D simulations of the same device respectively. We recommend comparing these two versions with the
corresponding 3D version.

4.17. Numerics 599

nextnano++ Documentation, Release 1.25.13

Learning from 1D Simulations

The most frequent simplification that can be made when modeling the device is the substitution of extensive regions
at the bottom of the structure, mainly the substrate and back contacts, or even buffer layers. For this device this
procedure is adequate, because of the wide buried oxide layer that separates the back gate and the Si channel, our
main area of interest. Figure 4.17.2.4 illustrates the final device to be simulated where the substrate and the back
gate (green in Figure 4.17.2.2) were substituted by boundary conditions at the bottom of the structure (red). This
is the equivalent to set this last layer as a point or plane of reference for the electrical potential or the Fermi level
to a certain value.

Additionally, gates and vias that connect the external environment with the source and drain regions can be substi-
tuted by convenient boundary conditions. We will skeep this discussion concerning how to set boundary conditions
that can be explored in another tutorials of our documentation related to this very important topic. What is impor-
tant to mention is that 2D or even 1D versions can become valuable for modeling the eliminated regions through
use of suitable boundary conditions.

Figure 4.17.2.4: Regions substituted by adequate boundary conditions and final device representation

In 1D simulations it is required to choose the direction to be simulated that depends on the geometry of the specific
device. In our example, the structure consists basically of a stack of layers where the Si layer is embedded, and is
biased at the top and at the bottom. Then, a natural choice for 1D simulations of devices with this characteristic is
along the growth direction that, by convention in nextnano++, is aligned in this case to the x-axis of the simulation
system, as discussed before.

Depending on the complexity of the device it may be required to choose different points for the 1D simulations.
Figure 4.17.2.5 illustrates some of these points that could be explored for the device of our example. From a quick
analysis of our example we can observe that the line A is the most relevant for the first tuning of the grid, because
it contains the most important coordinates of the interfaces to be examined.

The input file large-3D-systems-reduction_1D_nnp.in presents the device as a stack of layers passing through one
of the gates over the Si channel (line A). This can be used to set up and/or verify the parameters used to model
each material of the structure. After simulation, we can easily identify, for example, the conduction band across
this direction as shown in Figure 4.17.2.6.

These plots were obtained by running this input file for different homogeneous grid line spacings in the growth

600 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.5: Representation of possible regions of study for 1D simulation in the growth direction.

direction (from a to d). We can easily identify the most important regions: the back-gate, the buried oxide, the
channel (surrounded by oxide) and some of the top gates. Here, the most important region is the Si-channel (the
active region), whose grid resolution can be increased.

Such input file runs very quickly, and it is a very good starting point for choosing a suitable grid resolution. From
these plots we can observe that the conduction band is not too sensitive to the choice of the grid resolution in this
direction. An ideal situation is to define a finer grid spacing in the active region and a coarse grid for the remaining
parts of the device. It is recommended to make the final refining of the growth direction only in the last steps of
the 2D or 3D grid tuning, for saving more runtime. In our example for the next simulations it will be used 1 nm
and 5 nm grid as fine and coarse grid spacing for the growth direction, respectively (plot e in Figure 4.17.2.6).

� Hint

Visualize the grid lines selecting Simulation grid in nextnanomat menu.

Refining grid in 2D Simulations

Now it is time to perform the 2D simulations, using our input file large-3D-systems-reduction_2D_nnp.in. It
represents a slice of the device passing through the center of both front gates (FGS and FGD), parallel to the
growth direction and the propagation direction, as shown in Figure 4.17.2.7.

This kind of representation can be very useful for defining the more convenient boundary conditions at equilibrium
conditions for the gates and for the contacts. The device of our example requires these gates be modeled as highly-
doped quasi-metallic regions at low temperatures. How to set them properly we invite you to visit our tutorial about
contacts{ }.

At this point we will freeze the grid resolution in the growth direction, and will refine the grid spacing along
the propagation direction. In this way, when talking about grid resolution or spacing we will be referring to the
propagation direction.

Our main goal of these 2D simulations is the identification of the most important regions where the grid must be
refined in the propagation direction. We will focus in the conduction band computed with different grid resolutions,
that are presented in Figure 4.17.2.8. The data is stored in \bias_00000\bandedges.dat of the output folder.

As soon we decrease the grid line spacing it becomes difficult to distinguish the results from the 2D plots. For this
reason, it is recommended to include in the input file some 1D sections for both directions, that makes easier to
compare the results. You will find several of these sections defined in the 2D input file of our example.

4.17. Numerics 601

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.6: Conduction band resulting from 1D simulations in the growth direction along the line A for
homogeneous grid resolution: (a) 5 nm, (b) 2 nm, (c) 1 nm and (d) 0.5 nm. The gray vertical lines represent the
grid lines used in this simulation. (e) corresponds to a grid resolution of 1 nm inside the active region and 5 nm in
the remaining parts of the structure (in the growth direction).

602 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.7: Slice simulated in our example.

4.17. Numerics 603

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.8: Conduction band along a plane containing the growth direction and the center of the front gates.
This result was obtaining grounding all gates and contacts, except the front gates that were biased at 0.8 V. The
upper image corresponds to the full simulation domain simulated. The region inside the gray rectangle is presented
below for different grid resolutions.

604 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

� Hint

It is highly recommended to include the coordinates of all interfaces and the one used for specifying output
sections and slices in the grid definition on your input file this avoids unnecessary interpolation of the results.

Figure 4.17.2.9 presents the comparison of the conduction band just 1 nm above the interface between the buried
oxide and the Si-channel (section xz_Si_2DEG of Figure 4.17.2.3) from 2D simulations with the different grid
spacing. The corresponding results can be found in the output files \bias_00000\bandedges_1d_xz_Si_2DEG.dat.
From the image we identify that the central region from -150 and 150 nm at the most relevant for controlling the
transit of carriers from one side to the other of the channel.

Figure 4.17.2.9: Conduction band at 1 nm above the interface between the buried oxide and the Si-channel (section
xz_Si_2DEG of Figure 4.17.2.3) from 2D simulations with the different grid spacing. The gray lines correspond
to the grid lines.

In Figure 4.17.2.10 we can observe in detail these regions for resolutions of 1, 5, 10 and 20 nm. The central region
presents similar results using fine grids, while at the borders of the simulation region, a good model of the potential
requires resolutions higher than 20 nm.

The first temptation is to use the minimum resolution as possible (1 nm), but this is not necessary and not recom-
mended: we have not started the 3D simulations yet. Figure 4.17.2.11 shows how the simulation time scales with
the number of nodes and the grid resolution. We observe that for coarse grid (grid line spacing around 20 and 100
nm) the time for simulation does not change too much. Nevertheless, as soon it becomes fine the time starts to
increase dramatically.

A good strategy is to define different grid spacings in the x direction: small for the relevant regions (central and
the contact) and larger for the ones that does not change (the remaining).

Last but not least, this simulation was performed for a specific combination of biases to the gates (0.8 V to the
front gates, and 0 to the other gates and contacts). It is not necessary to simulate all bias combinations, but it is
useful to check some of them that can result in larger modifications of the potential at least in active region.

Exercise:
Run the input file large-3D-systems-reduction_2D_nnp.in for several grid resolutions and obtain
the plot of Figure 4.17.2.11 for your system. All information required for this exercise (number

4.17. Numerics 605

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.10: Comparison of the conduction band at a 1 nm above the interface between the buried oxide and
the Si-channel (section xz_Si_2DEG of Figure 4.17.2.3) from 2D simulations. The central region and the source
contact regions are also shown with more details.
606 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.11: Runtime for 2D simulations as function of the number of nodes in the grid and the grid spacing.

4.17. Numerics 607

nextnano++ Documentation, Release 1.25.13

of nodes and runtime) you can find in the file large-3D-systems-reduction_2D_nnp.log in the
output folder of each simulation.

� Hint

The performance of the simulations can be improved setting the number of threads for a single simulation in
the menu Tools >> Options >> Simulation of nextnanomat.

It is also recommended to set the tab Tools >> Options >> Executable the command

-b <number the cores of your system>

as additional parameter passed to the executable (field Command line of this menu). For example, if you are
a user of a 6- cores-processor, write -b 6.

Using the grid defined in the growth and propagation directions, we can expand to the third dimension. The result is
shown in the large-3D-systems-reduction_3D_nnp.in that still we require further optimization, but with less effort.

We also recommend visiting our tutorials:

Optimizing electrostatics simulation for large 3D designs

Optimizing Schrödinger-Poisson self-consistent solver for electrostatic quantum dots

where we present another guidelines concerning efficient simulations of large devices in three dimensions.

Last update: 15/07/2024

Optimizing electrostatics simulation for large 3D designs

• Header

• Device to be simulated

• Starting simulations in the semiclassical domain

• Refining the grid of 3D-input files

• Considerations if quantum computations will be required

Header

Files for the tutorial located in nextnano++\examples\numerics

• large-3D-systems-poisson_2D_nnp.in

• large-3D-systems-poisson_3D_nnp.in

• large-3D-systems-poisson_3D_nnp_reduced.in

Scope of the tutorial:
• Guidelines for refining the grid in 3D-input files

• Performing electrostatic calculations efficiently

Relevant output Files:
• \bias_00000\bandedges_1d_xz_Si_QDs.dat

• \bias_00000\bandedges_1d_yz_Si_QDs.dat

608 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• \bias_00000\density_electron_1d_xz_Si_QDs.dat

• \bias_00000\density_electron_1d_yz_Si_QDs.dat

For structures that strain computations are not needed, obtaining the electrostatic potential is the first step even
when more complex computations are required.

Nevertheless, self-consistent computations of the landscape potential with the charge distribution for large devices
demanding high accuracy generally consume a huge amount of memory and long execution time.

This tutorial is the second part of a methodology for reducing the time in the development of the input files for
modeling such 3D structures, that can be found in Approaching large 3D designs with Schrödinger-Poisson self-
consistent solver. In this methodology we suggest to start by tuning the grid of the simulation using 2D versions
of the correspondent 3D input file. Although it is not mandatory following this first step for implementing the
suggestions in this tutorial, we strongly recommend its reading at Reducing dimensionality of large 3D designs, for
understanding of the main concepts also used here.

We will take as an example a structure that can be used in a semiconductor-based quantum computer, that we
introduced in the first tutorial of the methodology and quickly summarized below.

Device to be simulated

Figure 4.17.2.12 presents a simplified version of a device found in the literature [Kriekouki2022] that consists
basically of a 7 nm-Si layer buried in a silicon dioxide structure. This silicon layer corresponds to the channel
where the quantum operations are performed.

The transport of the carriers depends on the combination of the voltage applied to the gates (FTS, FTD, LG1,
LG2, LG3) at the top of the structure isolated from the silicon channel by a thin layer of oxide. At the bottom of
the structure, just below the thick buried oxide layer, a back gate plays also an important role in the definition of
the landscape potential. The source and drain contacts in this scenario act as the reservoirs that will provide the
carriers that will propagate in the channel.

Applying adequate boundary conditions, the device to be simulated can be simplified as shown in the Figure
4.17.2.12 (shown in (b)).

Figure 4.17.2.12: Device to be simulated. The Si-channel is buried in the oxide. FTS, FTD, LG1, LG2, and LG3 at
the top of the structure and the back-gate, between the thick oxide layer under of Si layer (BOX) and the substrate,
are gates used to shape the electrostatic potential. Source and drain act as reservoirs of carriers propagating through
the channel. Device (a) before and (b) after applying adequate boundary conditions.

Starting simulations in the semiclassical domain

The first thing we have to keep in mind is the goal of our simulation: which equations have to be solved, the
accuracy we want to achieve, and other post-processing tasks that will be necessary. In our practical example is
expected that under certain bias combinations a quantum dot is formed in the channel close to the lateral gates
LG1 and/or LG3. Then, an accurate electrostatic potential self-consistently solved with the Schrödinger equation
is required for obtaining a good estimate of the wave functions in the device, that will also be used in coherent
transport calculations.

Nevertheless, self-consistent quantum computations with Poisson equation means that we need to a sufficient num-
ber of eigenvalues enough to reproduce the carrier densities that will be used in the next Poisson iterations. For
this reason, the runtime of the whole simulation does not only scale with the number of nodes of the structure

4.17. Numerics 609

nextnano++ Documentation, Release 1.25.13

for the electrostatic potential calculations, but also depends on the size of the quantum region and the number of
eigenvalues that has to be solved.

Then, as a general rule, setting the grid for 3D simulations is more efficient when started with semiclassical calcu-
lations, where only the Poisson equation, or even the coupled current-Poisson equations, is solved. Additionally,
nextnano++ always uses the resulting potential as a first estimate for the next steps of the quantum computation and
other calculations. As a rule of thumb, run and verify the results step by step. In other words, perform the next step
of the computations when the previous step (the electrostatic problem) properly converged. In this tutorial we will
focus only in the solution of the Poisson equation self-consistent with the semiclassical densities of electrons, for
refining the grid of 3D input files. Hints for optimizing the performance of quantum simulations will be provided
in a separated tutorial (Optimizing Schrödinger-Poisson self-consistent solver for electrostatic quantum dots).

Refining the grid of 3D-input files

It is more efficient following the first step of our methodology, where the grid is progressively refined in the growth
and in the propagation directions, that results in the file large-3D-systems-poisson_2D_nnp.in for 2D simulations.
Then, it follows that the 3D version of this input file is simply the extension of the refined 2D version, that now
includes the lateral gates LG1 and LG3 in the structure. The growth direction for 3D simulations is aligned to
the z-axis of the simulation domain (see file large-3D-systems-poisson_3D_nnp.in). Figure 4.17.2.13 shows the
nomenclature of the most important points in the device coordinate system, sections and boundary conditions used
in this input file.

It is clear that the previous grid tuning in 1D or 2D simulations is not a mandatory procedure: simultaneous tuning
of the three axes in the 3D input file could be also performed. The disadvantage of this approach is that the execution
time of each simulation depends on the number of nodes on the grid, that it is in higher number for the 3D case.

Figure 4.17.2.13: Device reference system and most important coordinates: (a) the 3D representation, (b) structure
definition, and (c) structure after applying boundary conditions to the contacts and gates. Dotted lines (in red)
represent sections defined in the input files.

Now it is time to start the simulations. Refining of the grid in the last dimension (x-axis) does not require, initially,
high accuracy. In this way, the criteria that define the end of the convergence process (residuals, for example) can
be “relaxed” in these first estimates. The idea is to identify regions of interest (ROI) where a fine grid has to be
necessary to a suitable description of the density of electrons or holes in the simulated domain.

This is an iterative process where, looking at the conduction bands or the density of carriers in the ROI, we will try
to refine the x-grid that the resulting density presents a smooth decay. For this task, it is recommended to define 1D
slices in the most important ROIs and to overlay different plots in the same image within our graphical interface
(nextnanomat). In our practical example, our objective it to capture the results in the region where the quantum
dots are expected to be formed and different points where the density of carriers or the potential will be analyzed.
Slices where the potential presents the steepest slopes are also important to be included in this analysis.

Figure 4.17.2.14 shows the conduction bands of two important ROIs, for a particular combination of biases (0.8V
to both front gates, 4 V at LG1 and LG3, 1.7 V at the central gate (LG2) and 0 V for the remaining gates and
contacts). In the image, the xz_Si_QDs section corresponds to a slice at the region on Si-channel close to the
interface with the gate LG1 (for x = 35 nm) and 1 nm above its interface with the buried oxide (BOX), where the
quantum dot is expected to be formed. xz_Si_2DEG is the slice of the conduction band along the y direction at 1
nm below the oxide under the front gates (x = 0 nm). Also important to observe is the slice yz_Si_QDs defined by
the intersection of the plane along the longitudinal axis of the LG1 gate and the plane passing at 1 nm above the
interface between the Si-channel and the BOX. These sections are shown in Figure 4.17.2.12 using dotted lines (in
red).

610 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.14: Slices of the conduction band in the two most relevant regions of interest for a particular combi-
nation of bias applied to the gates (see text): (a) xz_Si_QDs, at 1 nm above the interface between the Si-channel
and the BOX, close to the lateral gate LG1 (x = 35 nm), and xz_Si_2DEG, at 1 nm below the oxide under one of
the front gates (x = 0 nm), (b) yz_Si_QDs, at 1 nm above the interface between the Si-channel and the BOX, in the
plane containing the longitudinal axis of the gate LG1.

4.17. Numerics 611

nextnano++ Documentation, Release 1.25.13

The first step of the grid definition in the third axis consists in the elimination of unnecessary areas of the device.
We need to distinguish two situations: solutions of quantum mechanics problems, or solutions of the electrostatics
of the device only.

The first situation, when the semiclassical computations will be followed by computation of the wave functions,
will demand more attention when eliminating or even reducing areas from the simulation domain. In this case we
recommend that the final size of the device be defined only when the first quantum simulations be performed. A
reduction of several undesired nodes at this moment still will bring benefits, but it is important a future evaluation
of the impact of these cuts in the boundary conditions for the quantum calculations. Keep in mind that the wave
functions can penetrate certain interfaces. Then preserve certain margin around the interfaces in order to allow a
priori that some tail of the wave function can be properly calculated.

For the other situation, when we are only interested in the electrostatic solutions, this is the appropriate moment to
cut these regions from the simulation domain.

Our particular example is in the first situation, and the elimination of some unnecessary areas can be valuable. We
can expect a priori that the potential of the lateral gates LG1 and LG3 close to the Si-channel does not depend on
the length of these gates, because of the large potential barrier between the Si-channel and the surrounding oxide
of each gate, that practically results in vanishing of the wave functions at the interface of both materials. Then,
this simplifies a lot our 3D simulations, because the lateral gates can be reduced and substituted by the convenient
boundary conditions.

Figure 4.17.2.15 presents the impact of the changes of the lateral gate lengths on the results of the conduction band
for the section xz_Si_QDs. The results are practically equal, if the gate lengths are larger than 100 nm. Then,
we will use 100 nm as the length of the lateral gates for the reduced version of the 3D input file. This value is
also reasonable when we analyze the results for the section yz_Si_QDs (the growth direction), that practically
independent of the choice of the level of this reduction.

Figure 4.17.2.15: Conduction band in the quantum dot region as function of the length of the gates LG1 and LG3
in the simulation: (a) slice xz_Si_QDs, and (b) slice yz_Si_QDs

Another natural candidate to be eliminated is the region from the start of the simulation system ($x_min = $x_4F).

612 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.16 shows the results of the conduction band for different values of $x_min, for the same slices of the
previous image. In this case, the extension of the negative axis of the simulation domain plays an important role in
the definition of the electrostatic potential at the left border of the Si-channel (at x = -40 nm), while the region
close to the lateral gates practically does not change (at x = 40 nm).

Figure 4.17.2.16: Conduction band in the quantum dot region as function of the value of $xmin: (a) slice
xz_Si_QDs, and (b) slice yz_Si_QDs.

Looking at to the conduction band results not enough to decide what it is an optimal value for $xmin to be used
in the next simulations. When this happens, more careful evaluation of the impact of these cuts have to be done.
Our suggestion is to verify the goals of the simulations and to combine results. In our example, we can overlap to
the conduction bands the corresponding density of electrons (our goal) and observe the differences using different
cuts in the ROIs, as illustrated in the Figure 4.17.2.17.

From this figure we can observe that in terms of electron density, they are not affected by the value of $x_min
chosen. Similar analysis must be performed for all relevant results of the calculations.

large-3D-systems-poisson_3D_nnp_reduced.in is the resulting input file after these reductions, and it will be used
in the next computations. As we can observe, we are using a very conservative approach concerning the cuts around
the Si-channel and the lateral gates, in order to give an example that would be done in a more general way.

If no quantum computations are necessary, this would be the moment of increasing the accuracy of the simulations
by requiring lower residuals for the density and fermi levels, until the results (for example, density of electrons)
does not change within a certain precision from one simulation to the other. If necessary, you can include some
more lines in the positions of the grid for getting better results.

Once the grid is completely defined, make a final check concerning the sensitivity of the calculations with changes
in the grid resolution.

4.17. Numerics 613

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.17: Conduction band (dotted lines) and density of electrons (solid lines) in the xz_Si_QDs and
yz_Si_QDs.

Considerations if quantum computations will be required

Semi-classical computations of the density of electrons are very useful to identify how wide is actually the region
where the carriers can be observed. Specially for self-consistent calculations, this evaluation is tremendously
valuable because allows us to estimate the minimum size of the quantum domain to be simulated. It is always
relevant to keep in mind that the total execution time in this case will also be affected by the number of the nodes
in the quantum region and the number of eigenvalues to be used for self-consistent calculations, as we mentioned
before. We will discuss in the more detail in our next tutorial of the presented methodology.

From Figure 4.17.2.17 we could identify the bounds of the region where most of the electrons are present. Then
it is natural to choose them as first good estimate for the quantum region. Nevertheless, we must not forget that
this result was obtained for one a specific combination of biases applied to the gates and the contacts. Then, it is
convenient to make a quick check for some other combinations in order to verify if this region need to be extended.

Figure 4.17.2.18 shows the density of electrons overlapped with the respective conduction band for another bias
combinations. Starting from the one presented above (0.8V to both front gates, 4 V at LG1 and LG3, 1.7 V at the
central gate (LG2)), we changed either the bias on the back gate, in the central gate (LG2), or simultaneously in
the other lateral gates (LG1 and LG3).

We can observe that applying bias to the back gate greater than 1.0 V, will require an extension of the quantum
region from [-150, 150] to [-200, 200] in the y-direction. Changes in the bias of the lateral gates does not
change too much the semi-classical density of electrons distribution. Then, in the next step we suggest to start
defining the quantum region limited to the smaller interval ([-150, 150]), at least for the first setup of the input
file including quantum calculations.

We also recommend visiting our tutorials:

Optimizing electrostatics simulation for large 3D designs

Optimizing Schrödinger-Poisson self-consistent solver for electrostatic quantum dots

where we present the first step of the methodology (the first one) and how to proceed for the case of the quantum

614 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.18: Conduction band (solid lines) and density of electrons (dotted lines) in the xz_Si_QDs sections
changing only one of the bias of the combination discussed above: (a) the back gate, (b) the central lateral gate
(LG2), and (c) simultaneously to the lateral gates LG1 and LG3. Here the full length of the lateral gate LG2 (250
nm) was used.

4.17. Numerics 615

nextnano++ Documentation, Release 1.25.13

calculations (the second one).

Last update: 15/07/2024

Optimizing Schrödinger-Poisson self-consistent solver for electrostatic quantum dots

• Header

• Device to be simulated

• Setting input files for self-consistent calculations of Schrödinger-Poisson equations

• Define the goals of the quantum computations

• Optimizing the grid within the quantum regions

• 1. Defining the bounds of the quantum region: at the beginning does not need to be perfect!

• 2. Finding a suitable number of eigenvalues

• 3. Making the grid fine in the quantum region

• 4. Expanding the Quantum Region: time to get beautiful plots (and accurate results)!

• Final considerations

Header

Files for the tutorial located in nextnano++\examples\numerics

• large-3D-systems-schroedinger_3D_nnp_initial.in

• large-3D-systems-schroedinger_3D_nnp_final.in

Scope of the tutorial:
• Guidelines for setting the quantum calculations in 3D-input files of large devices

• Dimensioning the quantum region

Introduced Keywords:
• quantum{ }

• grid{ xgrid{ } ygrid{ } }

Relevant output Files:
• \bias_00000\bandedges_1d_xz_Si_QDs.dat

• \bias_00000\bandedges_1d_yz_Si_QDs.dat

• \bias_00000\iteration_quantum_poisson.dat

• \bias_00000\quantum\probabilities_shift_QuantumRegion_Delta3_1d_xz_Si_2DEG.dat

• \bias_00000\quantum\probabilities_shift_QuantumRegion_Delta3_1d_yz_Si_2DEG.dat

• \bias_00000\quantum\occupation_QuantumRegion_Delta1.dat

• \bias_00000\quantum\occupation_QuantumRegion_Delta2.dat

• \bias_00000\quantum\occupation_QuantumRegion_Delta3.dat

• nn_Large_Devices_3D_initial_version_quantum_nnp.log

616 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Setting up input files for 3D-simulations of the self-consistent Schrödinger-Poisson or self-consistent Schrödinger-
current-Poisson system of equations can demand some effort in terms of memory allocation and time consumption,
if a systematic approach is missing. This development can become a real challenge when the dimensions of the
devices are large (some can be of order of microns) and a fine grid (few nanometers) is required.

This tutorial aims to assist you to reduce such effort, and it is the third part of the methodology Approaching large
3D designs with Schrödinger-Poisson self-consistent solver, that we strongly recommend being followed.

The input file large-3D-systems-schroedinger_3D_nnp_initial.in was obtained in the first two steps of this method-
ology for the structure that we will very briefly summarize in the next section. This file presents a suitable grid
resolution (only sufficient, but not optimally, refined) for obtaining a first estimate of the bounds of the region where
the quantum computations will be performed. Unnecessary regions on the devices were eliminated or replaced by
convenient boundary conditions.

Following these previous steps are not mandatory for the discussion in the tutorial, but it is very advantageous
avoiding grid refinement or performing such tasks directly on 3D-simulations. We remark that there is not a unique
way to do it, but it has been used for numerous cases, and provided very good results in most of them.

Device to be simulated

Figure 4.17.2.19 presents a simplified version of a device that is proposed as a possible semiconductor-based
implementation of a quantum computer found in the literature [Kriekouki2022] with dimensions of 400 nm x 800
nm x 70 nm. It consists basically of a 7 nm-Si layer buried in a silicon dioxide layer. By applying bias to the gates
deposited at the top of the structure (FTS, FTD, LG1, LG2, and LG3) and at the bottom of the oxide (the back gate)
the electrostatic potential can be modified, in order to control the transport of carriers through the silicon layer (the
channel of the system). The source and drain are the reservoirs of carriers.

Applying adequate boundary conditions, the simulation domain can be reduced as shown in the Figure 4.17.2.19
(shown in (b)). The nomenclature of the most important coordinates and sections defined in the input file are
summarized in the same image in (c).

Figure 4.17.2.19: Device to be simulated. The Si-channel is buried in the oxide. The electrostatic potential is
shaped by applying bias to the gates (FTS, FTD, LG1, LG2,LG3 and the back-gate). Source and drain act as
reservoirs of carriers propagating through the channel. Device (a) before and (b) after applying adequate boundary
conditions. The most important coordinates and sections (dotted lines in red) are shown in (c).

4.17. Numerics 617

nextnano++ Documentation, Release 1.25.13

Setting input files for self-consistent calculations of Schrödinger-Poisson equations

As we mentioned before, self-consistent solution of Schrödinger and Poisson equations demands a good strategy in
order to reduce the simulation time when tuning the grid. Usually smooth wavefunctions in some region of interest
(ROI) require a fine grid resolution and enough number of states to compute the quantum mechanical density of
carriers that iteratively will also be used in the solution of the Poisson equation.

Another important issue that show be addressed is the choice of the boundary conditions at the borders of the
quantum region. It has to be constantly observed if they are consistent with the models used in the simulation.

Below we present some hints that may be explored for designing an efficient input file for 3D simulations.

Define the goals of the quantum computations

The simulation time of self-consistent Schrödinger-Poisson simulations depends on the time expended in the solu-
tion of the Poisson equation and the time for obtaining the quantum solution.

As we showed in previous tutorials, the time for solving the Poisson equation scales with the number of nodes in
the grid of the simulation domain. On the other hand, the solution of the Schrödinger equation demands runtimes
scaling with the number of nodes in the quantum region, the number of eigenvalues to be computed and also the
model and corresponding solver to be used.

Below we will provide some tricks related to these aspects for getting excellent results with less effort.

Optimizing the grid within the quantum regions

1. Defining the bounds of the quantum region: at the beginning does not need to be perfect!

The nodes in the quantum region consist on a subset of the grid points of the simulation domain that are within
and at the borders of are region where the Schrödinger equation will be solved. In other words, limiting the size
of the quantum region of interest (QROI) and its corresponding grid resolution in the first phase of the quantum
simulations will boost the input file development.

Any previous understanding of the physical phenomena in the device may be used to introduce simplifications in
the QROI design. Let us present one simplification from our practical example. A quantum dot in the Si channel
is expected to be present just in the channel, close to one or both lateral gates (LG1 and LG3) depending on the
bias applied to these and the other gates. In this way, if our goal is to compute the density of carriers in the region
where the quantum dots appear, the number of nodes of the QROI will represent a very small subset compared
with the number of nodes in the whole domain.

A trick for estimating the bounds of the quantum region is to look at the density of electrons from the semi-classical
calculations (solving only the Poisson equation). Please, refer to our tutorial Optimizing electrostatics simulation
for large 3D designs concerning some considerations that may be taken into account. Figure 4.17.2.20 presents
the results of such simulations for the conduction band overlapped with the semi-classical density of electrons for
the sections xz_Si_QDs and yz_Si_QDs under a particular combination of biases (0.8V to both front gates, 4 V at
LG1 and G3, 1.7 V at the central gate (LG2) and the remaining gates and contacts are grounded). These sections,
shown with red dotted lines in Figure 4.17.2.20, correspond to slices at the region on Si-channel where the quantum
dot is expected to be formed.

Although the electrostatic potential is shaped by each specific combination of bias applied to the gates, the bounds
of the QROI estimated by the semi-classical electron distribution does not change too much if the biases are around
the first operation point, as we showed in the tutorial concerning the electrostatic calculations mentioned above.
The bounds of the QROI resulting from this analysis are x = [-40, 40], y = [-150, 150] and z = [0, 7].

The device of our example presents a geometrical symmetry related to the plane y = 0. We can take advantage of this
property by reducing even more the QROI for the first tuning of the parameters concerning quantum computations.
Our main objective here is not even to get good results, but to have a first idea about the convergence process
of the system of equations, the required grid resolution within the quantum region, and to verify if the boundary
conditions at the borders are satisfied.

In this way we can weak a little the criteria of the convergence of the quantum_poisson solver, requiring a low
number of iterations (for example 10 iterations, or $quantum_iterations = 10). Keeping these requirements
in mind we can start defining a reduced QROI with y = -150 and y= -50 as the bounds in the y-direction.

618 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.20: Conduction band (dotted lines) and semi-classical density of electrons (solid lines) in the slices
xz_Si_QDs and yz_Si_QDs (see red dotted lines in Figure 4.17.2.20), when 0.8 V is applied to both front gates,
4 V to LG1 and LG3 and 1.7 V to the central gate LG2. The remaining gates and contacts are kept grounded.

4.17. Numerics 619

nextnano++ Documentation, Release 1.25.13

� Hint

You can save some time and storage disabling all outputs files that are not relevant or did not change from one
run to the other, like contacts, intrinsic density, and material.

2. Finding a suitable number of eigenvalues

The Hamiltonian to be solved in the Schrödinger equation is specified in the section quantum{ } of the input file.
In the section region{ } of our documentation you will find the models currently implemented in nextnano++.
Independent of your choice we recommend to use at this point the computationally lighter one: the single-band.
The relevant bands to be taken into account in these calculations must be defined in the input file. In our example,
the band gap of silicon, the material of the region of interest, is defined by the minimum of the Delta band.

As we mentioned above, we need to choose a number of eigenvalues enough to compute the density of carriers from
the wavefunctions obtained after each quantum iteration. This quantity will be injected in the Poisson equation in
the next iteration, and a new electrostatic potential will be computed. Then, here we need to do a trade-off: the
number of states can not be too small, but also not too large.

Low number of computed states generates truncated quantum density that, when included in the next iteration of
the solver of Poisson equation, may change the electrostatic potential in another direction, and more frequently
may not converge. On other hand larger number of states will require more computational effort unnecessary for
this first tuning.

How to choose a suitable number of eigenvalues? The answer is simple: guess, compare and improve. Remember:
our grid is still coarse. Then, this is the best moment to explore a first guess. We recommend that, starting with
10 states, for example, to increase this number and compare some relevant results iteratively, instead of simply
sweeping the variable $N_states in our input file.

Now it is time to perform the first calculations. Remember: what it is important to observe here is how the residuals
behave during the convergence process when new states are added. Figure 4.17.2.21 shows the evolution of the
residual of the density of electrons as function of the number of eigenvalues. We can see that the residual decay
faster when more states are included in the computation. The resulting conduction band in two relevant sections
does not change substantially for number of states larger than 20. The reason for this can be inferred from the
occupation number for one of the Delta bands: it is required computing at least 20 states in order to converge that
4 states are actually occupied.

Figure 4.17.2.21: Results of the self-consistent Schrödinger-Poisson simulations, in the reduced QROI as function
of the number of eigenstates computed, after 10 iterations. (a) The evolution of the residuals, (b) and (c) the
conduction band for the sections xz_Si_QDs and yz_Si_QDs, respectively, and (d) the occupation number after
only 10 iterations. These are intermediate results: the convergence process was still not completed.

620 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Please, be aware: we still are not getting the solutions of the system (look at the log files in the output folder,
large-3D-systems-schroedinger_3D_nnp_initial.log). The system is still coarse, and probably we are still very far
from the minimum residuals to be reached, for stopping the process. Nevertheless, this behavior of the residuals
tells us that we are in the right direction.

3. Making the grid fine in the quantum region

Let us take a look at the wavefunctions in the computations using 20 eigenstates ($N_states = 20) shown
in Figure 4.17.2.22 for the same sections of Figure 4.17.2.21. It is more convenient to use the re-
sults of the output file \bias_00000\quantum\probabilities_shift_QuantumRegion_Delta3_1d_xz_Si_2DEG.dat or
\bias_00000\quantum\probabilities_shift_QuantumRegion_Delta3_1d_xz_Si_2DEG.dat that represent the values
of the density probabilities in a section, shifted by the correspondent eigenvalue. From this reason, from this
point to the end of this tutorial “wavefunction” actually means shifted probability density. The first observation
is that the boundary conditions for the quantum conditions looks being suitable for the band edges in this region.
Nevertheless, the grid resolution in the x- and y-directions is actually too coarse, as expected.

Figure 4.17.2.22: Wavefunctions overlapped to the conduction band from self-consistent quantum-Poisson simu-
lations for the sections (a) xz_Si_QDs and (b) yz_Si_QDs. The “quantum” density of electrons were computed
considering 20 states and a grid resolution of 5 nm in the y-direction. These are intermediate results: the conver-
gence process was stopped after 10 iterations.

To avoid explosion of the number of nodes to be simulated, we suggest modifying the grid definition by introducing
new variables for the control of the grid space only within the quantum region. Including the bounds of the quantum
region in the grid is also highly recommended. In our example, our previous definition of the grid in x- and y-
direction:

388 xgrid{
389 line{ pos = $x_4F spacing = $space_x_4F }
390 line{ pos = $x_3F spacing = $space_x_Si }
391 line{ pos = $x_1F spacing = $space_x_Si }
392

393 line{ pos = $x_1L spacing = $space_x_Si }
394 line{ pos = $x_3L spacing = $space_x_Si }

(continues on next page)

4.17. Numerics 621

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

395 line{ pos = $x_4L spacing = $space_x_4L }
396 line{ pos = $x_5L spacing = $space_x_5L }
397 }
398

399 ygrid{
400 line{ pos = $y_7S spacing = $space_y_SD }
401 line{ pos = $y_6S spacing = $space_y_SD }
402 line{ pos = $y_5S spacing = $space_y_LG }
403 line{ pos = $y_4S spacing = $space_y_LG }
404 line{ pos = $y_1S spacing = $space_y_LG }
405 line{ pos = $y_1D spacing = $space_y_LG }
406 line{ pos = $y_4D spacing = $space_y_LG }
407 line{ pos = $y_5D spacing = $space_y_LG }
408 line{ pos = $y_6D spacing = $space_y_SD }
409 line{ pos = $y_7D spacing = $space_y_SD }
410 }

will be changed to

388 xgrid{
389 line{ pos = $x_4F spacing = $space_x_4F }
390 line{ pos = $x_3F spacing = $space_x_Si } # bound of the quantum␣

→˓region
391 line{ pos = $x_1F spacing = $space_x_QR }
392

393 line{ pos = $x_1L spacing = $space_x_QR }
394 line{ pos = $x_3L spacing = $space_x_QR } # bound of the quantum␣

→˓region
395 line{ pos = $x_4L spacing = $space_x_4L }
396 line{ pos = $x_5L spacing = $space_x_5L }
397 }
398

399 ygrid{
400 line{ pos = $y_7S spacing = $space_y_SD }
401 line{ pos = $y_6S spacing = $space_y_SD }
402

403 line{ pos = $yq_min spacing = $space_y_QR } # bound of the quantum␣
→˓region

404 line{ pos = $y_5S spacing = $space_y_QR }
405 line{ pos = $y_4S spacing = $space_y_QR }
406 line{ pos = $y_1S spacing = $space_y_QR }
407 line{ pos = $y_1D spacing = $space_y_QR }
408 line{ pos = $y_4D spacing = $space_y_QR }
409 line{ pos = $y_5D spacing = $space_y_QR }
410 line{ pos = $yq_max spacing = $space_y_QR } # bound of the quantum␣

→˓region
411

412 line{ pos = $y_6D spacing = $space_y_SD }
413 line{ pos = $y_7D spacing = $space_y_SD }
414 }

where $space_x_QR and $space_y_QR will control the grid resolution within the quantum region, and $yq_min
and $yq_max are the bounds of this region in the y-direction.

Instead of refining both axes at the same time, let us reduce the grid resolution in the y-direction first. Figure
4.17.2.23 presents the wavefunctions overlapped with the band edges in the section xz_Si_QDs for different grid
spacing in the y-direction controlled by $space_y_QR. We can also observe the corresponding residual evolution
in the first 10 iterations. The grid in the x-direction was kept 5 nm.

622 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.23: Results of the self-consistent Schrödinger-Poisson simulations using different grid spacing in the
y-direction only within the reduced QROI (section xz_Si_QDs). (a) -(c) wavefunctions (solid lines) for the three
lowest states overlapped with the conduction band (dotted lines) (d) residual evolution. These are intermediate
results after only 10 iterations: the convergence process was still not completed.

The evolution of the residuals are very similar, except for the case of 5 nm. Additionally, for $space_y_QR of 1
nm or less the wavefunctions are smooth and do not present relevant changes.

Repeating a similar procedure for different grid resolutions in the x-direction ($space_x_QR) we obtain the wave-
functions of the Figure 4.17.2.24. In the y-direction the grid resolution in this region was considered equal to 1 nm
($space_y_QR = 1 in our input file).

Figure 4.17.2.24: Results of the self-consistent Schrödinger-Poisson simulations for section yz_Si_QDs using
different grid spacing in the x-direction within the QROI: (a)-(d) wavefunctions (solid lines) for the four lowest
states overlapped with the conduction band (dotted lines), and (e) residual evolution. These are intermediate results
after only 10 iterations: the convergence process was still not completed. $space_y_QR was kept 5 nm.

From analysis of these plots, we observe that decreasing the grid resolution in the x-direction from 1 nm to 0.5
nm does not introduce significant improvement in the computation of the density of probabilities from the wave-
functions in the first 10 iterations. For this reason, we infer that values of 1 nm or less for $space_x_QR and
$space_y_QR will be required for more accurate simulations.

4.17. Numerics 623

nextnano++ Documentation, Release 1.25.13

4. Expanding the Quantum Region: time to get beautiful plots (and accurate results)!

Using the results obtained for reduced QROI, we can now design the whole quantum region, now extended from
-150 nm to 150 nm for the y-direction. Until now the central valley of the conduction band in Figure 4.17.2.20
(around y = 0) was not part of the reduced QROI. Therefore, it may require to increase the number of the eigen-
values in the self-consistent computations in order to fill also this region with carriers.

How to estimate the minimum number of eigenvalues required ($Nstates)?

Our hint is to use, once again, our lower resolution grid within the quantum region (for example, with 5 nm) and
few iterations (10) for this tuning. We will reserve the finer grid (1 nm) we previously obtained, only to get the final
accurate results. Figure 4.17.2.25 illustrates a sequence of simulations where the grid resolution and the number
of states were iteratively changed.

Figure 4.17.2.25: Sequence of simulations for defining a suitable value for $Nstates. (a) residual evolution,
(b) occupation number of the most populated band, (c) and (d) conduction band for the sections xz_Si_QDs and
yz_Si_QDs, respectively. These are intermediate results (only 10 iterations of the coupled solvers were taken into
account).

From the coarser grid we observed that the occupation number in the most populated band it is no more than 80
states. The residual of the density of electrons decreases as the grid gets finer and the number of states is around
80. The conduction band in the more relevant sections, shown in the image, does not change too much, for grid
spacing less than 2 nm in the quantum region.

Now it is time to obtain more accurate results. As we mentioned before we will compute 80 states in a quantum grid
with $space_x_QR = 1 and $space_y_QR = 1. The convergence process will be controlled by the maximum
number of iterations ($quantum_iterations = 100) and the accuracy desired ($CRes) for the residual of the
quantum densities. The solutions converge when the quantum density of electrons is smaller than $Cres before
ending the total number of iterations of the self-consistent calculations.

We start, for example, with a constraint $CRes = 1 and, gradually we decrease until the solutions do not change.

Figure 4.17.2.26 shows an example how to choose a suitable value for $CRes. This corresponds to simulations that
converged in less than 100 iterations. The curves correspond to some wavefunctions for the section xz_Si_QDs
when requesting accuracy of 0.1, 0.01 and 1.0. We observe that the lowest states (like shown in (a)) are more re-
quires more deep constraints in the value of $CRes than the highest states. Nevertheless, decreasing this parameter
from 0.10 to 0.01 does not present a significant improvement in the results. What you need to keep in mind is
which of both values to use: using $CRes = 0.01 will produce, in thesis, better results, but it will result in longer
runtimes and more memory for storing the results.

The solutions for the section yz_Si_QDs are even more robust than the previous one (see Figure 4.17.2.27): the
wavefunctions do not present relevant variation even when the value of $Cres is higher.

� Hint

624 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.17.2.26: Some wavefunctions in the section xz_Si_QDs as function of the residual used in the convergence
process $CRes. (a) in the central, and (b) in the whole quantum region. All solutions converged before reaching
the maximum number of iterations (100).

Figure 4.17.2.27: Comparison of some wavefunctions in the section yz_Si_QDs for convergence residual ($Cres)
(a) from 1.00 to 0.10, and (b) from 0.10 to 0.01. All solutions converged before reaching the maximum number of
iterations (100).

4.17. Numerics 625

nextnano++ Documentation, Release 1.25.13

Requiring higher accuracy of the solutions may result in large runtime, when the decrease of residuals are too
slow, or even the process does not converge within the chosen maximum number of iterations. Therefore, it is
a good practice tracking the residual evolution during the simulations. If they are taking too long (compared
with another previous one) for decreasing, you always can interrupt the calculations pressing the key F11 or
F12.

Final considerations

Last but not least, we will simply mention here some important topics are worth to be discussed in separated
tutorials.

For some problems that requires really fine grids in very large regions the memory may become the bottleneck
of the simulations: the system to be solved may not fit in your RAM. For these situations we implemented in
nextnano++ the decomposition method, that converts the 3D-Schrödinger-Poisson problem in multiples 1D prob-
lems. Additionally, our implementation results very fast. Nevertheless, this algorithm has intrinsic assumptions,
that may not apply to all devices and shall be carefully used. For more detail look at in our page quantum{ region{
quantize_x{ }, . . . } } of our documentation.

Nevertheless, this algorithm has intrinsic assumptions, that may not apply to all devices and shall be carefully used.

It is also important to mention that, coherent quantum transport calculations can be performed using the
nextnano++ implementation of the CBR method. The performance of these computations can be improved im-
plementing small changes in the final input file from this tutorial. The most important modification consists on
importing the file with the final result of the electrostatic potential from your self-consistent simulations, instead of
being solved directly. Our tutorial Landauer conductance and conductance quantization: from quantum wires to
quantum point contacts presents this method in detail and the corresponding input files than can be easily extended
to 3D devices.

One again, we remind you that in this tutorial we considered only a combination of biases applied to the gates. It
is always convenient to check the constraints (boundary conditions for the quantum region, occupation number,
residual evolution, etc.) to another scenarios.

We recommend visiting our documentation, where we present the whole methodology Approaching large 3D
designs with Schrödinger-Poisson self-consistent solver and its first two steps:

Reducing dimensionality of large 3D designs

Optimizing electrostatics simulation for large 3D designs

Last update: 15/07/2024

4.18 Tricks and Hacks
This set of tutorials focus on non-standard simulations with nextnano++, therefore, on overcoming difficulties and
limitations of models and numerics often arising from the general complexity of simulations of semiconductor
devices.

This group of tutorials also covers topics related to extracting additional information from the output of nextnano++
by post-processing it with nextnanopy and Python programming language.

4.18.1 C-V curve calculation for general structures (Post-processing by python)

• Header

• Introduction

626 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

• Post-processing without nextnanopy

– Example

• Post-processing with nextnanopy

Header

Files for the tutorial located in nextnano++\examples\tricks_and_hacks

• MIS_CV_1nmSiO2_1D_nnp.in

• MIS_CV_3nmSiO2_1D_nnp.in

• MIS_CV_3nmSiO2_metal_1D_nnp.in

• CapacitanceBySplines_2021_Nov.py

• calculate_CV.py

Important output files:
• integrated_density_electron.dat

• integrated_density_hole.dat

Introduction

The nextnano++ tool can calculate many fundamental quantities like potentials, carrier densities, wave functions
and so on. By processing the results of nextnano++ using the calculation tools such as python, we can calculate
further advanced characteristics required for some specific devices.

C-V curve is one of the example of such characteristics. This curve is used for the analysis of the devices that could
have a depletion region such as metal-insulator-semiconductor, p-n junction, MOSFET and so on.

Specifically, the C-V characteristic is obtained by calculating the capacitance as

𝐶 =
𝑑𝑄

𝑑𝑉
.

When the bias sweep and spacial integration are specified in the input file, the electron and hole densities integrated
over the region are output in integrated_density_electron.dat and integrated_density_hole.dat with respect to each
bias. The C-V curve can be calculated by taking a derivative of the Q-V curve that is obtained from these data file.

(For the details of bias sweep and spacial integration, please refer to the input file of the tutorial in Example.)

In this tutorial we provide python scripts that calculate and plot the C-V curve. They are applied to our MIS
tutorial here, but they can also be applied for the general structures that output integrated_density_electron.dat and
integrated_density_hole.dat. The second script uses our post-processing tool nextnanopy.

• Post-processing without nextnanopy

• Post-processing with nextnanopy

Post-processing without nextnanopy

CapacitanceBySplines_2021_Nov.py first calculates the Q-V curve interpolating the total integrated charges ob-
tained from the data files and calculates the C-V curve from that Q-V curve.

Example command:

python C:\Users\user.name\Documents\CapacitanceBySplines_2021_Nov\
→˓CapacitanceBySplines_2021_Nov.py -o C:\Users\user.name\Documents\nextnano\Output\ -p

The commandline options are followings:

4.18. Tricks and Hacks 627

https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_MIS_CV.htm
https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_MIS_CV.htm

nextnano++ Documentation, Release 1.25.13

• -o : Path of the output folder where integrated_density_hole.dat and integrated_density_electron.dat are
stored follows. (required)

• -p : if present in the command line, the total integrated charge and interpolated C-V curves will be plotted
using Matplotlib (optional)

• -b1 : Substring of the contact that will be used as reference follows. When not specified the first common
contact of both integrated_density files will be used. (optional)

• -b2 : Substring of a second contact that will be used as reference follows. The final C-V will be calculated
as function of the voltage given by bias1 - bias 2. If bias1 was not specified, bias2 will be ignored. (optional)

Example

Here we have a MIS tutorial: “Capacitance-Voltage curve of a “metal”-insulator-semiconductor (MIS) structure”.

After running the nextnano++ input file of this tutorial MIS_CV_1nmSiO2_1D_nnp.in, we can find inte-
grated_density_electron/hole.dat in the output folder.

By executing CapacitanceBySplines_2021_Nov.py in the following command,

python C:\Users\user.name\Documents\CapacitanceBySplines_2021_Nov\
→˓CapacitanceBySplines_2021_Nov.py -o C:\Users\user.name\Documents\nextnano\Output\
→˓MIS_CV_1nmSiO2_1D_nnp\ -p

we get the Q-V curve and C-V curve as follows.

Figure 4.18.1.1: Q-V characteristics obtained by post-processing the result of MIS_CV_1nmSiO2_1D_nnp.in by
CapacitanceBySplines_2021_Nov.py. Linear and cubic interpolation are done to the output data.

Post-processing with nextnanopy

In order to use the CV calculation with nextnanopy, import the CV calculation function from postprocess modul.

from nextnanopy.postprocess import CV_calculation

628 Chapter 4. Tutorials

https://www.nextnano.com/nextnano3/tutorial/1Dtutorial_MIS_CV.htm

nextnano++ Documentation, Release 1.25.13

Figure 4.18.1.2: C-V characteristics obtained by post-processing the result of MIS_CV_1nmSiO2_1D_nnp.in by
CapacitanceBySplines_2021_Nov.py.

nextnanopy.postprocess.(output_directory_path, bias1 = None, bias2 = None,
total = False, net_charge_sign = -1) -> voltage, C_regions

Calculates the CV curve of the device. The voltage is defined based on the following criteria:

• If the values for bias1 and bias2 are not given, the voltage is set to the value of the first bias column in
the densities file.

• If the value for bias1 is given and bias2 is not given, the voltage is set to the value of bias1.

• If both bias1 and bias2 are given, the voltage is set to the difference between bias2 and bias1.

Parameters
• output_directory_path (str) – output directory path of the simulation

• bias1 (str) – name of bias1

• bias2 (str) – name of bias2

• total (bool) – if True, capacitance is calculated for total charge

Returns
voltage(numpy array) and capacities (list of capacities for each computed region)

To calculate the capacitance vs voltage using linear interpolation, use this function as following

voltage, C_regions = calculate_CV(output_directory_path)

To plot the output it is recommended to use

import matplotlib.pyplot as plt
for region in C_regions:

plt.plot(voltage, region)

The example, which runs the simulation and plots the CV curve with nextnanopy can be found here: Python
template to run CV calculation

4.18. Tricks and Hacks 629

https://github.com/nextnanopy/nextnanopy/blob/master/templates/calculate_CV.py
https://github.com/nextnanopy/nextnanopy/blob/master/templates/calculate_CV.py

nextnano++ Documentation, Release 1.25.13

Last update: 17/07/2024

4.18.2 Interband tunneling current in a highly-doped nitride heterojunction

• Header

• Introduction

• The script

• Options in the script

• Results

Header

Files for the tutorial located in nextnano++\examples\tricks_and_hacks

• InterbandTunneling_Duboz2019_nnp.py

• InterbandTunneling_Duboz2019_nnp.in

Important output files:
• bias_xxxxx/integrated_density_electron.dat

• bias_xxxxx/integrated_density_hole.dat

• bias_xxxxx/mobility_electron.dat

Introduction

We compute interband tunneling current through a highly-doped heterojunction by nextnano++ simulation and
Python post-processing. We follow the methods in the following publication of Jean-Yves Duboz and Borge Vinter
[Duboz2019], using fewer approximations wherever possible:

This tutorial uses the Python script nextnanopy/templates/InterbandTunneling_Duboz2019_nnp.py to automate the
simulation of the nextnano++ input file InterbandTunneling_Duboz2019_nnp.in and post-calculation of interband
tunneling current.

The script

The Python script does the following while sweeping the bias:

1. Runs the nextnano++ simulations based on the user-defined parameters

2. From the simulation output folder, load the envelopes 𝐹vj,z1(𝑧), 𝐹vj,z2(𝑧), and 𝐹ci(𝑧) together with the
electrostatic potential 𝜑(𝑧). The units are 1/nm1/2 and V, respectively.

3. Differentiates the potential.

4. Calculates the dipole matrix elements using the position-dependent material parameters.

5. Plots the matrix elements as a function of position.

6. Integrates the product over the device.

7. Calculates tunneling current density for individual transitions in units A/cm2.

8. Sums up the tunnel current density for all possible transitions.

After all simulations and post-calculations, the Python script exports the tunnel I-V curve in the following formats:

1. Image file with the format specified by the user

630 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

2. *.dat file

The output folders are indicated in the console log. The *.dat format is useful if you compare I-V curves using the
nextnanomat overlay feature.

Options in the script

Effective ffield
If the Boolean variable CalculateEffectiveField_fromOutput = True (the default), then
the script calculates the position-dependent effective field

𝑀𝜎
𝑖𝑗 = 𝛼𝑗*𝑍𝜎

∫︁
𝑃1

𝐸𝑔
𝐹 *
𝑣𝑗,𝑧𝜎(𝑧)𝐹𝑐𝑖𝜎(𝑧)𝑞

𝜕𝜑(𝑧)

𝜕𝑧
𝑑𝑧

based on the computed electrostatic potential. When
CalculateEffectiveField_fromOutput = False, the assumption in the paper is
used.

𝜕𝜑(𝑧)

𝜕𝑧
= 1

V

nm

Kane’s parameter
If the Boolean variable KaneParameter_fromOutput = True (the default), then the script
reads in the Kane’s parameter 𝑃 in from the nextnano++ output to evaluate

⟨𝑍| 𝑧 |𝑆⟩ = 1

𝐸𝑔
⟨𝑍| 𝑝𝑧 |𝑆⟩ =

𝑃

𝐸𝑔

In this case, an 8-band k ·p simulation with exactly the same device geometry will be performed
so that nextnanopy can extract the Kane parameter.

If KaneParameter_fromOutput = False, then 𝑃 is calculated from the assumption in
[Duboz2019] (𝐸𝑃 = 15 eV).

Reduced mass
If the Boolean variable CalculateReducedMass_fromOutput = True, then the script calcu-
lates the position-dependent reduced mass 𝑚𝑟 in

𝐼𝑖𝑗 =
2𝜋𝑞

ℏ
∑︁
𝜎

|𝑀𝜎
𝑖𝑗 |2 ·

𝑚𝑟

2𝜋ℏ2
=
𝑞𝑚𝑟

ℏ3
∑︁
𝜎

|𝑀𝜎
𝑖𝑗 |2

using the nextnano++ outputs of the effective masses.

When CalculateReducedMass_fromOutput = False (the default), then the assumption as
in [Duboz2019] is used.

Results

The structure is an AlGaN/GaN p-i-n junction with 2 nm GaN interlayer.

The energy overlap between the hole states and electron states increases as the bias, leading to larger tunnel current.

The Python script calculates dipole matrix elements from the simulation results:

from which we obtain the tunnel current as a function of bias:

Last update: 17/07/2024

4.18.3 Optical generation in InGaAs/GaAs QW

4.18. Tricks and Hacks 631

nextnano++ Documentation, Release 1.25.13

632 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.18.2.1: Interband tunneling current in a nitride p-i-n junction. Following the paper, backward bias is taken
to be positive in this plot.

• Header

• Introduction

• Simulation Scheme

– First Step

– Second Step

– Third Step

• Results

Header

Files for the tutorial located in nextnano++\examples\tricks_and_hacks

• 1D_optical_generation_ingas_gaas_qw.in

• 1D_optical_generation_ingas_gaas_2qw.in

• 1D_optical_generation_ingas_gaas_qw.py

• 1D_optical_generation_ingas_gaas_2qw.py

Scope:
In this tutorial, a procedure for simulating photogeneration inside quantum wells is described.

Important keywords:
• optics{ irradiation{} quantum_spectra{} }

• import{ }

• region{ generation{} }

Relevant output files:
• bias_00000\Optics\absorption_quantum_region_TE_eV.dat

• Irradiation\illumination_spectrum_power_eV.dat

• bias_00000\recombination.dat

• bias_00000\bandedges.dat

4.18. Tricks and Hacks 633

nextnano++ Documentation, Release 1.25.13

Introduction

We consider a simple 1D single QW (In0.2Ga0.8As/ GaAs) structure under illumination along the QW growth direc-
tion. The photon energy is little above the absorption edge of the GaAs QW. The In0.2Ga0.8barriers are transparent
for the incident photons, because the band gap in these regions exceeds the energy of the photons. Thus generation
of charge carriers only occurs inside the QW.

Simulation Scheme

Based on the current implementation of photogeneration in nextnano++, the simulation procedure shown in Figure
4.18.3.1 is employed.

Figure 4.18.3.1: Visualization of the Simulation Procedure

Each step of the procedure is further elaborated in the sections below.

First Step

In the first step, data files for the absorption spectrum and the illumination spectrum are created, which are going
to be used to determine the generation profile 𝐺(𝑥), in a later step.

Before running the input file, the user should specify the properties of the light source inside the group optics{
irradiation{} }.

optics{
irradiation{

min_energy = 1.0 # minimum energy of the light source spectrum
max_energy = 1.8 # maximum energy of the light source spectrum
energy_resolution = 0.001 # resolution of the light source spectrum

global_illumination{
direction_x=1
gaussian_spectrum{ # lineshape

(continues on next page)

634 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

irradiance = 1e5 # total intensity [W/m^2]
energy = 1.25 # peak energy [eV]
gamma = 0.01 # FWHM [eV]

}
}
output_spectra{} # create light source spectrum in the output␣

→˓folder
}

...

}

When running the input file, nextnano++ computes the absorption spectrum quantum mechanically based on the
settings inside optics{ quantum_spectra{} }.

optics{

...

quantum_spectra{
name = "quantum_region"
polarization{ name = "TE" re = [0,1,0] }
k_integration{

relative_size = 0.2
num_subpoints = 6
num_points = 8

}
output_spectra{

spectra_over_energy = yes # output spectrum dI/dE
emission = yes

}
output_occupations = yes

energy_broadening_lorentzian= 1.0e-2
spontaneous_emission = yes

Note: the following settings should be the same as in irradiation{}
energy_min = 1.0 # minimum energy of the absorption␣

→˓spectrum
energy_max = 1.8 # maximum energy of the absorption␣

→˓spectrum
energy_resolution = 0.001 # resolution of the absorption spectrum

}
}

The computed absorption and illumination spectra are located in the output folder at:

• <input file name>\bias_00000\Optics\absorption_quantum_region_TE_eV.dat

• <input file name>\Irradiation\illumination_spectrum_power_eV.dat

. Warning

Depending on the settings in nextnanomat, <input file name> could contain, in addition to the actual input file
name, the current date or a counting index if the input file is run several times. It has to be checked that the path
name of the simulation results is consistent with the path name which is used later in the python script when

4.18. Tricks and Hacks 635

nextnano++ Documentation, Release 1.25.13

extracting the files.

Second Step

With the python script, the generation rate profile 𝐺(𝑥) is calculated as follows:

𝐺(𝑥) =

∫︁
𝐺(𝑥,𝐸)𝑑𝐸,

where 𝐺(𝑥,𝐸) is given by

𝐺(𝑥,𝐸) = 𝛼(𝐸) · 𝜑(𝐸)𝑒−𝛼(𝐸)𝑥,

with the spectral photon flux Φ(𝐸) and absorption coefficient 𝛼(𝐸). Reflectance is neglected in this case. The
factor 𝜑(𝐸)𝑒−𝛼(𝐸)𝑥 represents the light field which attenuates exponentially along the propagation direction.

The spectral photon flux is determined by the spectral properties of the light source, i.e. the light source spectrum
𝑑𝐼/𝑑𝐸, as follows:

Φ(𝐸) =
𝑑𝐼/𝑑𝐸

𝐸

with energy 𝐸. For 𝛼(𝐸) the absorption spectrum which was computed in the first step is rescaled by a factor f.
This scaling factor is necessary, because the absorption spectrum, as computed by the tool, scales with the chosen
quantum region 𝐿𝑞 and well width 𝐿𝑤, c.f. Figure 4.18.3.2 (left). Multiplying the absorption spectra by

𝑓 =
𝐿𝑤
𝐿𝑞

compensates the dependency on 𝐿𝑞 around the absorption edge of the QW, which lies around 1.225eV in the case
of GaAs-QW, as shown in Figure 4.18.3.2 (right).

Figure 4.18.3.2: Computed absorption spectrum of a single InGaAs/GaAs quantum well for different quantum
region widths 𝐿𝑞 , unscaled (left) and rescaled by the factor 𝐿𝑤/𝐿𝑞 (right)

The rescaling factor for multiple quantum well structures becomes:

𝑓 =
𝐿𝑞∑︀
𝑖 𝐿

(𝑖)
𝑤

.

Third Step

The generation rate profile can now be imported from the data file. The file should contain values for position and
generation rate as separate columns.

import{
file{

name = "my_generation_profile" # reference name
filename = "Generation_profile.dat" # relative path to generation␣

(continues on next page)

636 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓rate profile
format = DAT

}
}

The imported generation profile is then applied to the QW region:

structure{

...

region{
ternary_constant{ name = "Ga(1-x)In(x)As" alloy_x = 0.2 } # material GaInAs␣

→˓alloy
line{ x = [$well_start, $well_end] } # overwriting␣

→˓previously defined GaAs

!IF($second_run)
generation{ # generation␣

→˓profile G(x) applied to QW region
import{ import_from = "my_generation_profile" } # refer to␣

→˓imported data file with name "my_generation_profile"
}

!ENDIF
}

...

}

Results

Generation Rate Profile
Figure 4.18.3.3 shows the generation rate profile calculated according to the above described methodology.

Figure 4.18.3.3: Computed generation rate profile G(x) for single QW structure

Bandedges and Fermi Levels
Figure 4.18.3.4 compares the band edges and Fermi levels without photogeneration (left) and with photogeneration
based on the imported generation rate profile (right).

4.18. Tricks and Hacks 637

nextnano++ Documentation, Release 1.25.13

Figure 4.18.3.4: Band edge profile of 1D QW (𝐿𝑤 = 10 nm) structure without photogeneration (left) and with
photogeneration (right)

Last update: 17/07/2024

4.18.4 Photoluminescence of Quantum Well

• Header

• Introduction

• Simulation scheme

• Simulation

Header

Files for the tutorial located in nextnano++\examples\tricks_and_hacks

• 1D_PL_of_QW_absorption_nnp.in

• 1D_PL_of_QW_nnp.in

• 1D_PL_of_QW_nnp_absorption_spectrum.dat

Output Files:
bias_00000\Optics\spont_emission_power_region_longitudinal_nm.dat

Scope:
In this tutorial, we show an approach how to model photoluminescence (PL) in 1D QW structures. The
following is covered:

• Short overview of the most essential groups which are needed in the input file for PL simulations

• How to compute the absorption spectrum, when no experimental data is available

• Results: photoluminescence spectra

• Limitations of the simulation

Important keywords:
• classical{ energy_resolved_density{} energy_distribution{} }

• optics{ irradiation{} semiclassical_spectra{} quantum_spectra{} }

• quantum, current{}

Introduction

What are we modelling? In short, light impinges on the surface of the structure parallel to the growth direction.
A certain fraction of the total photon flux penetrates into the material and is absorbed, which leads to generation
of mobile charge carriers (photogeneration). These carriers are lifted into excited states. If an excited electron
recombines radiatively with a hole, light is emitted (spontaneous emission). As depicted in Figure 4.18.4.1, the
recombination process happens mainly in the quantum well.

638 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.18.4.1: Visualization of involved processes: 1) light absorption and generation of electron - hole pairs, 2)
trapping of carriers inside the quantum well, 3) recombination and spontaneous emission of light

The quantum well structure under consideration in this tutorial consists of the following material layers:

Layer Material Thickness (nm)
1 Al0.36Ga0.64 As 500
2 GaAs 7
3 Al0.36Ga0.64 As 500
Substrate GaAs 1000

Simulation scheme

In our model we treat the absorption and generation of charge carriers within a semiclassical approach. The current
equation is calculated self-consistently within the Schrödinger and Poisson equations in order to get accurate charge
carrier densities. Afterwards, the luminescence spectra are calculated quantum mechanically based on the occupied
states.

General approach
One of the most important process in our simulation is the generation of charge carriers, which is governed by
the generation rate 𝐺(𝑥,𝐸). The dependency on energy is described by the absorption spectra 𝛼(𝐸). Since we
assume not having experimental data for the absorption spectra available, we have to calculate 𝛼(𝐸).

Figure 4.18.4.2 visualizes the idea of our procedure. The 1. step is running the input file
1D_PL_of_QW_absorption_nnp.in, which does not include any optical phenomena (photogeneration, emission,
. . .). Then the 2. step is to run the normal input file 1D_PL_of_QW_nnp.in, which includes generation of carri-
ers, using the imported absorption spectrum from the 1. step. Normally, one has to repeat the whole cycle, until
the absorption spectra fully converge. For simplicity, we assume that no additional repetition is needed.

Input file
The optical phenomena related to the irradiation, absorption and spontaneous emission processes, which should
be taken into account in the simulation, have to be specified in the optics{ } block. The absorption process is
modelled within a semiclassical approach calling irradiation{} and semiclassical_spectra{}. The spon-
taneous emission is treated quantum mechanically inside the block quantum_spectra{}:

optics{

irradiation{

global_illumination{ # specification of the light source, i.e. illumination␣
→˓spectrum

direction_x=1
(continues on next page)

4.18. Tricks and Hacks 639

nextnano++ Documentation, Release 1.25.13

Figure 4.18.4.2: Iterative procedure calculating absorption spectrum until convergences is reached

(continued from previous page)

gaussian_spectrum{
irradiance = $irradiance*1e4
wavelength = $peak_wavelength
gamma = 0.01

}

global_absorption_coeff{ # specification of absorption spectrum
import_spectrum{# choice of imported file with previously calculated abs␣

→˓spectra
import_from = "my_abs"
cutoff = yes

}
}

photo_generation{ # enabling photogeneration
output_energy_resolved = yes

}

output_spectra{ # output options
illumination = yes
absorption = yes

}
}

semiclassical_spectra{ # important group for absorption spectrum
refractive_index = 3.14768486
output_spectra{

absorption = yes
emission = yes

}

quantum_spectra{ # calculate emission spectrum quantum mechanically for the␣
→˓quantum region

(continues on next page)

640 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

name = "quantum_region"

intraband = no
interband = yes
polarization{ name = "longitudinal" re = [1,0,0] }

k_integration{
relative_size = 0.3
num_subpoints = 5
num_points = 10
#force_k0_subspace = yes

}

output_spectra{
spectra_over_energy = yes
spectra_over_wavelength = yes
emission = yes
power_spectra = yes

}

settings for output spectra
energy_min = 0.001
energy_max = 5.0
energy_resolution = 0.001
spontaneous_emission = yes
energy_broadening_lorentzian= 1.0e-2

}
}

The absorption spectrum used in the group irradiation{} should be imported from
1D_PL_of_QW_absorption_nnp.in.

import{
directory = "...1D_PL_of_QW_absorption_nnp\bias_00000\Optical\" # location of the␣

→˓file with absorption spectrum - it should be changed accordingly
file{

name = "my_abs" # rename filename
filename = "computed_absorption_spectrum_nm.dat" # reference desired␣

→˓filename
format = DAT

}
}

Inside the group classical{ } one has to specify energy resolved densities n(x,E) and p(x,E), which are required
for the semiclassical absorption and emission spectra. More information on the underlying equations can be found
here

classical{

Gamma{} HH{} LH{} # bands involved in 1 band calculation

energy_resolved_density{
calculate position and energy resolved electron and hole densities: n(x,E),␣

→˓p(x,E)
required for calculation of semiclassical emission and absorption spectra
min = -5.0

(continues on next page)

4.18. Tricks and Hacks 641

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

max = 5.0
energy_resolution = 0.001
only_density_quantum_regions = no

}

energy_distribution{
settings for energy resolved density
min = -4.0
max = 4.0
energy_resolution = 0.001
only_density_quantum_regions = no

}

}

To calculate the quantum mechanical emission spectra, one has to include the group quantum{ }. The group
quantum{ } as well as current{} and poisson{ } are also required for self-consistent quantum-current-poisson
calculations. Inside these group proper convergence parameters have to be chosen. In this part, one has to think
about proper convergence parameters for the solvers.

poisson{ ... }
currents{ ... }
quantum{ ... }

Note that proper boundary conditions are needed for Poisson and current equation. These are imposed by contact
regions. In our simulation, we apply ohmic{} contacts only to the bottom of the substrate, i.e. to the not illuminated
side of the structure.

contacts{
ohmic{ name = "whatever" bias = 0.0 }

}

Simulation

In the simulation a light source with Gaussian spectrum with central wavelength 𝜆peak = 530 nm (2.34 ev) and
linewidth of 10 meV is used. The intensity Φintensity is varied between the two values 0.5 · 104 W/cm2 and 0.05 ·
104 W/cm2. The temperature in this simulation is swept between the three values 200 K, 250 K and 300 K.

Results
First, we have to calculate suitable absorption spectra with the input file 1D_PL_of_QW_absorption_nnp.in. Fig-
ure 4.18.4.3 shows the calculated absorption spectrum at each temperature. For all temperatures, the absorption
coefficient at 𝜆 = 530 nm is of the order of 106.

Figure 4.18.4.3: Calculated absorption spectrum

642 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Now we can run the main input file 1D_PL_of_QW_nnp.in, which imports and uses the computed absorption
spectrum.

1) Band edges
Figure 4.18.4.4 shows the energy profiles with electron- and hole-Fermi levels. It is visible that boundary conditions
(contacts) are only imposed on the right side of the structure. This set up was found to have better convergence
behavior.

Figure 4.18.4.4: Energy profiles of conduction band (CBO) and valence band (VBO), with electron- and hole-
Fermi levels across the structure

2) Electron/ hole density
Figure 4.18.4.5 illustrates the spatial and energy distribution of electrons and holes with respect to the band edges
for case: Pillumination 0.5 · 104 W/cm2 at 300 K. Both, electrons and holes, are localized inside the quantum well,
thus exhibit discrete energy levels. The occupation of the energy levels gives us insight about possible transitions
(recombination) between electron states in the conduction band and hole states in the valence band. From Figure
4.18.4.5 we can deduce that most transition energies are in the interval 1.4eV-1.6eV of magnitude. For the emission
spectrum, we assume to find its peak energy in this energy interval.

3) Photogeneration
Figure 4.18.4.6 depicts the spatial and energy resolved generation rate inside the structure for the case: Pillumination
0.5 · 104 W/cm2 at 300 K.

4) Spontaneous emission spectrum
Figure 4.18.4.7 shows the normalized spontaneous emission spectra at different temperatures. The peak of the
emission spectra are primarily attributed to the Ee1 - Eh1 transition inside the quantum well. Due to band gap
shrinking the peak shifts to higher wavelengths with increasing temperatures. At higher temperatures the con-
tribution from other transitions, such as Ee2 - Eh1 to the spectra becomes visible. Thus, the spectrum exhibit a
broadening.

5) Temperature dependence of emitted intensity

Last update: 17/07/2024

4.18. Tricks and Hacks 643

nextnano++ Documentation, Release 1.25.13

Figure 4.18.4.5: Electron density n(x,E) and hole density p(x,E) with conduction and valence band edges at 300K.

Figure 4.18.4.6: Photogeneration rate 𝐺(𝑥,𝐸) at 𝑇 = 300𝐾 and 𝑃 = 0.5 · 10 4 W/cm2

644 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.18.4.7: Normalized luminescence spectra with highlighted peak wavelength at each temperature (200 K,
250 K and 300 K), when illuminated by P = 0.5 · 104 W/cm2.

Figure 4.18.4.8: Total emitted intensity as a function of temperature.

4.18. Tricks and Hacks 645

nextnano++ Documentation, Release 1.25.13

4.18.5 From GDSII to Transmission Workflow

• Header

• The simulated structure : Electron flying qubit

• Work flow

• 1. Implementing the structure without gates

• 2. Importing the geometry of the gates

• 3. Setup of the input file for 3D simulations

• 4. Setup of the input file for 2D simulations

• 5. Plotting the transmission through the channel

Header

Files for the tutorial located in nextnano++\examples\tricks_and_hacks

• 3D_GDS_workflow_template_nnp.in - template for 3D Simulations without gates

• 3D_GDS_workflow_gdsfile.gds - GDS file

• 2D_GDS_workflow_transmission_in_2DEG_nnp.in - 2D Simulations

• 3D_GDS_workflow_script.py - script for importing GDS

Scope of the tutorial:
• Importing layout of gates to a nextnano++ 3D input file

• Generating an input file for 3D simulation for a certain bias

• Importing a slice of the potential in the 2DEG to a 2D input file

• Computing the transmission between two leads.

Required python packages
• nextnanopy

• gdspy

• shapely

Relevant Keywords (to be updated):
• structure{ }

• quantum{ quantize_x{}}

Important output Files:
• \input files\3D_GDS_input_file_npp.in

• \simulations\3D_GDS_Workflow_Results_V_-1.03_npp.in

• \outputs\3D_GDS_Workflow_Results_V_-1.03_npp\bias_00000\potential_2d_2DEG.fld

• \outputs\2D_GDS_workflow_transmission_in_2DEG_nnp\bias_00000\CBR\transmission_sums_device_Gamma.dat

Within this tutorial we present a convenient methodology of simulating transmission in top-gated structure focusing
on the geometrical design of the gates. As transmission of such structures highly depend on the geometry of the
gates we propose approach involving usage GDSII files to make the definition of the gates more comfortable. The
workflow is presented on the example of the Electron Flying Qubit.

646 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

The simulated structure : Electron flying qubit

The implementation of an electron Flying Qubit requires to estimate the changes in the electrostatic potential in the
2DEG region as a function of the applied bias to the QPCs. Depending on the shape of the gates 3D simulations
of the gates are required, demanding huge runtime for obtaining the potential at each point of the two-dimensional
electron gas formed at a certain depth of the structure. A critical value of the bias that depletes the electrons in
this region (the pinch-off voltage) shall be computed with high accuracy. Knowing the pinch-off the transport of
electrons in this layer of the structure can be fully controlled.

Nevertheless, the effort for computing the transmission in the 2DEG region can be reduced, if we restrict the
simulation to a plane in this region.

This tutorial illustrates this workflow using the structure presented in Figure 4.18.5.1.

Figure 4.18.5.1: Device under simulation

The two-dimensional electron gas is formed at the interface of the AlGaAs and GaAs (the substrate) materials.
Doping the AlGaAs with n-type impurities at a certain distance of this interface improves the confinement of elec-
trons in the 2DEG region. A GaAs layer over the n-AlGaAs region acts as a cap of the device. Finally metallic gates
with different geometries are directly deposited on the top of surface. Figure 4.18.5.2 presents several geometries
used for testing this methodology.

Work flow

Figure 4.18.5.3 presents a possible methodology for computing the transmission in a channel in the 2DEG plane
that provides accurate results and is less workload intensive.

The main idea is to split the structure in two parts: a stack of layers (the wafer) and the parts with more complex
geometries.

The wafer specifications and experimental measurements provide the most relevant information for modeling the
structure to be simulated. As wafer specifications we mean the different material, alloy composition, doping and
thickness of each layer of the device before deposition of the metallic gates on its surface. Experimental measure-
ments, when available, can become a key component for estimation of the surface charges and reduction of the
incertainty or the doping concentration of the n-AlGaAs layer.

The combination of these two elements (wafer specification and experimental measurements) provides the required
information to calibrate the model. If the experimental measurements are translation invariant on the each layer

4.18. Tricks and Hacks 647

nextnano++ Documentation, Release 1.25.13

Figure 4.18.5.2: Geometry of the gates used to test this methodology. Source: [Chatzikyri-
akou_PhysRevResearch_2022]

of the sample, a simple 1D simulation can be used. Nevertherless it is important to validate and to perform a
sensitivity analysis of the new grid that will be used in the simulation of the device in three dimensions.

In the case of UltraFastNano we successfully adopted a methodology that provided high accuracy in the estimate of
the charge distribution of the manufactured device. This methodology for the calibration was tested for hundreds
of geometries of the gates, and it detailed described in [Chatzikyriakou_PhysRevResearch_2022]

As a final result, we can obtain an input file of the calibrated structure without the gates, that we will use as template.

In this tutorial we will not discuss the previous steps in detail, because they are very dependent on the manufacturing
and modeling of each specific device under test. The dashed region in the workflow shown in the figure is the one
we will discuss in the following sections.

Once we build the template, we can import the geometric information of the gates from a file, for example in GDS
format, as we will use as example. We will present a script to perform this operation in a simple way. The resulting
input file will be used in 3D simulations, generating automatically the potential in the whole structure, and the
corresponding slice in plane in the 2DEG region.

This slice of the electrostatic potential can be exported to a 2D-input file that will compute the transmission between
two leads for a certain bias in the gates.

1. Implementing the structure without gates

It is always convenient to start defining an input file that will contains all information of the calibrated wafer with
the model that will be used for the whole set of simulations. Our suggestion is to prepare this input file without the
region of the QPCs. This will provide more flexibility for simulating gates with different geometries.

In this tutorial our template is the file 3D_GDS_workflow_template_nnp.in that implements the stack of layers of
the Figure 4.18.5.1 without the gates.

In nextnano++, the order of the layers in the section structure{ } of the input file it is important. Each new
layer overwrites the previous one. Another important detail it is that the doping is additive, by default. For this
reason, for importing the geometry of the gates to the right position in the new input file, it is necessary to use two
identifiers as delimiters of the beginning and the end of the gate region. In our example, we used as identifiers the
next labels in the template file:

648 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Figure 4.18.5.3: Workflow proposed by this methodology

4.18. Tricks and Hacks 649

nextnano++ Documentation, Release 1.25.13

--- BEGINNING OF THE GATE REGION ---

and

--- END OF THE GATE REGION ---

as in this snapshot of the template file:

201 # --- BEGINNING OF THE GATE REGION --- #
202

203

204 # ANY LINE BETWEEN THESE TWO IDENTIFIERS WILL BE REPLACED BY THE
205 # GATE SPECIFICATION
206

207 # --- END OF THE GATE REGION --- #

It is important that will be exactly two, in order to identify lines in the input file from previous simulations, like
calibration, that shall be replaced by the specification of the gates.

2. Importing the geometry of the gates

For this implementation, the GDS file provides 2D polygons that shall be extruded to represent the gates in the 3D
representation of the structure. In this particular example, the gates are extended from the coordinates zi = 0 and
zf = 17 (nm), where z is the growth direction and z = 0 corresponds to the surface of the device.

From the calibration we can estimate the surface charges and specify them in the input file in terms of a volumetric
surface charge concentration, over the whole region of the structure between zis= -1 and zfs= -1 nm.

In the case the gates are defined as schottky contacts, as illustrated in this tutorial, the removal of surface charge
concentration just under these gates is necessary.

The script presented above illustrates how to use nextnanopy to import the polygons corresponding to each gate
and generates prisms by extrusion of them from the coordinate zi to zf. Additionaly it removes the surface charge
concentration only under the gates as mentioned above (for z in the interval [zis,zfs]). Additional information
is added, like the boundary conditions and material adjacent to these gates, when necessary.

For running the script execute python 3D_GDS_workflow_script.py in the command line.

The script assumes that the template file and the GDS files are stored in the folders “templates” and “GDS files”
in the same directory where this script is.

Basically it will recognize the identifiers of the gate region in the template and will replace all content between
these lines by the imported and processed content from the GDS file as discussed above.

At this point we encourage you to use of nextnanopy for performing the import of the GDS file, although this
is not mandatory. Another advantage of using this package is that input files can be automatically modified and
executed, and the scripts can be used for documenting each step of your simulation. We remind you that you can
find nextnanopy in our GitHub repository at https://github.com/nextnanopy/nextnanopy: it is open source and free!

We prepared a nice Jupyter notebook at docs/examples folder concerning the import of GDS files to a nextnano++
input file.

3. Setup of the input file for 3D simulations

After running the script two different inputs files will be generated:and verify the resulting input file
that will be used in the 3D Simulation. It will be stored in the folder input files in the same directory
of the script.

• \input files\3D_GDS_input_file_npp.in

• \simulations\3D_GDS_Workflow_Results_V_-1.03_npp.in

The second is one example for simulating the input file 3D_GDS_Workflow_Results_V_-1.03_npp.in for one spe-
cific bias. In this example we will simulate for 𝑉𝑔𝑎𝑡𝑒 = −1.03 𝑉 .

650 Chapter 4. Tutorials

https://github.com/nextnanopy/nextnanopy
https://github.com/nextnanopy/nextnanopy/tree/master/docs/examples

nextnano++ Documentation, Release 1.25.13

In the most general case, 3D simulations can be required for more accurate estimation of the pinch-off voltage.
Additionally, in the development of a Electron Flying Qubit building block computation of the conduction band
through the whole device is necessary, in order to reproduce the transport phenomena in the 2DEG layer.

As the simulation time depends on the number of the nodes on the grid, for more complex forms and for large
devices (of order of microns) with required fine grid (of order of nm), some computers shall have not memory
enough for the numerical solution of a self-consistent calculation of the Schrödinger and Poisson equations, with
a minimum number of wave functions required for such operation.

In this case, a new algorithm was developed within nextnano++ that decomposes the 3D-problem in multiple 1D-
problems. In this example, the Schrödinger-Poisson system is solved along the growth direction independently for
each pair of coordinates of the nodes of the corresponding perpendicular plane. This decomposition method can
be perfect applied to this structure because it is expected that the electrostatic potential does not present any abrupt
variation in the any plane perpendicular to the quantization direction. For the application of this algorithm is only
required to include the line quantize_x{}, quantize_y{} or quantize_z{} in the quantum{ } section of the
input file. In this tutorial the quantum calculations are decomposed in solutions over the growth direction (the
z-axis) and, therefore, we use quantize_z{}.

The most important result that will be used in the next steps is the electrostatic potential of the whole structure
when a certain bias is applied to both gates. It also generates one slice (a plane) within the 2 DEG region.

For purposes of this tutorial it will be required to simulate the input file
\simulations\3D_GDS_Workflow_Results_V_-1.03_npp.in using nextnanomat, for example.

4. Setup of the input file for 2D simulations

The next step in the workflow correspond to the calculation of the transmission of the electrons in a plane in the
2DEG region for a defined bias applied to the gates over the surface (here -1.03V).

We will perform this simulation importing the corresponding slice of the electrostatic potential obtained from
the previous section, and will use the Contact Block Reduction (CBR) method, defining two leads in the sim-
ulation domain: one at the left border (lead 0) and other at the right border (lead 1). The input file \out-
puts\2D_GDS_workflow_transmission_in_2DEG_nnp.in is prepared to perform these tasks automatically.

Figure 4.18.5.4 presents the imported slice of the potential. The dashed lines represent the leads of the structure.

Figure 4.18.5.4: One slice of the potential in the 2DEG region

4.18. Tricks and Hacks 651

nextnano++ Documentation, Release 1.25.13

5. Plotting the transmission through the channel

Figure 4.18.5.4 shows the part of the imported slice of the potential that will actually be simulated when running
\outputs\2D_GDS_workflow_transmission_in_2DEG_nnp.in. The image also shows the position of the leads we
are considering to computing the transmission. The slice obtained from the 3D simulation at 111 nm under the
surface. This results corresponds to the case Vgate = -1.03 V that is still far from the pinch-off voltage for this
device, where it is expected several modes can be transmitted through the channel in the 2DEG.

Figure 4.18.5.5: Portion of the slice of the imported potential shown in Figure 4.18.5.4 that will actually be used
in the computation of the conductance in the channel in the 2DEG.

As result of the simulation of this input file, we can observe in the folder
2D_GDS_workflow_transmission_in_2DEG_nnp\bias_00000\CBR\transmission_sums_device_Gamma.dat
the transmission as function of the energy, shown in Figure 4.18.5.6.

The stepwise behavior of the transmission is consequence of the fact that the conductance is quantized.

This tutorial is based on the nextnano GmbH collaboration in the scope of the UltraFastNano Project aiming at
development of the first Flying Electron Qubit at the picosecond scale, and it is funded by the European Union’s
Horizon 2020 research and innovation program under grant agreement No 862683.

652 Chapter 4. Tutorials

https://ultrafastnano.eu/
https://cordis.europa.eu/project/id/862683

nextnano++ Documentation, Release 1.25.13

Figure 4.18.5.6: Transmission in the 2DEG region between two leads for 𝑉𝑔𝑎𝑡𝑒 = −1.03 𝑉 .

Last update: 2025/06/27

4.18.6 Wurtzite GaN/AlN/GaN on Si(111)

• Header

• Introduction

• Solution for a special case

• Implementation

Header

Files for the tutorial located in nextnano++\examples\tricks_and_hacks

• zb-substrate-in-wz-system_GaN-AlN-Si_1D_nnp.in

Scope of the tutorial:
• Strain

• Database

Introduction

This tutorial presents how to model wurtzite heterostructures grown on zincblende (111) substrates. Here the
presented example is GaN/AlN/GaN heterostructure (see — NEW/EDU — Piezo- and Pyroelectric charges in
GaN/AlN/GaN wurtzite heterostructure) with the substrate replaced by equivalence of Si(111).

4.18. Tricks and Hacks 653

nextnano++ Documentation, Release 1.25.13

As nextnano++ does not support simulations containing materials of different symmetries, it is natively not pos-
sible to define wurtzite heterostructure with zincblende substrate, and vice versa. However, one can use certain
simple workaround for special cases.

Solution for a special case

Let us consider a substrate made of any material having zincblende or diamond structure with the surface (111)
being prepared for the epitaxial growth. Let us also assume that the heterostructure deposited on that surface has
wurtzite symmetry oriented respective to the substrate in a way that the [0001] being perpendicular to the substrate
surface (parallel to the growth direction).

Based on basic geometrical considerations (see Figure 4.18.6.1), the last monolayer of the substrate can be modelled
as the last layer of some artificial material with wurtzite symmetry of proper lattice constant, somehow related to
the real material of the substrate. In other words, it can be seen that the last monoatomic layer in the plane (111)
of zincblende or diamond crystals have exactly the same symmetry as a monoatomic layer in the place (0001) of
wurtzite crystals.

Figure 4.18.6.1: Conventional unit cell of a zincblende crystal or diamond. (a) Crystallographic directions of cubic
crystals are plotted. Lattice constant of the crystal is denoted as 𝑎zb (b) The unit cell is sliced through one of (111)
planes. Crystallographic directions of wurtzite crystals which can be grown on such a plane are plotted. Lattice
constant experienced by potentially deposited wurtzite material is denoted by 𝑎.

Distances between the atoms in that monolayer constitute a lattice constant 𝑎 of the artificial wurtzite crystal that
can be used to define the substrate for the simulation. It’s lattice constant 𝑐 does not matter here. Based on
forementioned geometrical considerations, if the lattice constant of the zincblende substrate is 𝑎𝑧𝑏, then

𝑎 =
𝑎𝑧𝑏√
2

(4.18.6.1)

for the artificial, corresponding wurtzite material.

Respective thermal expansion coefficients follow the same transformation.

Therefore, if the substrate is made of Silicon, which has lattice constant 𝑎𝑆𝑖 = 5.4304 Å at room temperature and
expansion coefficient 𝑎𝑒𝑥𝑝,𝑆𝑖 = 1.8138 × 10−5 Å/K, then the corresponding artificial wurtzite crystal will have
the lattice constant

𝑎 =
𝑎𝑆𝑖√
2
=

5.4304 Å√
2

= 3.8399 Å (4.18.6.2)

at room temperature and the expansion coefficient

𝑎𝑒𝑥𝑝 =
𝑎𝑒𝑥𝑝,𝑆𝑖√

2
=

1.8138× 10−5 Å/K√
2

= 1.2826× 10−5 Å/K. (4.18.6.3)

The other lattice constant 𝑐 and the related expansion coefficient can be chosen arbitrary.

654 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Implementation

To implement this solution in the simulation one needs to do only two things:

1. define the corresponding artificial wurtzite material,

2. use it as a substrate.

. Attention

Presented approach is valid only when the zincblende substrate is not included in the simula-
tion domain.

The easiest way to define the artificial material for the substrate is to follow suggestions from Defining New Materi-
als. In the input file zb-substrate-in-wz-system_GaN-AlN-Si_1D_nnp.in we did that by - copy-pasting definition of
GaN from our database (database_nnp.in) under database{ } group - modifying the name, one lattice constant
and one expansion coefficient

ò Note

We have also removed unnecessary comments and not required definitions for simplicity. The code
examples are also simplified. Compare them with the input file to this tutorial.

database{
binary_wz{

name = "Si_wz_substrate_only"
lattice_consts{

a = 3.8399
a_expansion = 1.2826e-5

}
}

}

To use this material for the simulation it is used only as a substrate in the global{ } group.

global{
substrate{ name = "Si_wz_substrate_only" }

}

Last update: 17/07/2024

4.18.7 Automatically running processes after simulation

• Header

• Properties of the input file

• Deleting excess output files

4.18. Tricks and Hacks 655

nextnano++ Documentation, Release 1.25.13

Header

This tutorial shows a couple of examples of how to use postprocessor{ } group.

Properties of the input file

postprocessor{
datafile = "query.bat"
call = "query.bat"
goto_output = yes

}

!DATA

@echo off

@echo:

FOR %%? IN (*.*) DO (
ECHO File Name Only : %%~n?
ECHO Name in 8.3 notation : %%~sn?
ECHO File Extension : %%~x?
ECHO File Attributes : %%~a?
ECHO Located on Drive : %%~d?
ECHO File Size : %%~z?
ECHO Last-Modified Date : %%~t?
ECHO Parent Folder : %%~dp?
ECHO Fully Qualified Path : %%~f?
ECHO FQP in 8.3 notation : %%~sf?
@echo:

)

@echo:

Deleting excess output files

The script below moves the bias_00000Quantumamplitudes_quantum_region_Gamma.dat outside of the
bias_00000Quantum directory (to bias_00000) and deletes the:guilabel:bias_00000Quantum directory with the
entire content.

ò Note

The removing command (rmdir) is called in the quiet mode (/q) such that no prompts occur and
the script can be executed automatically.

postprocessor{
datafile = "query.bat"
call = "query.bat"
goto_output = yes

}

!DATA

move "bias_00000\Quantum\amplitudes_quantum_region_Gamma.dat" "bias_00000\amplitudes_
→˓quantum_region_Gamma.dat"
rmdir /s /q "bias_00000\Quantum"

656 Chapter 4. Tutorials

nextnano++ Documentation, Release 1.25.13

Last update: 17/07/2024

4.18. Tricks and Hacks 657

nextnano++ Documentation, Release 1.25.13

658 Chapter 4. Tutorials

CHAPTER

FIVE

OTHER SIMULATIONS

5.1 Christmas HEMT (2021/12)

Figure 5.1.1: 2021/12 - Christmas HEMT with nextnano++ . Get 2024_christmas_HEMT.in here.

659

https://github.com/nextnano/nextnano-tutorials/blob/0223c76bc38bb91f93fca88a736a0c268e2cff55/art_simulations/2024_christmas_HEMT.in

nextnano++ Documentation, Release 1.25.13

660 Chapter 5. Other Simulations

CHAPTER

SIX

MATERIAL DATABASE

ò Note

This section is under construction

6.1 Introduction to Material Database
As nextnano++ is a general tool for simulations of semiconductor devices, we have structured our database to
handle numerous materials and alloys. The database is prepared to hold any materials which can be described
within one of two models currently implemented in the nextnano++ code. These are models for crystals with
zincblende and wurtzite symmetries. The database is not limited, which means that you can modify it and extend
it adding new materials as much as you need for your purposes. Below, you can find a pedestrian guide to the
material database of nextnano++.

6.1.1 Parameters of Elements & Binary Compounds
The first step to learn how to modify the material parameters is to open nextnano++\Syntax\database_nnp.in in
your installation folder to see how it is structured. You can open it with any text editor.

You will quickly notice that every single material is contained in a separate top-level group binary_zb{}, if it
follows model for zincblende crystals, or binary_wt{}, if it is described within models for wurtzite symmetry.
These are the most important groups in the database, and most likely, these you want to edit as they contain all ma-
terial parameters for pure components (mostly binaries) your materials which can further form alloys. Every such
group has similar structure, namely they begin with two attributes with some value assigned name and valence,
and other groups containing multiple parameters describing given material. See a few examples below.

668 binary_zb{
669 name = Si
670 valence = IV_IV
671

672 # Some other groups
673 }

1596 binary_zb {
1597 name = GaAs
1598 valence = III_V
1599

1600 # Some other groups
1601 }

7226 binary_wz {
7227 name = GaN
7228 valence = III_V
7229

(continues on next page)

661

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

7230 # Some other groups
7231 }

The name attribute defines the name of defined material, which you use to refer to the set of parameters. The
valence attribute specifies families of elements forming the binaries.

Task
Find these groups in your database. Depending on the release, they may be present at different
lines.

Next, groups containing all the parameters are listed in some order, e.g., lattice_consts{},
dielectric_consts{}, and so on.

8855 binary_wz {
8856 name = ZnO
8857 valence = II_VI
8858

8859 lattice_consts{
8860 # Some parameters
8861 }
8862

8863 dielectric_consts{
8864 # Some parameters
8865 }
8866

8867 # Some other groups
8868 }

In principle, you can modify these parameters and run nextnano++ with them. However, other approach might be
better for you. If you need to change the database only a bit or only for some of your simulations then better do not
change it here.

. Attention

Every single parameter for the model must be defined in these groups.

6.1.2 Bowing Parameters and Ternary Alloys
The next are definitions of ternary alloys. They begin separately for each kind of alloys, following definitions of
respective binaries and elements. You can find the definitions of ternary alloys beginning with big comments. A
few examples below for materials with zincblende symmetry.

1419 ##
→˓##############

1420 # T E R N A R Y A L L O Y S -- IV - IV V A L E N␣
→˓C E

1421 ##
→˓#############

3181 ##
→˓##############

3182 # T E R N A R Y A L L O Y S -- III - V V A L E N␣
→˓C E

3183 ##
→˓##############

662 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

6341 ##
→˓##############

6342 # T E R N A R Y A L L O Y S -- II - VI V A L E N␣
→˓C E

6343 ##
→˓##############

These comments are directly followed by lists of available alloys definitions, which you can use in your input files.
Then, similarly o the definitions of the binary compounds, bowing parameters of specific ternaries and definitions
of the alloys are coded within three top-level groups.

Constant Bowing Parameters

The simplest definition, for ternaries with bowing parameters not-dependent on the mole fraction, is done with a
group ternary_zb{} like in the case of SiGe.

1433 ternary_zb {
1434 name = "Si(1-x)Ge(x)"
1435 valence = IV_IV
1436 binary_x = Ge
1437 binary_1_x = Si
1438

1439 conduction_bands{
1440 Delta{
1441 bandgap = 0.206
1442 }
1443 }
1444

1445 kp_6_bands{
1446 L = 0 M = 0 N = 0
1447 }
1448

1449 } : {
1450 name = "Ge(x)Si(1-x)"
1451 valence = IV_IV
1452 binary_x = Ge
1453 binary_1_x = Si
1454 } : {
1455 name = "Si(x)Ge(1-x)"
1456 valence = IV_IV
1457 binary_x = Si
1458 binary_1_x = Ge
1459 } : {
1460 name = "Ge(1-x)Si(x)"
1461 valence = IV_IV
1462 binary_x = Si
1463 binary_1_x = Ge
1464 }

The main body of ternary_zb{} (lines 1434-1448) is structured very similarly to what can be found in
binary_zb{}. First, the reference name of the alloy is specified by setting some string to the attribute name.
Then the attribute valence is set to element families the same as for binaries or elements. Besides these at-
tributes, another two are introduced: binary_x and binary_1_x. Names of already defined binary materials
must be assigned to these attributes. Having

1434 name = "Si(1-x)Ge(x)"
1435 valence = IV_IV

(continues on next page)

6.1. Introduction to Material Database 663

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

1436 binary_x = Ge
1437 binary_1_x = Si

means that material parameters of the material with a name “Si(1-x)Ge(x)”, categorized as IV-IV alloy, are com-
puted based on material parameters of materials named “Ge” and “Si” in the database, where a mole fraction 𝑥
specified in the input file corresponds to the mole fraction of “Ge”, while a value (1−𝑥) is a mole fraction of “Si”
in this alloy.

Definition of bowing parameters for the alloy is following these four attributed. Syntax related to the parameters
is exactly the same as in previously described group binary_zb{} with a difference, such that if some bowing
parameters are not defined, then they are set to zero by default.

. Attention

Not defined bowing parameters are set to zero by default.

The three extra sections following the top part of the group ternary_zb{} are clones of the group with the top-
level attributes redefined. This allows to create equivalent definitions of the same alloy, with different names.

1449 } : {
1450 name = "Ge(x)Si(1-x)"
1451 valence = IV_IV
1452 binary_x = Ge
1453 binary_1_x = Si
1454 } : {
1455 name = "Si(x)Ge(1-x)"
1456 valence = IV_IV
1457 binary_x = Si
1458 binary_1_x = Ge
1459 } : {
1460 name = "Ge(1-x)Si(x)"
1461 valence = IV_IV
1462 binary_x = Si
1463 binary_1_x = Ge
1464 }

As a result multiple equivalent definitions of the same alloy are available allowing you to pick your favorite con-
vention to express the alloy. Similar approach applies to materials with wurtzite sammetry, the difference are
parameters and name of groups containing “_wz” instead of “_zb”.

Fraction-Dependent Bowing Parameters

Two other groups, bowing_zb{} and ternary2_zb{} are needed to define an alloy with bowing parameter de-
pendent on the mole fraction. The definition of such ternary alloy begins with defining the bowing parameters for
mole fractions zero and one, which will further be linearly interpolated for each intermediate composition.

An example of such alloy is AlGaSb, for which two groups of bowing parameters, bowing_zb{}, are specified in
the database.

3555 bowing_zb {
3556 name = "AlGaSb_Bowing_Al"
3557 valence = III_V
3558

3559 # Some parameters
3560 }

664 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

3579 bowing_zb {
3580 name = "AlGaSb_Bowing_Ga"
3581 valence = III_V
3582

3583 # Some parameters
3584 }

These groups do not contain any definition of what are the constituent materials and how they should be interpreted.
They only contain reference name, family assigned and sets of bowing parameters.

The groups ternary2_zb{} are used just after to define such dependencies, e.g.,

3602 ternary2_zb {
3603 name = "Al(x)Ga(1-x)Sb"
3604 valence = III_V
3605 binary_x = AlSb
3606 binary_1_x = GaSb
3607 bowing_x = AlGaSb_Bowing_Al
3608 bowing_1_x = AlGaSb_Bowing_Ga
3609 }

defines a ternary alloy named “Al(x)Ga(1-x)Sb”, classified as III-V material, constructed based on materials “AlSb”
and “GaSb”, with the bowing parameters linearly interpolated from these listed in “AlGaSb_Bowing_Al” to these
listed in “AlGaSb_Bowing_Ga” when mole fraction 𝑥 goes from 1 to 0.

Ternaries, Quaternaries, & Quinternaries

Other types of alloys are defined similarly to ternaries, the same rules and syntax applies. They require proper
definition of binaries and ternaries beforehand.

Related Documentation
• Interpolation Schemes

• Default Materials and Alloys

• Definition of Band Offsets (zincblende)

• Input File Syntax - database{ }

Last update: nnnn/nn/nn

6.2 Defining New Materials
How to define new materials for simulations with nextnano++? You may have multiple reasons for modifying
your parameter database. You may like to tune some parameters to adjust the simulation to some experimental
results. You are simulation for a new material or a material with not very well established parameters, so you need
to explore results in the space of various values of the parameters. Your technological process produces “the same”
material with slightly different parameters in various regions of your simulation, so you need to have a duplicate
behaving slightly different in different areas of your simulation.

To address all of this issues you need one of two solutions either to use a keyword group database{ } in your input
file or modify the database file nextnano++\Syntax\database_nnp.in. Both methods requires you to get familiar
with already existing database. If you didn’t read it yet, get familiar with our Introduction to Material Database
first.

6.2. Defining New Materials 665

nextnano++ Documentation, Release 1.25.13

6.2.1 Database or Input File?
Before introducing any modifications to the material parameters, let us answer an important question: Should the
modification be done in the database file (by default nextnano++\Syntax\database_nnp.in) or in the input file?

Here are our advices on this matter. If you want to have the change for all your simulations, then this is a good
approach. If you loose the original database, then you can always download it again. Be sure that you know what
you are doing. If the change is meant only for one of your simulations, then you should do it in the input file. If
the change is small, and you are not sure if correct, then do it in the input file. If you need the change for multiple
of your simulations but not all of them, then either create a second database or add your own modified materials
independently of the default ones.

The nicest practical thing about our definition of the database is that we introduced here, that it is fully consistent
with the syntax of the input file. It means that everything what you write inside the database{ } group in the
input file, will behave exactly as written in the database file, e.g., in nextnano++\Syntax\database_nnp.in. For this
purpose, the modification of the nextnano++\Syntax\database_nnp.in is not discussed in this site, as whatever you
can script inside the database{ } group in your input file can be copy-pasted to the database file, e.g., at the end
of the file.

6.2.2 Modifying an Existing Material
Let us assume that you would like to modify energy band gap of GaAs to a value of 1.42 eV and the average energy
of valence bands to 1.26 eV. Assuming also, that you are not familiar with the syntax yet, the best approach is
to open the default database file nextnano++\Syntax\database_nnp.in and find definition of the binary compound
GaAs; It begins at the line 1596. Below there is a simplified piece of the referred to database.

1596 binary_zb {
1597 name = GaAs
1598 valence = III_V
1599

1600 lattice_consts{
1601 a = 5.65325
1602 a_expansion = 3.88e-5
1603 }
1604

1605 # Some other parameters
1606

1607 conduction_bands{
1608 Gamma{
1609 mass = 0.067
1610 bandgap = 1.519
1611 bandgap_alpha = 0.5405e-3
1612 bandgap_beta = 204
1613 defpot_absolute = -9.36
1614 g = -0.30
1615 }
1616

1617 # Some other parameters of conduction bands
1618

1619 }
1620

1621 valence_bands{
1622 bandoffset = 1.346
1623

1624 HH{ mass = 0.51 g = -7.86 }
1625 LH{ mass = 0.082 g = -2.62 }
1626 SO{ mass = 0.172 }
1627

1628 defpot_absolute = -1.21
(continues on next page)

666 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

1629 defpot_uniaxial_b = -2.0 defpot_uniaxial_d = -4.8
1630

1631 delta_SO = 0.341
1632 }
1633

1634 # The rest of parameters
1635 }

Then, you need to copy the name attribute specifying which material is edited and all attributes relating to the
parameters of interest, together with the groups and nested groups to which they belong to. I this case, aiming only
at modification of the band gap represented by an attribute bandgap and average valence band energy represented
by an attribute bandoffset, you need to write following script in your input file.

1 database{
2 binary_zb {
3 name = GaAs
4 conduction_bands{
5 Gamma{
6 bandgap = 1.49
7 }
8 }
9

10 valence_bands{
11 bandoffset = 1.26
12 }
13 }
14 }

Note that all the copy-pasted script is additionally enclosed in the database{ } group for the input file.

Exactly the same approach can be applied to modify bowing parameters. Having definition in the database as
follows

3378 ternary_zb {
3379 name = "In(x)Ga(1-x)As"
3380 # Here you can add or edit:
3381 # - other attributes
3382 # - ternary bowing parameters
3383 } : {
3384 name = "Ga(1-x)In(x)As"
3385 # Other Attributes
3386 } : {
3387 name = "Ga(x)In(1-x)As"
3388 # Other Attributes
3389 } : {
3390 name = "In(1-x)Ga(x)As"
3391 # Other Attributes
3392 }

you should use only the top group, the one containing parameters, for redefinition with any of four names as
reference. For example, assuming that you are aiming at changing bowing parameter for spin-orbit coupling energy,
you need to have

1 database{
2 ternary_zb {
3 name = "In(x)Ga(1-x)As"
4 valence_bands{

(continues on next page)

6.2. Defining New Materials 667

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

5 delta_SO = 0.15
6 }
7 }
8 }

or

1 database{
2 ternary_zb {
3 name = "Ga(1-x)In(x)As"
4 valence_bands{
5 delta_SO = 0.15
6 }
7 }
8 }

or with one of the remaining names, in your input file.

6.2.3 Defining a New Binary Compound or Element
Defining a new material is similarly simple as editing the existing one. The main difference is that you need to
define all the parameters of the material. The best approach is, again, to begin with copy-pasting and existing
material with crystal symmetry of your interest. After that, you can edit it such that it represents the material of
your interest. It is important, that the new material is named differently than existing ones or the ones that you are
using in your simulation. Otherwise you are risking overwriting materials that you do not want to overwrite. Use
the new name to refer to this material. Let us assume that you are interested in having Silicon in wurtzite symmetry.
The first step is to locate any wurtzite binary compound defined in the database, like the one below.

7226 binary_wz {
7227 name = GaN
7228 valence = III_V
7229 # Some parameters
7230 }

The second step is to rename conveniently it and give it parameters of the wurtzite Silicon. You can also change
the family to the group IV for consistency by modifying the valence attribute.

1 database{
2 binary_wz {
3 name = Si_wz
4 valence = IV_IV
5 # All wurtzite Si parameters
6 }
7 }

After you are satisfied with your definition of the new material, in most cases, it makes sense to copy-paste it back
to the database file. Remember to remove the database{ } group while doing so.

6.2.4 Defining a New Alloy
It’s the same copy-pasting procedure as before. The best is to begin with finding a definition of the alloy that is
qualitatively similar to yours - the same interpolation schemes and stoichiometric notation. Let us assume that the
target alloy is Tl(x)Bi(1-x)Sb with zincblende symmetry. Then AlInAs is one of many perfect starting points to
define this alloy.

3328 ternary_zb {
3329 name = "Al(x)In(1-x)As"

(continues on next page)

668 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

3330 valence = III_V
3331 binary_x = AlAs
3332 binary_1_x = InAs
3333

3334 # Some bowing parameters
3335

3336 } : {
3337 name = "In(1-x)Al(x)As"
3338 valence = III_V
3339 binary_x = AlAs
3340 binary_1_x = InAs
3341 } : {
3342 name = "In(x)Al(1-x)As"
3343 valence = III_V
3344 binary_x = InAs
3345 binary_1_x = AlAs
3346 } : {
3347 name = "Al(1-x)In(x)As"
3348 valence = III_V
3349 binary_x = InAs
3350 binary_1_x = AlAs
3351 }

The first step is to create ternary definition, so it is clear how many and which components are required. All bowing
parameters are taken equal zero for simplicity in the example below.

1 database{
2 ternary_zb {
3 name = "Tl(x)Bi(1-x)Sb"
4 valence = III_V
5 binary_x = TlSb
6 binary_1_x = BiSb
7

8 # No ternary bowing parameters here if all are assumed to be zero
9

10 } : {
11 name = "Bi(1-x)Tl(x)Sb"
12 valence = III_V
13 binary_x = TlSb
14 binary_1_x = BiSb
15 } : {
16 name = "Tl(1-x)Bi(x)Sb"
17 valence = III_V
18 binary_x = BiSb
19 binary_1_x = TlSb
20 } : {
21 name = "Bi(x)Tl(1-x)Sb"
22 valence = III_V
23 binary_x = BiSb
24 binary_1_x = TlSb
25 }
26 }

The clones are not necessary, but useful to have. The next step, is to define binaries. Therefore, any zinc-blend
binary compound needs to be copied and pasted twice with names “BiSb” and “TlSb” as these have been used in
the definition of the ternary “Tl(x)Bi(1-x)Sb”.

6.2. Defining New Materials 669

nextnano++ Documentation, Release 1.25.13

1 database{
2 binary_zb {
3 name = BiSb
4 valence = III_V
5 # All BiSb parameters
6 }
7 binary_zb {
8 name = TlSb
9 valence = III_V

10 # All TlSb parameters
11 }
12 }

Related Documentation
• Interpolation Schemes

• Default Materials and Alloys

• Definition of Band Offsets (zincblende)

• Input File Syntax - database{ }

Last update: nnnn/nn/nn

6.3 Interpolation Schemes

• Introduction

• Two-component alloys

– Linear - no bowing

– Quadratic - constant bowing

– Cubic - composition-dependent bowing

• Three-component alloys

• Four-component alloys

• Six-component alloys

• Eight-component alloys

6.3.1 Introduction
As our software addresses simulations for a broad range of semiconductor materials, these based on binary com-
pounds (like GaAs) and single elements (like Si), a unified naming of the alloys becomes problematic if one tries
to follow standards in the literature. For example, SixGe1-xis a binary alloy (two elements), while GaxIn1-xAs is a
ternary alloy (three elements), even though their parameters are interpolated using exactly the same schemes.

On the other hand side, in both cases there are only two component materials (pure materials) involved in formation
of the alloy, Si and Ge in the first case, and GaAs and InAs in the second case. Therefore, in this documentation, we
will refer to all pure materials (which parameters are typically tabulated in literature, like: GaAs, InN, ZnO, Si, etc.)
as component materials and naming of interpolation schemes will be based on the number of these components
materials involved in them. With such formalism, both SixGe1-x and GaxIn1-xAs are two-component alloys.

670 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

. Attention

Syntax of the database is consistent with standard naming for III-V and II-VI material systems. Therefore,
regardless of the number of elements forming component materials, they are referred to as binaries; and the
simplest available alloys are ternary alloys.

6.3.2 Two-component alloys
Two-component alloys are typically called binary alloys when group-IV are mixed (IV-IV) and ternary alloys in
the case of III-V or II-VI binary compounds (III-V-V, III-III-V, II-VI-VI, and II-II-VI). Examples of such alloys
are: SixGe1-x, GaxIn1-xN, and GaAsxSb1-x.

Material parameters of two-component alloys are interpolated based on material parameters of two components and
a proper bowing parameter 𝑏AB for the alloy, if defined. Three interpolation schemes are available in nextnano++
for this type of alloys: Linear, Quadratic, and Cubic.

Linear - no bowing

If only parameters of the component materials are defined then a linear interpolation is used to evaluate values of
the parameters for the alloy.

IV-IV
For alloys of type AxB1-x, the scheme reads

𝑃AB (𝑥) = 𝑥 · 𝑃A + [1− 𝑥] · 𝑃B,

where 𝑃AB (𝑥) is an interpolated material parameter of a two-component alloy AxB1-x based on
parameters 𝑃A and 𝑃B describing pure components A and B, respectively.

III-III-V and II-II-VI
For alloys of type AxB1-xC, the scheme reads

𝑃ABC (𝑥) = 𝑥 · 𝑃AC + [1− 𝑥] · 𝑃BC,

where 𝑃ABC (𝑥) is an interpolated material parameter of a two-component alloy AxB1-xC based
on parameters 𝑃AC and 𝑃BC describing pure components AC and BC, respectively.

III-V-V and II-VI-VI
For alloys of type ABxC1-x, the scheme reads

𝑃ABC (𝑥) = 𝑥 · 𝑃AB + [1− 𝑥] · 𝑃AC,

where 𝑃ABC (𝑥) is an interpolated material parameter of a two-component alloy ABxC1-x based
on parameters 𝑃AB and 𝑃AC describing pure components AB and AC, respectively.

Syntax
Let us consider an alloy GaInAs with AC being GaAs and BC being InAs. All the parameters of
GaAs and InAs needs to be defined within binary_zb{} or binary_wz{}. To recognize the alloy
and relate names of component materials, one needs to also define ternary_zb{} or ternary_wz{},
but no bowing parameters needs to be defined there, zeroes are assumed.

binary_zb{
name = GaAs
valence = III_V

All the parameters of GaAs here (P_A)
}

binary_zb{
name = InAs

(continues on next page)

6.3. Interpolation Schemes 671

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

valence = III_V

All the parameters of InAs here (P_B)
}

ternary_zb{
name = "Ga(x)In(1-x)As"
valence = III_V
binary_x = GaAs
binary_1_x = InAs

No bowing parameters specified here
}

Quadratic - constant bowing

If bowing parameters are specified in the database using keywords If linear interpolation is not sufficient, quadratic
interpolation with a bowing parametr can be used instead.

IV-IV
For alloys of type AxB1-x, the scheme reads

𝑃AB (𝑥) = 𝑥 · 𝑃A + [1− 𝑥] · 𝑃B − 𝑥 [1− 𝑥] · 𝑏AB,

where 𝑃AB (𝑥) is an interpolated material parameter of a two-component alloy AxB1-x based on
parameters 𝑃A and 𝑃B describing pure components A and B, respectively, and 𝑏AB is a bowing
parameter for the alloy.

III-III-V and II-II-VI
For alloys of type AxB1-xC, the scheme reads

𝑃ABC (𝑥) = 𝑥 · 𝑃AC + [1− 𝑥] · 𝑃BC − 𝑥 [1− 𝑥] · 𝑏ABC,

where 𝑃ABC (𝑥) is an interpolated material parameter of a two-component alloy AxB1-xC based
on parameters 𝑃AC and 𝑃BC describing pure components AC and BC, respectively, and 𝑏ABC is
a bowing parameter for the alloy.

III-V-V and II-VI-VI
For alloys of type ABxC1-x, the scheme reads

𝑃ABC (𝑥) = 𝑥 · 𝑃AB + [1− 𝑥] · 𝑃AC − 𝑥 [1− 𝑥] · 𝑏ABC,

where 𝑃ABC (𝑥) is an interpolated material parameter of a two-component alloy ABxC1-x based
on parameters 𝑃AB and 𝑃AC describing pure components AB and AC, respectively, and 𝑏ABC

is a bowing parameter for the alloy.

Syntax
For quadratic interpolation of a certain material paramter, one has to specify a bowing paramter
𝑏𝐴𝐵 inside the groups ternary_zb{} or ternary_wz{}.

binary_zb{
name = GaAs
valence = III_V

All the parameters of GaAs here (P_A)
}

binary_zb{
name = InAs

(continues on next page)

672 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

valence = III_V

All the parameters of InAs here (P_B)
}

ternary_zb{
name = "Ga(x)In(1-x)As"
valence = III_V
binary_x = GaAs
binary_1_x = InAs

Some bowing parameters (b_AB)
}

Cubic - composition-dependent bowing

If a constant bowing paramter 𝑏𝐴𝐵 is not sufficient for interpolation of the parameters, like for highly-mismatched
alloys or dilute nitrides, one can use a scheme where the bowing parameter is assumed to be linearly dependent
on the mole fraction x, 𝑏AB (𝑥).

IV-IV
For alloys of type AxB1-x, the scheme reads

𝑃AB (𝑥) = 𝑥 · 𝑃A + [1− 𝑥] · 𝑃B − 𝑥 [1− 𝑥] · 𝑏AB (𝑥)

𝑏AB (𝑥) = 𝑥 · 𝑏AB→A + [1− 𝑥] · 𝑏AB→B,

where 𝑃AB (𝑥) is an interpolated material parameter of a two-component alloy AxB1-x based
on parameters 𝑃A and 𝑃B describing pure components A and B, respectively. The 𝑏AB→A =
𝑏AB (1) is a bowing parameter for nearly pure A, while the 𝑏AB→B = 𝑏AB (0) is a bowing
parameter for nearly pure B.

III-III-V and II-II-VI
For alloys of type AxB1-xC, the scheme reads

𝑃ABC (𝑥) = 𝑥 · 𝑃AC + [1− 𝑥] · 𝑃BC − 𝑥 [1− 𝑥] · 𝑏ABC,

𝑏ABC (𝑥) = 𝑥 · 𝑏ABC→AC + [1− 𝑥] · 𝑏ABC→BC,

where 𝑃ABC (𝑥) is an interpolated material parameter of a two-component alloy AxB1-xC based
on parameters 𝑃AC and 𝑃BC describing pure components AC and BC, respectively. The
𝑏ABC→AC = 𝑏ABC (1) is a bowing parameter for nearly pure AC, while the 𝑏ABC→BC =
𝑏ABC (0) is a bowing parameter for nearly pure BC.

III-V-V and II-VI-VI
For alloys of type ABxC1-x, the scheme reads

𝑃ABC (𝑥) = 𝑥 · 𝑃AB + [1− 𝑥] · 𝑃AC − 𝑥 [1− 𝑥] · 𝑏ABC,

𝑏ABC (𝑥) = 𝑥 · 𝑏ABC→AB + [1− 𝑥] · 𝑏ABC→AC

where 𝑃ABC (𝑥) is an interpolated material parameter of a two-component alloy ABxC1-x based
on parameters 𝑃AB and 𝑃AC describing pure components AB and AC, respectively. The
𝑏ABC→AB = 𝑏ABC (1) is a bowing parameter for nearly pure AB, while the 𝑏ABC→AC =
𝑏ABC (0) is a bowing parameter for nearly pure AC.

Example and Syntax
Let us consider the bowing paramters of energy gaps in 𝐴𝑙𝑥𝐺𝑎1−𝑥𝐴𝑠 based on the Table XII.
in [vurgaftmanjap2001]. The direct gap has a bowing parameter given by the formula

𝑏AlGaAs (𝑥) = −0.127 + 1.310 · 𝑥

6.3. Interpolation Schemes 673

nextnano++ Documentation, Release 1.25.13

while indirect gaps to the points L and X have bowing parameters 0 and 0.055, respectively.
Therefore, two bowing parameters needs to be included in the database, the one at mole fraction
x=0 to describe the interpolation for small amounts of Al, near GaAs:

𝑏AlGaAs→GaAs = 𝑏AlGaAs (0) = −0.127 + 1.310 · 0 = −0.127,

and at x=1 to describe the interpolation for small amounts of Ga, near AlAs:

𝑏AlGaAs→AlAs = 𝑏AlGaAs (1) = −0.127 + 1.310 · 1 = 1.183.

Finally, the fraction-dependent bowing parameter is given by

𝑏AlGaAs (𝑥) = 𝑥 · 𝑏AlGaAs→AlAs + [1− 𝑥] · 𝑏AlGaAs→GaAs

To use this of interpolation, one should not use ternary_zb{} or ternary_wz{} groups to define
bowing parameters. Instead, groups bowing_zb{} or bowing_wz{} should be used to define val-
ued of the bowing for extrememal concentrations, x=0 and x=1. The groups ternary2_zb{} and
ternary2_wz{} should be used to relate all the bowing parameters and component materials for
the alloy.

binary_zb{
name = AlAs
valence = III_V

All the parameters of GaAs here (P_A)
}

binary_zb{
name = GaAs
valence = III_V

All the parameters of InAs here (P_B)
}

Al(x)Ga(1-x)As: (x=1)
bowing_zb{

name = "AlGaAs_Bowing_AlAs"
valence = III_V

conduction_bands{
Gamma{ bandgap = -0.127 + 1.310 * 1 } # b_AB(x=1)
X { bandgap = 0.055 } # b_AB(x=1)

}
}

Al(x)Ga(1-x)As: (x=0)
bowing_zb{

name = "AlGaAs_Bowing_GaAs"
valence = III_V

conduction_bands{
Gamma{ bandgap = -0.127 + 1.310 * 0 } # b_AB(x=0)
X { bandgap = 0.055 } # b_AB(x=0)

}
}

ternary2_zb{
name = "Al(x)Ga(1-x)As"

(continues on next page)

674 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

valence = III_V

binary_x = AlAs
binary_1_x = GaAs
bowing_x = AlGaAs_Bowing_AlAs # b_AB(x=1)
bowing_1_x = AlGaAs_Bowing_GaAs # b_AB(x=0)

}

Note, that there is no bowing parameter specified for the indirect band gap to the L valley, which
is equivalent to using linear interpolation (the bowing equal zero).

� Hint

An alternative approach can be to use analytical formulas to define the bowing parameter
with the mole fraction as a variable.

6.3.3 Three-component alloys
Three-component alloys are typically called ternary alloys when group-IV are mixed (IV-IV-IV) and quaternary
alloys in the case of III-V or II-VI binary compounds (III-V-V-V, III-III-III-V, II-VI-VI-VI, and II-II-II-VI).

Examples of such alloys are: SixGey Sn1-x-y, AlxGayIn1-x-yN, and GaPxAsySb1-x-y.

IV-IV-IV
For alloys of type AxByC1-x-y, having 𝑤 = 1− 𝑥− 𝑦, the scheme reads

𝑃ABC (𝑥, 𝑦) = 𝑃 ′
𝐴𝐵 (𝑥, 𝑦) + 𝑃 ′

𝐴𝐶 (𝑥,𝑤) + 𝑃 ′
𝐵𝐶 (𝑦, 𝑤)

− 𝑥𝑦 · 𝑏′AB (𝑥, 𝑦)− 𝑥𝑤 · 𝑏′AC (𝑥,𝑤)− 𝑦𝑤 · 𝑏′BC (𝑦, 𝑤)

− 𝑥𝑦𝑤 · 𝑏ABC.

The 𝑃 ′
𝐴𝐵 (𝑥, 𝑦), 𝑃 ′

𝐴𝐶 (𝑥,𝑤), and 𝑃 ′
𝐵𝐶 (𝑦, 𝑤) are linear combinations of parameters 𝑃A, 𝑃B, and

𝑃C.

𝑃 ′
𝐴𝐵 (𝑥, 𝑦) = 𝑥 · 𝑃A + 𝑦 · 𝑃B

𝑃 ′
𝐴𝐶 (𝑥,𝑤) = 𝑥 · 𝑃A + 𝑤 · 𝑃C

𝑃 ′
𝐵𝐶 (𝑦, 𝑤) = 𝑦 · 𝑃B + 𝑤 · 𝑃C

The 𝑏′AB (𝑥, 𝑦), 𝑏′AC (𝑥,𝑤), and 𝑏′BC (𝑦, 𝑤) are two-component bowing parameters. They can be
equal zero, constant or dependent on mole fraction as:

𝑏′AB (𝑥, 𝑦) =
𝑥 · 𝑏AB→A + 𝑦 · 𝑏AB→B

𝑥+ 𝑦

𝑏′AC (𝑥,𝑤) =
𝑥 · 𝑏AC→A + 𝑤 · 𝑏AC→C

𝑥+ 𝑤

𝑏′BC (𝑦, 𝑤) =
𝑦 · 𝑏BC→B + 𝑤 · 𝑏BC→C

𝑦 + 𝑤
.

The 𝑏ABC is a three-component bowing parameter.

III-III-III-V and II-II-II-VI
For alloys of type AxByC1-x-yD, having 𝑤 = 1− 𝑥− 𝑦, the scheme reads

𝑃ABCD (𝑥, 𝑦) = 𝑃 ′
𝐴𝐵𝐷 (𝑥, 𝑦) + 𝑃 ′

𝐴𝐶𝐷 (𝑥,𝑤) + 𝑃 ′
𝐵𝐶𝐷 (𝑦, 𝑤)

− 𝑥𝑦 · 𝑏ABD (𝑥)− 𝑥𝑤 · 𝑏ACD (𝑥)− 𝑦𝑤 · 𝑏BCD (𝑥)

− 𝑥𝑦𝑤 · 𝑏ABCD,

6.3. Interpolation Schemes 675

nextnano++ Documentation, Release 1.25.13

The 𝑃 ′
𝐴𝐵𝐷 (𝑥, 𝑦), 𝑃 ′

𝐴𝐶𝐷 (𝑥,𝑤), and 𝑃 ′
𝐵𝐶𝐷 (𝑦, 𝑤) are linear combinations of parameters 𝑃AD,

𝑃BD, and 𝑃CD.

𝑃 ′
𝐴𝐵𝐷 (𝑥, 𝑦) = 𝑥 · 𝑃AD + 𝑦 · 𝑃BD

𝑃 ′
𝐴𝐶𝐷 (𝑥,𝑤) = 𝑥 · 𝑃AD + 𝑤 · 𝑃CD

𝑃 ′
𝐵𝐶𝐷 (𝑦, 𝑤) = 𝑦 · 𝑃BD + 𝑤 · 𝑃CD

The 𝑏′ABD (𝑥, 𝑦), 𝑏′ACD (𝑥,𝑤), and 𝑏′BCD (𝑦, 𝑤) are two-component bowing parameters. They
can be equal zero, constant or dependent on mole fraction as:

𝑏′ABD (𝑥, 𝑦) =
𝑥 · 𝑏ABD→AD + 𝑦 · 𝑏ABD→BD

𝑥+ 𝑦

𝑏′ACD (𝑥,𝑤) =
𝑥 · 𝑏ACD→AD + 𝑤 · 𝑏ACD→CD

𝑥+ 𝑤

𝑏′BCD (𝑦, 𝑤) =
𝑦 · 𝑏BCD→BD + 𝑤 · 𝑏BCD→CD

𝑦 + 𝑤
.

The 𝑏ABCD is a three-component bowing parameter.

III-V-V-V and II-VI-VI-VI
For alloys of type ABxCyD1-x-y, having 𝑤 = 1− 𝑥− 𝑦, the scheme reads

𝑃ABCD (𝑥, 𝑦) = 𝑃 ′
𝐴𝐵𝐶 (𝑥, 𝑦) + 𝑃 ′

𝐴𝐵𝐷 (𝑥,𝑤) + 𝑃 ′
𝐴𝐶𝐷 (𝑦, 𝑤)

− 𝑥𝑦 · 𝑏ABC (𝑥)− 𝑥𝑤 · 𝑏ABD (𝑥)− 𝑦𝑤 · 𝑏ACD (𝑥)

− 𝑥𝑦𝑤 · 𝑏ABCD,

The 𝑃 ′
𝐴𝐵𝐶 (𝑥, 𝑦), 𝑃 ′

𝐴𝐵𝐷 (𝑥,𝑤), and 𝑃 ′
𝐴𝐶𝐷 (𝑦, 𝑤) are linear combinations of parameters 𝑃AB,

𝑃AC, and 𝑃AD.

𝑃 ′
𝐴𝐵𝐶 (𝑥, 𝑦) = 𝑥 · 𝑃AB + 𝑦 · 𝑃AC

𝑃 ′
𝐴𝐵𝐷 (𝑥,𝑤) = 𝑥 · 𝑃AB + 𝑤 · 𝑃AD

𝑃 ′
𝐴𝐶𝐷 (𝑦, 𝑤) = 𝑦 · 𝑃AC + 𝑤 · 𝑃AD

where 𝑏ABC, 𝑏ABD, and 𝑏ACD are two-component bowing parameters and 𝑏ABCD is a three-
component bowing parameter.

The 𝑏′ABC (𝑥, 𝑦), 𝑏′ABD (𝑥,𝑤), and 𝑏′ACD (𝑦, 𝑤) are two-component bowing parameters. They
can be equal zero, constant or dependent on mole fraction as:

𝑏′ABC (𝑥, 𝑦) =
𝑥 · 𝑏ABC→AB + 𝑦 · 𝑏ABC→AC

𝑥+ 𝑦

𝑏′ABD (𝑥,𝑤) =
𝑥 · 𝑏ABD→AB + 𝑤 · 𝑏ABD→AD

𝑥+ 𝑤

𝑏′ACD (𝑦, 𝑤) =
𝑦 · 𝑏ACD→AC + 𝑤 · 𝑏ACD→AD

𝑦 + 𝑤
.

The 𝑏ABCD is a three-component bowing parameter.

Syntax
As the two-component bowing parameters can be linearly dependent on composition, constant, or
equal zero, one needs to begin with defining the parameters for all material components with the
bowing parameters for two-component alloys, following the syntax described before in sections
Linear, Quadratic, and Cubic.

The three-component bowing parameter can be specified in the groups quaternary_zb{} or qua-
ternary_wz{}. The role of these groups is to associate all component-materials, two-component
bowing parameters with a name of the three-component alloy and to define the three-component
bowing parameters if some of them are non-zero.

Let’consider SixGey Sn1-x-y. The parameters for three material components, Si, Ge, and, Sn
need to be defined, as well as up to three sets of constant bowing parameters (or up to six sets of
composition dependent bowing parameters), for SiGe, GeSn, and SiSn. The structure of database
for this alloy with constant bowing parameters can be as follows.

676 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

binary_zb{
name = Si
valence = IV_IV

All the parameters of Si here (P_A)
}

binary_zb{
name = Ge
valence = IV_IV

All the parameters of Ge here (P_B)
}

binary_zb{
name = Sn
valence = IV_IV

All the parameters of Sn here (P_C)
}

ternary_zb{
name = "Si(x)Ge(1-x)"
valence = IV_IV
binary_x = Si
binary_1_x = Ge

Optional bowing parameters (b_AB)
}

ternary_zb{
name = "Si(x)Sn(1-x)"
valence = IV_IV
binary_x = Si
binary_1_x = Sn

Optional bowing parameters (b_AC)
}

ternary_zb{
name = "Ge(x)Sn(1-x)"
valence = IV_IV
binary_x = Ge
binary_1_x = Sn

Optional bowing parameters (b_BC)
}

quaternary_zb {
name = "Si(x)Ge(y)Sn(1-x-y)"
valence = IV_IV
binary1 = Si
binary2 = Ge
binary3 = Sn
ternary12 = "Si(x)Ge(1-x)"
ternary13 = "Si(x)Sn(1-x)"
ternary23 = "Ge(x)Sn(1-x)"

(continues on next page)

6.3. Interpolation Schemes 677

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

Optional bowing parameters (b_ABC)
}

. Attention

The following sections are not finished.

6.3.4 Four-component alloys
Four-component alloys with a stoichiometry AxB1-xCyD1-yare typically used only for III-V and II-VI material
systems (III-III-V-V and II-II-VI-VI). They are typically called quaternary alloys.

An exemplary alloy is GaxIn1-xPxAs1-y.

III-III-V-V and II-II-VI-VI
For alloys of type AxB1-xCyD1-y, having 𝑢 = 1− 𝑥 and 𝑣 = 1− 𝑦, the scheme reads

𝑃ABCD (𝑥, 𝑦) = 𝑥𝑦 · 𝑃AC + 𝑢𝑦 · 𝑃BC + 𝑥𝑣 · 𝑃AD + 𝑢𝑣 · 𝑃BD

− 𝑥𝑢𝑦 · 𝑏′ABC (𝑥, 𝑢)− 𝑥𝑢𝑣 · 𝑏′ABD (𝑥, 𝑢)− 𝑥𝑦𝑣 · 𝑏′ACD (𝑦, 𝑣)− 𝑢𝑦𝑣 · 𝑏′BCD (𝑦, 𝑣)

− 𝑥𝑢𝑦𝑣 · 𝑏ABCD

Groups required like for three-component alloys but instead of using quaternary_zb{} one
should use quaternary4_zb{}.

Indium Aluminum Arsenide Antimonide (InAlAsSb)

quaternary4_zb {
name = "In(x)Al(1-x)As(y)Sb(1-y)"
valence = III_V
binary1 = InAs
binary2 = AlAs
binary3 = AlSb
binary4 = InSb

ternary12 = "In(x)Al(1-x)As" # Note: In(x)Al(1-x)As and In(1-
→˓x)Al(x)As are equivalent
ternary23 = "AlAs(x)Sb(1-x)" # as can be seen in the above␣

→˓equation.
ternary34 = "Al(x)In(1-x)Sb" # So one has to use the name␣

→˓that is already defined in the database.
ternary14 = "InAs(x)Sb(1-x)"

}

IV-IV-IV-IV
For alloys of type AxByCzD1-x-y-z, having 𝑤 = 1− 𝑥− 𝑦 − 𝑧, the scheme reads

𝑃ABCD (𝑥, 𝑦) = 𝑥 · 𝑃A + 𝑦 · 𝑃B + 𝑧 · 𝑃C + 𝑤 · 𝑃D

− 𝑥𝑦 · 𝑏′AB (𝑥, 𝑦)− 𝑥𝑧 · 𝑏′AC (𝑥, 𝑧)− 𝑥𝑤 · 𝑏′AD (𝑥,𝑤)

− 𝑦𝑧 · 𝑏′BC (𝑦, 𝑧)− 𝑦𝑤 · 𝑏′BD (𝑦, 𝑤)− 𝑧𝑤 · 𝑏′CD (𝑧, 𝑤)

− 𝑥𝑦𝑧 · 𝑏′ABC − 𝑥𝑦𝑤 · 𝑏′ABD − 𝑥𝑧𝑤 · 𝑏′ACD − 𝑦𝑧𝑤 · 𝑏′BCD

− 𝑥𝑦𝑧𝑤 · 𝑏ABCD

quinternary_zb : _alloy_zb{ TYPE=group OPT=1

(continues on next page)

678 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

binary_a{ TYPE=string } # A
binary_b{ TYPE=string } # B
binary_c{ TYPE=string } # C
binary_d{ TYPE=string } # D

ternary_ab{ TYPE=string } # A(x)B(1-x)
ternary_ac{ TYPE=string } # A(x)C(1-x)
ternary_ad{ TYPE=string } # A(x)D(1-x)
ternary_bc{ TYPE=string } # B(x)C(1-x)
ternary_bd{ TYPE=string } # B(x)D(1-x)
ternary_cd{ TYPE=string } # C(x)D(1-x)

quaternary_abc{ TYPE=string } # A(x)B(y)C(1-x-y)
quaternary_abd{ TYPE=string } # A(x)B(y)D(1-x-y)
quaternary_acd{ TYPE=string } # A(x)C(y)D(1-x-y)
quaternary_bcd{ TYPE=string } # B(x)C(y)D(1-x-y)

from base group, optional quinternary bowing parameters
}

6.3.5 Six-component alloys
III-III-III-V-V and II-II-II-VI-VI

For alloys of type AxByC1-x-yDzE1-z, having 𝑢 = 1− 𝑥− 𝑦 and 𝑤 = 1− 𝑧, the scheme reads

𝑃ABCDE (𝑥, 𝑦, 𝑧) = 𝑥𝑧 · 𝑃AD + 𝑦𝑧 · 𝑃BD + 𝑢𝑧 · 𝑃CD

+ 𝑥𝑤 · 𝑃AE + 𝑦𝑤 · 𝑃BE + 𝑢𝑤 · 𝑃CE

− 𝑥𝑦𝑧 · 𝑏′ABD (𝑥, 𝑦)− 𝑥𝑢𝑧 · 𝑏′ACD (𝑥, 𝑢)− 𝑦𝑢𝑧 · 𝑏′BCD (𝑦, 𝑢)

− 𝑥𝑦𝑤 · 𝑏′ABE (𝑥, 𝑦)− 𝑥𝑢𝑤 · 𝑏′ACE (𝑥, 𝑢)− 𝑦𝑢𝑤 · 𝑏′BCE (𝑦, 𝑢)

− 𝑥𝑧𝑤 · 𝑏′ADE (𝑧, 𝑤)− 𝑦𝑧𝑤 · 𝑏′BDE (𝑧, 𝑤)− 𝑢𝑧𝑤 · 𝑏′CDE (𝑧, 𝑤)

− 𝑥𝑦𝑧𝑤 · 𝑏′ABDE − 𝑥𝑢𝑧𝑤 · 𝑏′ACDE − 𝑦𝑢𝑧𝑤 · 𝑏′BCDE

− 𝑥𝑦𝑢𝑧 · 𝑏′ABCD − 𝑥𝑦𝑢𝑤 · 𝑏′ABCE

− 𝑥𝑦𝑢𝑧𝑤 · 𝑏ABCDE

quinternary6_zb : _alloy_zb{ TYPE=group OPT=1

binary_a_d{ TYPE=string } # AD
binary_b_d{ TYPE=string } # BD
binary_c_d{ TYPE=string } # CD
binary_a_e{ TYPE=string } # AE
binary_b_e{ TYPE=string } # BE
binary_c_e{ TYPE=string } # CE

ternary_ab_d{ TYPE=string } # A(x)B(1-x)D
ternary_ac_d{ TYPE=string } # A(x)C(1-x)D
ternary_bc_d{ TYPE=string } # B(x)C(1-x)D
ternary_ab_e{ TYPE=string } # A(x)B(1-x)E
ternary_ac_e{ TYPE=string } # A(x)C(1-x)E
ternary_bc_e{ TYPE=string } # B(x)C(1-x)E
ternary_a_de{ TYPE=string } # AD(x)E(1-x)
ternary_b_de{ TYPE=string } # BD(x)E(1-x)
ternary_c_de{ TYPE=string } # CD(x)E(1-x)

quaternary_abc_d{ TYPE=string } # A(x)B(y)C(1-x-y)D
(continues on next page)

6.3. Interpolation Schemes 679

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

quaternary_abc_e{ TYPE=string } # A(x)B(y)C(1-x-y)E
quaternary_ab_de{ TYPE=string } # A(x)B(1-x)D(y)E(1-y)
quaternary_ac_de{ TYPE=string } # A(x)C(1-x)D(y)E(1-y)
quaternary_bc_de{ TYPE=string } # B(x)C(1-x)D(y)E(1-y)

from base group, optional quinternary bowing parameters
}

6.3.6 Eight-component alloys
𝐴𝑥𝐵1−𝑥𝐶𝑦𝐷1−𝑦𝐸𝑧𝐹1−𝑧

quaternary8_zb : _alloy_zb{ TYPE=group OPT=1

binary_a_c_e{ TYPE=string } # ACE
binary_b_c_e{ TYPE=string } # BCE
binary_a_d_e{ TYPE=string } # ADE
binary_b_d_e{ TYPE=string } # BDE
binary_a_c_f{ TYPE=string } # ACF
binary_b_c_f{ TYPE=string } # BCF
binary_a_d_f{ TYPE=string } # ADF
binary_b_d_f{ TYPE=string } # BDF

ternary_ab_c_e{ TYPE=string } # A(x)B(1-x)CE
ternary_ab_d_e{ TYPE=string } # A(x)B(1-x)DE
ternary_ab_c_f{ TYPE=string } # A(x)B(1-x)CF
ternary_ab_d_f{ TYPE=string } # A(x)B(1-x)DF
ternary_a_cd_e{ TYPE=string } # AC(x)D(1-x)E
ternary_b_cd_e{ TYPE=string } # BC(x)D(1-x)E
ternary_a_cd_f{ TYPE=string } # AC(x)D(1-x)F
ternary_b_cd_f{ TYPE=string } # BC(x)D(1-x)F
ternary_a_c_ef{ TYPE=string } # ACE(x)F(1-x)
ternary_b_c_ef{ TYPE=string } # BCE(x)F(1-x)
ternary_a_d_ef{ TYPE=string } # ADE(x)F(1-x)
ternary_b_d_ef{ TYPE=string } # BDE(x)F(1-x)

quarternary_ab_cd_e{ TYPE=string } # A(x)B(1-x)C(y)D(1-y)E
quarternary_ab_cd_f{ TYPE=string } # A(x)B(1-x)C(y)D(1-y)F
quarternary_ab_c_ef{ TYPE=string } # A(x)B(1-x)CE(y)F(1-y)
quarternary_ab_d_ef{ TYPE=string } # A(x)B(1-x)DE(y)F(1-y)
quarternary_a_cd_ef{ TYPE=string } # AC(x)D(1-x)E(y)F(1-y)
quarternary_b_cd_ef{ TYPE=string } # BC(x)D(1-x)E(y)F(1-y)

from base group, optional quinternary bowing parameters
}

ò Note

If you need other interpolation schemes for your research, raise a support ticket attaching formulas of your
interest, related references, and explanation why it’s valuable.

A brief introduction to quaternaries is shown in this Powerpoint presentation (Quaternaries.pptx , Quaternar-
ies.pdf).

680 Chapter 6. Material Database

https://www.nextnano.com/resources/support.php
https://www.nextnano.com/nextnanoplus/software_documentation/database/Quaternaries.pptx
https://www.nextnano.com/nextnanoplus/software_documentation/database/Quaternaries.pdf
https://www.nextnano.com/nextnanoplus/software_documentation/database/Quaternaries.pdf

nextnano++ Documentation, Release 1.25.13

Last update: nnnn/nn/nn

6.4 Default Materials and Alloys

• Insulators and Metals

• Binary alloys

• Ternary alloys

• Quaternary alloys

• Quinternary alloys

Following zincblende (cubic crystal structure) and wurtzite (hexagonal crystal structure) materials are parametrized
in our defyult material database database_nnp.in:

ò Note

Synonyms are supported.

Examples:
• Si(1-x)Ge(x) ≡ Ge(x)Si(1-x) ≡ Si(x)Ge(1-x) ≡ Ge(1-x)Si(x)

• Sapphire ≡ Al2O3

6.4.1 Insulators and Metals
• SiO2

• HfO2

• Air

• Air_wz

• Al2O3 (sapphire)

6.4.2 Binary alloys
IV - IV

Elements
• C

• Si

• Ge

• Sn

Silicon-based
• SiC

• SiC-4H

• SiC-6H

III - V
Arsenides

• GaAs

6.4. Default Materials and Alloys 681

nextnano++ Documentation, Release 1.25.13

• AlAs

• InAs

Phophides
• GaP

• AlP

• InP

Antimonides
• GaSb

• AlSb

• InSb

Nitrides
• ScN

• YN

• GaN

• GaN_zb

• AlN

• AlN_zb

• InN

• InN_zb

Other
• GaBi

II - VI
Oxides

• ZnO_wz

• ZnO

• CdO_wz

• MgO_wz

Tellurides
• HgTe

• MgTe

• ZnTe

• BeTe

• MnTe

• MnTe_zb

• CdTe

Selenides
• ZnSe

• MgSe

• CdSe

682 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

• BeSe

• MnSe

• MnSe_zb

Sulfides
• ZnS

• CdS

6.4.3 Ternary alloys
IV - IV

• Si1-xGex

• Ge1-xSnx

• Si1-xSnx

III - V Valence
Arsenides

• AlxGa1-xAs

• InxGa1-xAs

• AlxIn1-xAs

Phosphides
• GaxIn1-xP

• AlxIn1-xP

• AlxGa1-xP

Antimonides
• GaxIn1-xSb

• AlxIn1-xSb

• AlxGa1-xSb

Nitrides
• InxGa1-xN

• InxGa1-xN_zb

• AlxGa1-xN

• AlxGa1-xN_zb

• AlxIn1-xN

• AlxIn1-xN_zb

• AlxSc1-xN

• AlxY1-xN

• ScxGa1-xN

• YxGa1-xN

• ScxIn1-xN

• YxIn1-xN

• YxSc1-xN

6.4. Default Materials and Alloys 683

nextnano++ Documentation, Release 1.25.13

Arsenides - Antimonides
• GaAs1-xSbx

• InAsxSb1-x

• AlAsxSb1-x

Arsenides - Phosphides
• GaAs1-xPx

• InAsxP1-x

• AlAsxP1-x

Phosphides - Antimonides
• GaPxSb1-x

• InPxSb1-x

• AlPxSb1-x

Dilude Nitrides
• GaAs1-xNx

• InAs1-xNx

• AlAs1-xNx

• GaP1-xNx

• InP1-xNx

• AlP1-xNx

• GaSb1-xNx

• InSb1-xNx

• AlSb1-xNx

Others
• GaAs1-xBix
• Zn1-x MgxS

II - VI
Selenides

• BexZn1-xSe

• BexCd1-xSe

• Zn1-x MgxSe

• CdxZn1-xSe

• Be1-xMnxSe

• Cd1-xMnxSe

• Zn1-xMnxSe

Tellurides
• BexZn1-xTe

• Cd1-xMgxTe

• CdxZn1-xTe

• Hg1-xCdxTe

684 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

• Cd1-xMnxTe

• Zn1-xMnxTe

Oxides
• MgxZn1-xO

• CdxZn1-xO

Others
• ZnSxSe1-x

• ZnxCd1-xS

6.4.4 Quaternary alloys
IV - IV

• Si1-x-yGexSny

III - V
III-III-III-V materials

• AlxGayIn1-x-yN (wz)

• AlxGayIn1-x-yN (zb)

• AlxGayIn1-x-yP

• AlxGayIn1-x-yAs

• AlxGayIn1-x-ySb

• AlxScyGa1-x-yN

• AlxScyIn1-x-yN

• ScxInyGa1-x-yN

• AlxYyGa1-x-yN

• AlxYyIn1-x-yN

• YxInyGa1-x-yN

• YxScyGa1-x-yN

• YxScyAl1-x-yN

• YxScyIn1-x-yN

III-V-V-V materials
• AlAsxSbyP1-x-y

• GaAsxSbyP1-x-y

• InAsxSbyP1-x-y

• GaAsxSbyN1-x-y

III-III-V-V materials
• GaxIn1-xAsyP1-y

• AlxGa1-xAsyP1-y

• InxAl1-xAsyP1-y

• InxGa1-xAsyN1-y

• GaxIn1-xAsySb1-y

6.4. Default Materials and Alloys 685

nextnano++ Documentation, Release 1.25.13

• AlxGa1-xAsySb1-y

• InxAl1-xAsySb1-y

II - VI
• Zn1-x-yBexMnySe

6.4.5 Quinternary alloys
III - V

• AlxGayIn1-x-yAszSb1-z

• AlxGayIn1-x-yAszP1-z

• ScxInyAlzGa1-x-y-zN

• YxInyAlzGa1-x-y-zN

Last update: nnnn/nn/nn

6.5 Definition of Band Offsets (zincblende)
This section explains how band offsets are evaluated in nextnano++. It begins with showing connection between
parameters used in database{ . . . { conduction_bands{} } } (see valence_bands{} and conduction_bands{}) and
band energies at their extrema. Then, various band alignments and exemplary interpolations, with and without
strain, are presented. All plots are computed for materials at 300 K.

Schematics of band structure in vicinity of the Γ point is shown in Figure 6.5.1. Energies of band extrema in the
case of lack of strain are depicted with gray lines and labels, while the parameters stored in database are plotted in
black color.

The starting point of defining the offset in nextnano++ is the average valence band energy 𝐸𝑣,𝑎𝑣 which can be
modified by using bandoffset attribute. Formally, it is defined as the average energy of three top valence bands

𝐸𝑣,𝑎𝑣 =
1

3
(𝐸ℎℎ + 𝐸𝑙ℎ + 𝐸𝑠𝑜)

where 𝐸ℎℎ, 𝐸𝑙ℎ, and 𝐸𝑠𝑜 are energies of heavy-hole, light-hole, and split-off bands at Γ point, respectively. In
the case without strain, 𝐸𝑣,𝑎𝑣 is located 1

3∆𝑠𝑜 below the top of the valence band. The spin-orbit splitting energy
∆𝑠𝑜 and the energy gap at the Γ point 𝐸Γ

𝑔 are available through attributes delta_SO and bandgap. Depending on
the group to which the bandgap attribute belongs to, it may refer to energy differences involving conduction band
minima at Γ, 𝐿(Λ), or 𝑋(∆) points (lines).

One has to specify all three parameters (including Varshni’s parameters for temperature dependence of 𝐸Γ
𝑔 and

other gaps) for every material of interest to define whole band alignments. Our database contains and provide
space to contain these parameters and related bowing parameters for all specified materials listed here.

It is important to keep in mind that offsets of bands are not easy-to-measure parameters, so their values are typically
provided by simulations within ab-initio approaches. Therefore, for fine simulations, we advise to always verify all
the material parameters and adjust them. Our database already consists of numerous published material parameters
resulting in the offsets as visible in Figure 6.5.2 and Figure 6.5.3.

To obtain band alignments for alloys, the three parameters (𝐸𝑣,𝑎𝑣 , ∆𝑠𝑜, and 𝐸Γ
𝑔) are properly interpolated and

further used to provide minima of conduction bands (𝐸Γ
𝑐 , 𝐸𝑋𝑐 , 𝐸𝐿𝑐 , . . .) and maxima of valence bands (𝐸ℎℎ, 𝐸𝑙ℎ,

and 𝐸𝑠𝑜) according to formulas:

686 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

Figure 6.5.1: Band structure of freestanding (red solid lines) and compressively strained (pink dashed lines) in
vicinity of Γ point.

Figure 6.5.2: Band offsets of III-V zincblende binary compounds calculated with default parameters predefined in
our database

6.5. Definition of Band Offsets (zincblende) 687

nextnano++ Documentation, Release 1.25.13

Figure 6.5.3: Band offsets of II-VI zincblende binary compounds calculated with default parameters predefined in
our database

𝐸𝑋𝑐 = 𝐸𝑣,𝑎𝑣 +
1

3
∆𝑠𝑜 + 𝐸𝑋𝑔

𝐸𝐿𝑐 = 𝐸𝑣,𝑎𝑣 +
1

3
∆𝑠𝑜 + 𝐸𝐿𝑔

𝐸Γ
𝑐 = 𝐸𝑣,𝑎𝑣 +

1

3
∆𝑠𝑜 + 𝐸Γ

𝑔

𝐸ℎℎ = 𝐸𝑙ℎ = 𝐸𝑣,𝑎𝑣 +
1

3
∆𝑠𝑜

𝐸𝑠𝑜 = 𝐸𝑣,𝑎𝑣 −
2

3
∆𝑠𝑜

. Attention

The parameters in the database, such as𝐸𝑣,𝑎𝑣 , ∆𝑠𝑜, and𝐸Γ
𝑔 , are defined for freestanding bulk crystals (without

any strain), while final band energies, like 𝐸ℎℎ, 𝐸𝑙ℎ, 𝐸𝑠𝑜, 𝐸Γ
𝑐 , do include strain effects if proper conditions are

met. Therefore, for example, in strained structures one should expect that𝐸Γ
𝑔 ̸= 𝐸Γ

𝑐 −𝐸ℎℎ and𝐸Γ
𝑔 ̸= 𝐸Γ

𝑐 −𝐸𝑙ℎ.

Plots of resulting band energies for three chosen alloys (GaxIn1−xAs, AlxGa1−xAs, and InxAl1−xAs) within full
mole fraction ranges are shown in Figure 6.5.4. As visible for AlxGa1−xAs, content-dependent bowing parame-
ters are also available in our routines. All the parameters necessary to compute strain effects are included in the
algorithm in the similar manner. They are interpolated first and then applied to evaluate energy shifts of band
energies.

Last update: nnnn/nn/nn

688 Chapter 6. Material Database

nextnano++ Documentation, Release 1.25.13

Figure 6.5.4: Interpolated band edges of GaxIn1−xAs, AlxGa1−xAs, and InxAl1−xAs without strain (solid lines)
and strained as grown on [1 0 0] plane of InP (dashed lines).

6.5. Definition of Band Offsets (zincblende) 689

nextnano++ Documentation, Release 1.25.13

690 Chapter 6. Material Database

CHAPTER

SEVEN

KEYWORDS

7.1 postprocessor{ }
Calling sequence

postprocessor{ }

Properties

• usage: optional
• items: maximum 1

Dependencies

• At least one of postprocessor{ datafile } and postprocessor{ call } must be specified within this group.

Functionality

A group allowing to run post-processing automatically after the simulation is done.

. Attention

This group is ignored by default. It is active only when nextnano++ is run with an option --postprocessor.

Examples

postprocessor{
datafile = "query.bat"
call = "query.bat"
goto_output = yes

}

!DATA
some list of commands here

Nested keywords

• datafile

• goto_output

• call

691

nextnano++ Documentation, Release 1.25.13

7.1.1 datafile
Calling sequence

postprocessor{ datafile }

Properties

• usage: optional
• type: character string

Functionality

If datafile is defined, then a file datafile is created in the output directory. The content of the !DATA section,
if it exists, will be written into this file. Possible content in the !DATA section could be, e.g., comments, copyright
or user info, or scripts in Python, Julia, Bash, Cmd, etc.

Example

postprocessor{
datafile = "query.bat"

}

!DATA

dir

7.1.2 goto_output
Calling sequence

postprocessor{ goto_output }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If goto_output = yes then the shell command defined by call will be launched from within the output direc-
tory. Otherwise, the directory from where nextnano++ has been launched will be used.

. Warning

Setting goto_output = no may cause conflicts between jobs when running multiple jobs in parallel e.g. in
nextnanomat or through a batch system such as HTCondor or Slurm.

Example

postprocessor{
goto_output = no
call = dir

}

692 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.1.3 call
Calling sequence

postprocessor{ call }

Properties

• usage: optional
• type: character string

Functionality

If call is defined, then it is used as a shell command line, typically cmd on Windows and bash on Linux, which
will be launched. This command line can, but does not have to, refer to a file defined by datafile.

. Attention

Calling GUI based programs such as ParaView is also possible but may interfere with operation of job control
tools such as nextnanomat or nextnanopy, as the job will only be considered finished once also all the post-
processing tasks are finished.

ò Note

If nextnano++ is running through a batch system such as HTCondor or Slurm, the postprocessing is executed
on the respective destination computer using the file systems available there.

Example

postprocessor{
goto_output = yes
call = dir

}

7.2 import{ }
Calling sequence

import{ }

Properties

• usage: optional
• items: maximum 1

Dependencies

• At least one of analytic_function{ } and file{ } must be present if output_imports{ } is defined.

7.2. import{ } 693

nextnano++ Documentation, Release 1.25.13

Functionality

Specifications for importing data from a file or generating them from an analytic function, e.g. electrostatic poten-
tial, alloy profile, strain profile, doping profile, generation rate profile, electron or hole Fermi level profile.

Once a file has been imported or a function has been defined, it can be used several times, e.g. the same file could
include the alloy concentration of a ternary for different region objects.

Data with dimensionality deviating from the simulation dimension can also be imported, e.g. an absorption spec-
trum for solar cell modeling.

Examples

import{
file{...}
output_imports{}

}

import{
analytic_function{...}
output_imports{}

}

Nested keywords

• directory

• file{ }

• file{ name }

• file{ filename }

• file{ format }

• file{ scale }

• file{ number_of_dimensions }

• analytic_function{ }

• analytic_function{ name }

• analytic_function{ function }

• analytic_function{ label }

• analytic_function{ component{ } }

• analytic_function{ component{ function_i } }

• analytic_function{ component{ label } }

• output_imports{ }

7.2.1 directory
Calling sequence

import{ directory }

694 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: character string

• default: empty

Functionality

Name of directory where files to be imported are located (if data are imported from files)

Example

import{
directory = "D:\\import_files\\"
file{...}

}

7.2.2 file{ }
Calling sequence

import{ file{ } }

Properties

• usage: optional
• items: no constraints

Functionality

—

Example

import{
file{...}

}

7.2.3 file{ name }
Calling sequence

import{ file{ name } }

Properties

• usage: required
• type: character string

Functionality

Name for referencing the imported data in the input file, e.g. “imported_potential_profile_2D”

7.2. import{ } 695

nextnano++ Documentation, Release 1.25.13

Example

import{
file{

name = "1D_import"
...

}
}

7.2.4 file{ filename }
Calling sequence

import{ file{ filename } }

Properties

• usage: required
• type: character string

Functionality

Name of file which is imported. Three ways of using are available.

One can define an absolute path to a file, e.g., "D:\\precious_data.dat". If so then directory is ignored if
specified.

If the path is not specified here, e.g., "precious_data.dat" then the file must be located in the directory specified
by directory.

When neither path is specified here, e.g., "precious_data.dat", nor the directory is defined, then the file must
be located in the directory of the input file

Examples

import{
file{

name = "1D_import"
filename = "D:\\precious_data.dat"
...

}
}

import{
directory = "D:\\"
file{

name = "1D_import"
filename = "precious_data.dat"
...

}
}

import{
file{

name = "1D_import"
filename = "precious_data.dat"
...

(continues on next page)

696 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
}

7.2.5 file{ format }
Calling sequence

import{ file{ format } }

Properties

• usage: required
• type: choice

• values: AVS or DAT

Functionality

Format of the file to be imported. Formats .fld and .dat are supported for options AVS and DAT, respectively.

Example

import{
directory = "D:\\"
file{

name = "1D_import"
filename = "precious_data.dat"
format = DAT

}
}

7.2.6 file{ scale }
Calling sequence

import{ file{ scale } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 1.0

• unit: −

Functionality

A factor used to multiply the imported data. Can be used to change units of imported data for consistency with
nextnano++, e.g., conversion from J to eV.

7.2. import{ } 697

nextnano++ Documentation, Release 1.25.13

Examples

import{
directory = "D:\\"
file{

name = "1D_import"
filename = "precious_data.dat"
format = DAT
scale = 1.6022e-19

}
}

import{
directory = "D:\\"
file{

name = "1D_import"
filename = "precious_data.dat"
format = DAT
scale = -1

}
}

7.2.7 file{ number_of_dimensions }
Calling sequence

import{ file{ number_of_dimensions } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 3

• default: simulation dimension

• unit: −

Functionality

Explicit specification of the number of dimensions of the space onto which the data is defined. Can be only used
for .dat files.

Example

import{
directory = "D:\\"
file{

name = "1D_import"
filename = "precious_spectra.dat"
format = DAT
number_of_dimensions = 1

}
}

698 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.2.8 analytic_function{ }
Calling sequence

import{ analytic_function{ } }

Properties

• usage: optional
• items: no constraints

Dependencies

• At least one of analytic_function{ component{ } } and analytic_function{ function } must be defined.

• analytic_function{ component{ } } and analytic_function{ function } cannot be defined together.

• analytic_function{ label } cannot be defined if analytic_function{ component{ } } as already present.

Functionality

Defines analytic functions to be imported here. Does not need to be defined if data are imported from files.

Example

import{
analytic_function{

name = "function_1"
component{...}

}
analytic_function{

name = "function_2"
function = ...

}
analytic_function{

name = "function_3"
function = ...
label = ...

}
}

7.2.9 analytic_function{ name }
Calling sequence

import{ analytic_function{ name } }

Properties

• usage: required
• type: character string

Functionality

Name for referencing the imported function in the input file.

7.2. import{ } 699

nextnano++ Documentation, Release 1.25.13

Example

import{
analytic_function{

name = "Distribution_FD"
function = ...

}
}

7.2.10 analytic_function{ function }
Calling sequence

import{ analytic_function{ function } }

Properties

• usage: optional
• type: character string

Functionality

String defining the function in case only one component needs to be defined, otherwise use component.

. Attention

One should use the syntax allowed for functions:

• white spaces are ignored

• valid operators are “+”, “-”, “*”, “/” and “^”

• multiplication signs always have to be spelled out (i.e. “5*x” is valid, “5x” is not)

• variable names are fixed to “x”, “y” and “z” (capital letters are also allowed)

• additional functions also available (e.g. “exp” , “sqrt”, “sin”, see full list below), have to be followed by
brackets (“exp(x)” is valid, “exp x” is not)

• global variables are allowed if preceded by “$” (e.g. “$PI”)

• exponential notation (“2e-3” or “4E10”) is allowed

See also table at the bottom of this site.

Example

import{
analytic_function{

name = "Distribution_FD"
function = 1/(exp(x) + 1)

}
}

700 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.2.11 analytic_function{ label }
Calling sequence

import{ analytic_function{ label } }

Properties

• usage: optional
• type: character string

Functionality

Label to be displayed in legend in case only one component is defined. If it’s not defined then, analytic_function{
name } is displayed.

Example

import{
analytic_function{

name = "Distribution_FD"
function = 1/(exp(x) + 1)
label = "Fermi Dirac"

}
}

7.2.12 analytic_function{ component{ } }
Calling sequence

import{ analytic_function{ component{ } } }

Properties

• usage: optional
• items: no constraints

Functionality

In case multiple components are needed, define one component group for each component.

Example

import{
analytic_function{

name = "Distributions"
component{...}
component{...}

}
}

7.2.13 analytic_function{ component{ function_i } }
Calling sequence

import{ analytic_function{ component{ function_i } } }

7.2. import{ } 701

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: character string

Functionality

String defining the function for this component.

Example

import{
analytic_function{

name = "Distributions"
component{

function_i = 1/(exp(x) + 1)
}
component{

function_i = 1/(exp(x) - 1)
}

}
}

7.2.14 analytic_function{ component{ label } }
Calling sequence

import{ analytic_function{ component{ label } } }

Properties

• usage: optional
• type: character string

Functionality

Label to be displayed in legend for this component.

Example

import{
analytic_function{

name = "Distributions"
component{

function_i = 1/(exp(x) + 1)
label = "Fermi-Dirac"

}
component{

function_i = 1/(exp(x) - 1)
label = "Bose-Einstein"

}
}

}

702 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.2.15 output_imports{ }
Calling sequence

import{ output_imports{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output all imported data including scale factor. The filenames correspond to the entry given in name = The
files will be written to a folder called Imports/.

Example

import{
file{...}
analytic_function{...}
output_imports{}

}

Operators and Functions supported by analytic_function{} group, sorted with decreasing precedence:

Operators

power (exponentiation) ^
multiplication, division * /
plus and minus + -
round arithmetic brackets ()

Functions

sqrt() square root √

cbrt() cubic root 3
√

exp() exponential function exp()
log() natural logarithm log
ln() natural logarithm ln
log2() decadic logarithm (base 2) log2
log10() decadic logarithm (base 10) log10
sin() sine sin()
cos() cosine cos()
tan() tangent tan()
asin() acrsine sin−1()
acos() arccosine cos−1()
atan() arctangent tan−1()
sinh() hyperbolic sine sinh()
cosh() hyperbolic cosine cosh()
tanh() hyperbolic tangent tanh()
asinh() inverse hyperbolic sine sinh−1()

acosh() inverse hyperbolic cosine cosh−1()

atanh() inverse hyperbolic tangent tanh−1()
erf() error function erf()

continues on next page

7.2. import{ } 703

nextnano++ Documentation, Release 1.25.13

Table 7.2.15.1 – continued from previous page
erfc() complementary error function erfc()
gamma() Gamma function Γ()
fdm3half() complete Fermi–Dirac integral 𝐹−3/2() of order -3/2 (includes the 1/Γ(−1/2) prefactor)
fdmhalf() complete Fermi–Dirac integral 𝐹−1/2() of order -1/2 (includes the 1/Γ(1/2) prefactor)
fdzero() complete Fermi–Dirac integral 𝐹0() of order 0 (includes the 1/Γ(1) = 1 prefactor)
fdphalf() complete Fermi–Dirac integral 𝐹1/2() of order 1/2 (includes the 1/Γ(3/2) prefactor)
fdp3half() complete Fermi–Dirac integral 𝐹3/2() of order 3/2 (includes the 1/Γ(5/2) prefactor)
abs() absolute value | |
floor() floor function floor(x): largest integer ≤ 𝑥
ceil() ceiling function ceil(x): smallest integer ≥ 𝑥
round() rounds the number to the nearest integer
sign() sign function
heaviside() Heaviside step function (corresponds to isnotnegative())
ispositive() check if value is positive
isnegative() check if value is negative
iszero() check if value is zero
isnotpositive() check if value is not positive
isnotnegative() check if value is not negative (corresponds to heaviside())
isnotzero() check if value is not zero

7.3 output{ }
Calling sequence

output{ }

Properties

• usage: optional
• items: maximum 1

Functionality

Sets options for the output data and controls additional output of material parameters.

Example

output{...}

Nested keywords

• directory

• mandatory_path

• set_origin{ }

• set_origin{ x }

• set_origin{ y }

• set_origin{ z }

• format2D

• format3D

704 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• silent

• write_avs_v

• write_origin_plt

• write_gnuplot_plt

• use_gnuplot_one_file

• only_sections

• section{ }

• section{ name }

• section{ range_x }

• section{ range_y }

• section{ range_z }

• section1D{ }

• section1D{ name }

• section1D{ x }

• section1D{ y }

• section1D{ z }

• section1D{ range_x }

• section1D{ range_y }

• section1D{ range_z }

• section2D{ }

• material_parameters{ }

• material_parameters{ kp_parameters{ } }

• material_parameters{ kp_parameters{ boxes } }

• material_parameters{ spin_orbit_coupling_energies{ } }

• material_parameters{ spin_orbit_coupling_energies{ boxes } }

• material_parameters{ charge_carrier_masses{ } }

• material_parameters{ charge_carrier_masses{ boxes } }

• material_parameters{ static_dielectric_constants{ } }

• material_parameters{ static_dielectric_constants{ boxes } }

• material_parameters{ deformation_potentials{ } }

• material_parameters{ deformation_potentials{ boxes } }

7.3.1 directory
Calling sequence

output{ directory }

7.3. output{ } 705

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: character string

Functionality

Defines alternative output directory. Using this path is controlled by mandatory_path

Example

output{
directory = "../output/the_best_simulation"

}

7.3.2 mandatory_path
Calling sequence

output{ mandatory_path }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If mandatory_path = yes then the (relative or absolute) output directory specified by directory is used, and any
directory specified in the command line is ignored (as, e.g., done by nextnanomat).

If mandatory_path = no then the directory specified in the command line is used as base path to which a relative
path specified in directory then is appended. In this case an absolute path specified in directory is ignored.

In all cases, a subdirectory named as the input file is further appended to the output path, unless -n or
--noautooutdir is set as command line option (nextnanomat sets this option automatically).

Also note that the location of the log (*.log) file is not affected by these settings.

. Warning

Please make sure that a mandatory output directory is set such that no important files (or the input directory)
are overwritten. Be especially careful when accepting input files from others, and do not run simulations using
administrative privileges.

7.3.3 set_origin{ }
Calling sequence

output{ set_origin{ } }

706 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Defines origin of coordinate system of the output files within the coordinate system of the simulation. If the
origin of the output coordinate system is set to 𝑟ori, then every vector in the simulation coordinate system 𝑟sim is
transformed to

𝑟out = 𝑟sim − 𝑟ori

for every output file with results dependent on position.

7.3.4 set_origin{ x }
Calling sequence

output{ set_origin{ x } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: nm
• default: 𝑧 = 0

Functionality

Defines x-coordinate of the origin of the output coordinate system 𝑟ori within the coordinate system of the simula-
tion.

7.3.5 set_origin{ y }
Calling sequence

output{ set_origin{ y } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: nm
• default: 𝑧 = 0

Functionality

Defines y-coordinate of the origin of the output coordinate system 𝑟ori within the coordinate system of the simula-
tion.

7.3. output{ } 707

nextnano++ Documentation, Release 1.25.13

7.3.6 set_origin{ z }
Calling sequence

output{ set_origin{ z } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: nm
• default: 𝑧 = 0

Functionality

Defines z-coordinate of the origin of the output coordinate system 𝑟ori within the coordinate system of the simula-
tion.

7.3.7 format2D
Calling sequence

output{ format2D }

Properties

• usage: optional
• type: choice

• values: yes or no

• values: AvsBinary; AvsAscii; AvsBinary_one_file; AvsAscii_one_file; VtkAscii;
VtkAscii_AvsAscii; VtkAscii_AvsAscii_one_file; VtkAscii_AvsBinary; VtkAscii\
_AvsBinary_one_file; Origin

• default: AvsBinary_one_file

Functionality

Sets format of output files with data defined on 2-dimensional spaces of any kind.

ò Note

Instead of Vtk one can write VTK. Likewise, Avs can be replaced by AVS.

708 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Table 7.3.7.1: Output file format for data on N-dimensional spaces

Chosen option Format
AvsBinary . . . AVS/Express file format (AVS steering files *.v, and *.fld, *.coord, *.dat

data files) - data files in binary format
AvsAscii . . . AVS/Express file format (AVS steering files *.v, and *.fld, *.coord, *.dat

data files) - data files in ASCII format
AvsBinary_one_file
. . .

AVS/Express file format - header (ASCII), coordinates and variables (both binary)
are written into a single .fld file

AvsAscii_one_file . . . AVS/Express file format - header (ASCII), coordinates and variables (both ASCII)
are written into a single .fld file

VTKAscii . . . VTK XML ASCII format (.vtr, r = rectilinear grid)
VTKAscii_AvsAscii . . . VTKAscii + AvsAscii
VTKAscii_AvsAscii_one_file
. . .

VTKAscii + AvsAscii_one_file

VTKAscii_AvsBinary
. . .

VTKAscii + AvsBinary

VTKAscii_AvsBinary_one_file
. . .

VTKAscii + AvsBinary_one_file

Origin Origin file format (Origin steering files *.plt, data files *.dat)

7.3.8 format3D
Calling sequence

output{ format3D }

Properties

• usage: optional
• type: choice

• values: yes or no

• values: AvsBinary; AvsAscii; AvsBinary_one_file; AvsAscii_one_file; VtkAscii;
VtkAscii_AvsAscii; VtkAscii_AvsAscii_one_file; VtkAscii_AvsBinary; VtkAscii\
_AvsBinary_one_file; Origin

• default: AvsBinary_one_file

Functionality

Sets format of output files with data defined on 3-dimensional spaces of any kind.

ò Note

Instead of Vtk one can write VTK. Likewise, Avs can be replaced by AVS.

7.3. output{ } 709

nextnano++ Documentation, Release 1.25.13

Table 7.3.8.1: Output file format for data on N-dimensional spaces

Chosen option Format
AvsBinary . . . AVS/Express file format (AVS steering files *.v, and *.fld, *.coord, *.dat

data files) - data files in binary format
AvsAscii . . . AVS/Express file format (AVS steering files *.v, and *.fld, *.coord, *.dat

data files) - data files in ASCII format
AvsBinary_one_file
. . .

AVS/Express file format - header (ASCII), coordinates and variables (both binary)
are written into a single .fld file

AvsAscii_one_file . . . AVS/Express file format - header (ASCII), coordinates and variables (both ASCII)
are written into a single .fld file

VTKAscii . . . VTK XML ASCII format (.vtr, r = rectilinear grid)
VTKAscii_AvsAscii . . . VTKAscii + AvsAscii
VTKAscii_AvsAscii_one_file
. . .

VTKAscii + AvsAscii_one_file

VTKAscii_AvsBinary
. . .

VTKAscii + AvsBinary

VTKAscii_AvsBinary_one_file
. . .

VTKAscii + AvsBinary_one_file

Origin Origin file format (Origin steering files *.plt, data files *.dat)

7.3.9 silent
Calling sequence

output{ silent }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If set to no then prints additional warnings concerning output.

7.3.10 write_avs_v
Calling sequence

output{ write_avs_v }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

710 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Outputs AVS steering file .v.

7.3.11 write_origin_plt
Calling sequence

output{ write_origin_plt }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs Origin steering file .plt.

7.3.12 write_gnuplot_plt
Calling sequence

output{ write_gnuplot_plt }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs gnuplot file .plt.

. Attention

Currently, gnuplot format is only implemented for energy resolved densities in 1D, energy resolved photo
generation in 1D, and light field and may generate huge files.

7.3.13 use_gnuplot_one_file
Calling sequence

output{ use_gnuplot_one_file }

7.3. output{ } 711

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If yes then all information (metadata and data) necessary for the gnuplot figure is contained in one file.

7.3.14 only_sections
Calling sequence

output{ only_sections }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no
If only_sections = yes then outputs only sections of 2D and 3D fields defined by output{ } will be generated.
Thus, if no sections are defined then also no fields will be outputted. These files can be used to restrict field output
to the actual regions of interest, or also to suppress most file I/O (if no sections are defined).

ò Note

Quantities living on, e.g., an energy grid, integrative quantities like I-V curves, or files needed for resuming
operation are not influenced by this setting.

. Attention

This setting has no effect on RAM usage or on the fields used in the calculation, it just affects what is written
into output files.

7.3.15 section{ }
Calling sequence

output{ section{ } }

Properties

• usage: optional
• items: no constraints

712 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Generates outputs from selected range of the simulation domain. The range is defined by section{ range_x },
section{ range_y }, and section{ range_z }.

. Attention

All section commands are ignored for energy resolved densities, energy resolved photo generation, and light
field.

Examples

output{
section{

name = "part" # name of section enters file name
range_x = [0, 20] # range in x direction [nm]
range_y = [-5, 5] # range in y direction [nm] (2D or 3D only)
range_z = [2, 10] # range in z direction [nm] (3D only)

}
}

output{
directory = "../output/mosfet_2D"
section{

name = "zoom"
range_x = [0,20] # range in x direction from 0 nm to 20 nm
range_y = [-5,5] # range in y direction from -5 nm to 5 nm

}
}

7.3.16 section{ name }
Calling sequence

output{ section{ name } }

Properties

• usage: required
• type: character string

Functionality

Defines a suffix to a name of the generated output file.

7.3.17 section{ range_x }
Calling sequence

output{ section{ range_x } }

7.3. output{ } 713

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• unit: nm

Functionality

Defines a range interval along the x-direction of the simulation domain for the additional output. The first number
defines the beginning of the interval and the second defines its end.

ò Note

Ranges in sections must contain at least one grid point. If no point is found inside the range then the closest
grid point is used. Zero-length intervals, such as [50.1, 50.1], are allowed.

7.3.18 section{ range_y }
Calling sequence

output{ section{ range_y } }

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• unit: nm

Functionality

Defines a range interval along the y-direction of the simulation domain for the additional output. The first number
defines the beginning of the interval and the second defines its end.

ò Note

Ranges in sections must contain at least one grid point. If no point is found inside the range then the closest
grid point is used. Zero-length intervals, such as [50.1, 50.1], are allowed.

7.3.19 section{ range_z }
Calling sequence

output{ section{ range_z } }

714 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• unit: nm

Functionality

Defines a range interval along the z-direction of the simulation domain for the additional output. The first number
defines the beginning of the interval and the second defines its end.

ò Note

Ranges in sections must contain at least one grid point. If no point is found inside the range then the closest
grid point is used. Zero-length intervals, such as [50.1, 50.1], are allowed.

7.3.20 section1D{ }
Calling sequence

output{ section1D{ } }

Properties

• usage: optional
• items: no constraints

Functionality

Outputs a 1D section of the simulation area, a 1D slice, from 2D or 3D simulation.

ò Note

• 2D usage:
– x, range_y

1D slice at x = . . . nm within the range from y = . . . nm to y = . . . nm or

– y, range_x
1D slice at y = . . . nm within the range from x = . . . nm to x = . . . nm

• 3D usage:
– x, y, range_z or

1D slice at x = . . . nm and y = . . . nm within the range from z = . . . nm to z = . . . nm
. . .

If range is left out, the section extends over the whole simulation area.

7.3. output{ } 715

nextnano++ Documentation, Release 1.25.13

Examples

output{
section1D{

name = "x" # name of section enters file name

x = 10.0 # 1D slice at x = 10 nm
y = 10.0 # 1D slice at y = 10 nm
z = 10.0 # 1D slice at z = 10 nm (3D only)

range_x = [0, 20] # (optional) range in x direction [nm]
range_y = [-5, 5] # (optional) range in y direction [nm]
range_z = [2, 10] # (optional) range in z direction [nm] (3D only)

}
}

output{
directory = "../output/mosfet_3D"

section1D{
name = "x"
y = 10
z = 10

}
}

output{
directory = "../output/mosfet_2D"
section1D{

name = "y"
y = 10 # 1D slice at y = 10 nm
range_x = [-20, 220.5] # range in x direction from -20 nm to 220.5 nm

}
}

7.3.21 section1D{ name }
Calling sequence

output{ section1D{ name } }

Properties

• usage: required
• type: character string

Functionality

Defines a suffix to a name of the generated output file.

7.3.22 section1D{ x }
Calling sequence

output{ section1D{ x } }

716 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

Defines position along the x-direction of the simulation domain at which the section of generated data is created
and added to the output.

7.3.23 section1D{ y }
Calling sequence

output{ section1D{ y } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

Defines position along the y-direction of the simulation domain at which the section of generated data is created
and added to the output.

7.3.24 section1D{ z }
Calling sequence

output{ section1D{ z } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

Defines position along the z-direction of the simulation domain at which the section of generated data is created
and added to the output.

7.3. output{ } 717

nextnano++ Documentation, Release 1.25.13

7.3.25 section1D{ range_x }
Calling sequence

output{ section1D{ range_x } }

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• unit: nm

Functionality

Defines a range interval along the x-direction of the simulation domain for the additional output. The first number
defines the beginning of the interval and the second defines its end.

ò Note

Ranges in sections must contain at least one grid point. If no point is found inside the range then the closest
grid point is used. Zero-length intervals, such as [50.1, 50.1], are allowed.

7.3.26 section1D{ range_y }
Calling sequence

output{ section1D{ range_y } }

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• unit: nm

Functionality

Defines a range interval along the y-direction of the simulation domain for the additional output. The first number
defines the beginning of the interval and the second defines its end.

ò Note

Ranges in sections must contain at least one grid point. If no point is found inside the range then the closest
grid point is used. Zero-length intervals, such as [50.1, 50.1], are allowed.

718 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.3.27 section1D{ range_z }
Calling sequence

output{ section1D{ range_z } }

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• unit: nm

Functionality

Defines a range interval along the z-direction of the simulation domain for the additional output. The first number
defines the beginning of the interval and the second defines its end.

ò Note

Ranges in sections must contain at least one grid point. If no point is found inside the range then the closest
grid point is used. Zero-length intervals, such as [50.1, 50.1], are allowed.

7.3.28 section2D{ }
Calling sequence

output{ section2D{ } }

Properties

• usage: optional
• items: no constraints

Functionality

Outputs a 2D section of the simulation area, a 2D slice, from 3D simulation.

ò Note

• 3D usage:
– x, range_y, range_z

2D slice at x = . . . nm within the range from y = . . . nm to y = . . . nm and from z = . . .
nm to z = . . . nm or

– y, range_x, range_z
2D slice at y = . . . nm within the range from x = . . . nm to x = . . . nm and from z = . . .
nm to z = . . . nm or

– z, range_x, range_y
2D slice at z = . . . nm within the range from x = . . . nm to x = . . . nm and from y = . . .
nm to y = . . . nm

7.3. output{ } 719

nextnano++ Documentation, Release 1.25.13

Examples

output{
section2D{

name = "center" # name of section enters file name

x = 10.0 # 2D slice at x = 10 nm
y = 20.0 # 2D slice at y = 20 nm
z = 10.0 # 2D slice at z = 10 nm

range_x = [0, 20] # (optional) range in x direction [nm]
range_y = [-5, 5] # (optional) range in y direction [nm]
range_z = [2, 10] # (optional) range in z direction [nm]

}
}

output{
directory = "../output/mosfet_3D"

section2D{
name = "y"
y = 10 # 2D slice at y = 10 nm
range_x = [-20, 220.5] # range in x direction from -20 nm to 220.5 nm
range_z = [-20, 220.5] # range in z direction from -20 nm to 220.5 nm

}
}

7.3.29 material_parameters{ }
Calling sequence

output{ material_parameters{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Defines additional outputs.

7.3.30 material_parameters{ kp_parameters{ } }
Calling sequence

output{ material_parameters{ kp_parameters{ } } }

Properties

• usage: optional
• items: maximum 1

720 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Outputs
• k ·p parameters of materials in quantum regions where 6-band or 8-band k ·p Hamiltonian was solved,

• the Dresselhaus-Kip-Kittel (DKK) parameters (L, M, N), which are used internally in the code,

• the Luttinger parameters (gamma1, gamma2, gamma3, kappa) (for zinc blende) or Rashba-Sheka-Pikus
(A1, A2, . . . , A6) parameters (for wurtzite),

• the S, E_P, P and B parameters for 8-band k · p calculations.

For further information, consult Chapter 3 of [BirnerPhD2011].

7.3.31 material_parameters{ kp_parameters{ boxes } }
Calling sequence

output{ material_parameters{ kp_parameters{ boxes } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

7.3.32 material_parameters{ spin_orbit_coupling_energies{ } }
Calling sequence

output{ material_parameters{ spin_orbit_coupling_energies{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs spin-orbit coupling energy for zinc blende (1 parameter) or crystal-field splitting and spin-orbit coupling
energies for wurtzite (3 parameters) in (eV).

7.3.33 material_parameters{ spin_orbit_coupling_energies{ boxes } }
Calling sequence

output{ material_parameters{ spin_orbit_coupling_energies{ boxes } } }

7.3. output{ } 721

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

7.3.34 material_parameters{ charge_carrier_masses{ } }
Calling sequence

output{ material_parameters{ charge_carrier_masses{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs effective masses of all energy bands used in the simulations in (m0).

7.3.35 material_parameters{ charge_carrier_masses{ boxes } }
Calling sequence

output{ material_parameters{ charge_carrier_masses{ boxes } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

7.3.36 material_parameters{ static_dielectric_constants{ } }
Calling sequence

output{ material_parameters{ static_dielectric_constants{ } } }

722 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs static relative dielectric constants for zinc blende (1 parameter) and wurtzite (3 parameters).

7.3.37 material_parameters{ static_dielectric_constants{ boxes } }
Calling sequence

output{ material_parameters{ static_dielectric_constants{ boxes } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

7.3.38 material_parameters{ deformation_potentials{ } }
Calling sequence

output{ material_parameters{ deformation_potentials{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output the deformation potentials for zinc blende and wurtzite in (eV).

7.3.39 material_parameters{ deformation_potentials{ boxes } }
Calling sequence

output{ material_parameters{ deformation_potentials{ boxes } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.3. output{ } 723

nextnano++ Documentation, Release 1.25.13

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

7.4 run{ }
Calling sequence

run{ }

Properties

• usage: required
• items: exactly 1

Dependencies

• Up to one of poisson{ } and current_poisson{ } can be defined.

• Up to one of quantum{ }, quantum_density{ }, quantum_poisson{ }, and quantum_current_poisson{ } can
be defined.

• Exactly one of quantum{ }, quantum_density{ }, quantum_poisson{ }, or quantum_current_poisson{ } must
be defined if quantum_optics{ } is defined.

• None of strain{ }, poisson{ }, current_poisson{ }, quantum{ }, quantum_density{ }, quantum_poisson{ },
quantum_current_poisson{ }, and quantum_optics{ } are allowed to be defined if structure_only{ } is defined.

Functionality

This group defines the simulation flow, i.e., equations to be solved and degree of self-consistency.

Examples

run{}

run{
structure_only{}

}

run{
strain{}
poisson{}

}

run{
strain{}
current_poisson{}

}

run{
strain{}
quantum{}

}

724 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

run{
strain{}
quantum_poisson{}
quantum_optics{}

}

run{
strain{}
quantum_current_poisson{}
quantum_optics{}

}

run{
strain{}
current_poisson{}
quantum_current_poisson{}
quantum_optics{}

}

Nested keywords

7.4.1 structure_only{ }
Calling sequence

run{ structure_only{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

If this group is defined, then calculation is aborted after structure setup, similarly to when the command line flag -s
or --structure is set. But differently from the command line flag, if last_region is present, partial structure
initialization is performed. This is useful for debugging your structure definition, e.g. if you have a 2D or 3D
simulation with many material regions, contact regions, doping regions and generation regions overlapping each
other in a complicated way. The files in the output directory Structure/ will then reflect this partial initialization.
Note that in case not all regions are used here, some initialization and output steps related to strain, poisson, current,
quantum, cbr, optics, etc. will be omitted in order to avoid inconsistencies.

Example

run{
structure_only{ }

}

Nested keywords

• last_region

7.4. run{ } 725

nextnano++ Documentation, Release 1.25.13

last_region

Calling sequence

run{ structure_only{ last_region } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: all regions

• unit: −

Functionality

Defines the highest number of region printed in to the output file.

Example

run{
structure_only{

last_region = 5
}

}

7.4.2 strain{ }
Calling sequence

run{ strain{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The strain{ } must be defined.

Functionality

When this group is defined, the strain equation is solved at the beginning of the algorithm and the strain effects are
included in further parts of the simulation.

Example

run{
strain{}

}

strain{}

726 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.4.3 poisson{ }
Calling sequence

run{ poisson{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The poisson{ } must be defined.

Functionality

When this group is defined, the Poisson equation is solved using semiclassical (bulk-material) densities of sates
and without any self-consistency with the other equations. The major result here is the electrostatic potential.

Example

run{
poisson{}

}

poisson{}

7.4.4 current_poisson{ }
Calling sequence

run{ current_poisson{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• Global groups poisson{ } and currents{ } must be defined.

Functionality

When this group is defined, the system of coupled current and Poisson equations is solved self-consistently using
semiclassical (bulk-material) densities of sates. The major results here are the electrostatic potential and quasi-
Fermi levels.

Example

run{
current_poisson{}

}

poisson{}
currents{}

7.4. run{ } 727

nextnano++ Documentation, Release 1.25.13

Nested keywords

• fermi_limit

• multi_stage_solve

• fast_poisson

• system_solve

• iterations

• current_repetitions

• limit_repetitions

• residual

• residual_fermi

• alpha_fermi

• alpha_iterations

• alpha_scale

• minimum_density_electrons

• minimum_density_holes

• maximum_density_electrons

• maximum_density_holes

• smooth_currents

• output_log

• output_local_residuals

fermi_limit

Calling sequence

run{ current_poisson{ fermi_limit } }

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 10.0

• default: 𝑟 = 2.0

• unit: eV

Example

run{
current_poisson{

fermi_limit = 0.5
}

}
(continues on next page)

728 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

poisson{}
currents{}

Functionality

This keyword defines the energy range within which the quasi-Fermi levels are allowed in the simulation, and
during the runtime of related algorithms. The maximum is defined as the highest Fermi level at contacts plus the
fermi_limit while the minimum is defined as the lowest Fermi level at contacts minus the fermi_limit.

ò Note

Except in case of huge band gaps and extreme photogeneration, the default value should not require any change.

At the same time, in the absence of any externally induced photogeneration, this value can be set to zero in
order to stabilize the solver.

multi_stage_solve

Calling sequence

run{ current_poisson{ multi_stage_solve } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

When multi_stage_solve = yes, then the current equation is solved in two stages. First, without recombi-
nation and generation processes. Second, with the recombination and generation processes included using the
solutions from the first run as initial conditions, if any recombination or generation models are turned on.

� Hint

This keyword can be used to improve convergence in some cases, but may also increase the simulation runtime.

Example

run{
current_poisson{

multi_stage_solve = yes
}

}

poisson{}
currents{}

7.4. run{ } 729

nextnano++ Documentation, Release 1.25.13

fast_poisson

Calling sequence

run{ current_poisson{ fast_poisson } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If fast_poisson = yes, then Newton iterations of the Poisson solver in the within the classical current-Poisson
iteration will be limited to 1. Note that enabling this setting may also influence stability of convergence or change
the optimal value for alpha_fermi. Typically, fast_poisson = yes increases the number of iterations but
significantly reduces the overall execution time.

Example

run{
current_poisson{

fast_poisson = yes
}

}

poisson{}
currents{}

system_solve

Calling sequence

run{ current_poisson{ system_solve } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Dependencies

• Defining this attribute requires presence of current_repetitions.

Functionality

Alternative new iteration method for classical current-Poisson. This Newton method may provide better conver-
gence for some systems (but may require different values of convergence parameters). Setting system_solve =
yes results in Fermi levels and potential being simultaneously updated as a system of unknowns during the itera-
tion. Irrespective of its value, system_solve always takes the value of current_repetitions into account.

730 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

run{
current_poisson{

system_solve = yes
}

}

poisson{}
currents{}

iterations

Calling sequence

run{ current_poisson{ iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 100

• unit: −

Functionality

Maximum number of iterations for current-Poisson solver

Example

run{
current_poisson{

iterations = 200
}

}

poisson{}
currents{}

current_repetitions

Calling sequence

run{ current_poisson{ current_repetitions } }

Properties

• usage: conditional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 1

• unit: −

7.4. run{ } 731

nextnano++ Documentation, Release 1.25.13

Dependencies

• This attribute is required if system_solve or limit_repetitions is defined.

Functionality

Number of current-density iterations. The current equations are repeatedly solved for the quasi-Fermi levels with
the densities fixed. The current equation for the electrons and for the holes are solved independently with a com-
mon and fixed recombination term. For each iteration, the densities are adjusted according to the new quasi-
Fermi levels of the previous iteration. current_repetitions defines number of these repetitions. If genera-
tion/recombination is present, using a value > 1 (e.g. 5) may stabilize the iteration and sometimes enable faster
convergence (larger alpha_fermi may also be possible then).

Example

run{
current_poisson{

current_repetitions = 5
}

}

poisson{}
currents{}

limit_repetitions

Calling sequence

run{ current_poisson{ limit_repetitions } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Dependencies

• Defining this attribute requires presence of current_repetitions.

Functionality

If enabled, the current-density loop is exited early as soon as residual_fermi is reached by the quasi-Fermi
levels.

Example

run{
current_poisson{

current_repetitions = yes
}

}

poisson{}
currents{}

732 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

residual

Calling sequence

run{ current_poisson{ residual } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 105 for 1D; 𝑟 = 103 for 2D; 𝑟 = 10−3 for 3D

• unit: cm−2 for 1D; cm−1 for 2D; none for 3D

Functionality

Residual occupation changes.

Example

run{
current_poisson{

residual = 1e4
}

}

poisson{}
currents{}

residual_fermi

Calling sequence

run{ current_poisson{ residual_fermi } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 1𝑒− 5

• unit: eV

Functionality

Residual Fermi level changes, see Residuals for more details. This value is also used during
quantum_current_poisson{ }

Example

run{
current_poisson{

residual_fermi = 1e-6
}

(continues on next page)

7.4. run{ } 733

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

poisson{}
currents{}

alpha_fermi

Calling sequence

run{ current_poisson{ alpha_fermi } }

Properties

• usage: optional
• type: real number

• values: 10−5 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 1.0

• unit: −

Functionality

Dimensionless under-relaxation parameter for Fermi level. The final quasi-Fermi level for electrons after each
iteration is calculated as follows:

𝐸𝐹,𝑛 = (𝐸𝐹,𝑛 of previous iteration) * (1 - alpha_fermi) + (𝐸𝐹,𝑛 of actual iteration) * alpha_fermi

This Fermi level is then input to the next iteration. The same holds for the Fermi level 𝐸𝐹,𝑝 for holes. The value
of alpha_fermi will change due to alpha_scale during the iterations. The actually used alpha_fermi is now
included in iteration_current_poisson.dat and iteration_quantum_current_poisson_details.dat.

Example

run{
current_poisson{

alpha_fermi = 0.5
}

}

poisson{}
currents{}

alpha_iterations

Calling sequence

run{ current_poisson{ alpha_iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 1000

• unit: −

734 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Iteration at which alpha_fermi begins to be rescaled by alpha_scale at each following iteration.

Example

run{
current_poisson{

alpha_iterations = 200
}

}

poisson{}
currents{}

alpha_scale

Calling sequence

run{ current_poisson{ alpha_scale } }

Properties

• usage: optional
• type: real number

• values: 0.1 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 0.998

• unit: −

Functionality

A factor rescaling alpha_fermi starting at the iteration alpha_iterations, both for classical and quantum
stages of simulation. The alpha_fermi is overwritten by: max(alpha_fermi * alpha_scale , 1e-5) at
each iteration step once the number of iterations exceeds alpha_iterations.

Use this feature to improve convergence (particularly convergence of Fermi levels) towards the end of the iteration.

. Warning

Decreasing alpha_fermi too fast (a problem with older versions) will result in the iteration stalling, (only the
residuals of the densities but none of the Fermi levels decrease). The total current equation may then not be
properly conserved.

Example

run{
current_poisson{

alpha_scale = 0.995
}

}

poisson{}
currents{}

7.4. run{ } 735

nextnano++ Documentation, Release 1.25.13

minimum_density_electrons

Calling sequence

run{ current_poisson{ minimum_density_electrons } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1020

• default: 𝑟 = 1.0

• unit: cm−3

Functionality

—

minimum_density_holes

Calling sequence

run{ current_poisson{ minimum_density_holes } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1020

• default: 𝑟 = 1.0

• unit: cm−3

Functionality

—

maximum_density_electrons

Calling sequence

run{ current_poisson{ maximum_density_electrons } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1030

• default: 𝑟 = 1𝑒30

• unit: cm−3

736 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

maximum_density_holes

Calling sequence

run{ current_poisson{ maximum_density_holes } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1030

• default: 𝑟 = 1𝑒30

• unit: cm−3

Functionality

—

smooth_currents

Calling sequence

run{ current_poisson{ smooth_currents } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then current equation is additionally solved at the very end of the algorithm.

output_log

Calling sequence

run{ current_poisson{ output_log } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

7.4. run{ } 737

nextnano++ Documentation, Release 1.25.13

Functionality

—

Example

run{
current_poisson{

output_log = no
}

}

poisson{}
currents{}

output_local_residuals

Calling sequence

run{ current_poisson{ output_local_residuals } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs residuals as functions of position when output_local_residuals = yes. In case the attribute is en-
abled for both classical and quantum iterations, the quantum iteration overwrites the respective files of the classical
iteration.

. Attention

Both conditions specified by residual and residual_fermi must hold in order to consider a calculation as
converged.

Example

run{
current_poisson{

output_local_residuals = yes
}

}

poisson{}
currents{}

Last update: 02/04/2025

738 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.4.5 quantum{ }
Calling sequence

run{ quantum{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The quantum{ } must be defined.

Functionality

Solves the Schrödinger equation. Exchange–correlation effects (optional) can be included and are calculated from
the quantum density. Then the Schrödinger equation is solved again but this time including the exchange-correlation
potential energy.

Example

run{
quantum{}

}

quantum{}

7.4.6 quantum_density{ }
Calling sequence

run{ quantum_density{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The quantum{ } must be defined.

• The exchange_correlation{ } must be defined.

Functionality

Includes exchange correlation effects into solutions of Schrödinger equation in a self-consistent manner.

Example

run{
quantum_density{}

}

quantum{
exchange_correlation{}

}

7.4. run{ } 739

nextnano++ Documentation, Release 1.25.13

Nested keywords

• residual

• iterations

• use_subspace

• subspace_iterations

• subspace_residual_factor

• output_log

• output_local_residuals

residual

Calling sequence

run{ quantum_density{ residual } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 105 for 1D; 𝑟 = 103 for 2D; 𝑟 = 10−3 for 3D

• unit: cm−2 for 1D; cm−1 for 2D; none for 3D

Functionality

Defines requested residual of the integrated total charge carrier density changes. Note that this is dimension
dependent and default is: 1e5/cm2 (1D), 1e3/cm (2D), 1e-3[dimensionless] (3D). This applies to exact Schrödinger
equation, not to subspace Schrödinger equation

ò Note

If you do not include enough eigenstates, the convergence behavior might be affected as the occupation of the
eigenstates is not considered in a useful way.

Example

run{
quantum_density{

residual = 1e4
}

}

quantum{
exchange_correlation{}

}

740 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

iterations

Calling sequence

run{ quantum_density{ iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 30

• unit: −

Functionality

Maximum number of iterations, i.e. self-consistency cycles

Example

run{
quantum_density{

iterations = 50
}

}

quantum{
exchange_correlation{}

}

use_subspace

Calling sequence

run{ quantum_density{ use_subspace } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Solve Schrödinger equation within subspace of eigenvectors of previous iteration as long as achieved residual is
larger than desired residual * residual_factor and at least in every second iteration

Example

run{
quantum_density{

use_subspace = no
}

}
(continues on next page)

7.4. run{ } 741

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

quantum{
exchange_correlation{}

}

subspace_iterations

Calling sequence

run{ quantum_density{ subspace_iterations } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 1000

• default: 𝑧 = 1

• unit: −

Functionality

Number of subspace iterations

Example

run{
quantum_density{

subspace_iterations = 5
}

}

quantum{
exchange_correlation{}

}

subspace_residual_factor

Calling sequence

run{ quantum_density{ subspace_residual_factor } }

Properties

• usage: optional
• type: real number

• values: [2.0, ...)

• default: 𝑟 = 1𝑒12

• unit: −

742 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Residual factor for subspace iterations

Example

run{
quantum_density{

subspace_residual_factor = 1e10
}

}

quantum{
exchange_correlation{}

}

output_log

Calling sequence

run{ quantum_density{ output_log } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Output of convergence of Schrödinger-Poisson equation (residuals for quantum_density) into the logfile itera-
tion_quantum_density.dat

Example

run{
quantum_density{

output_log = no
}

}

quantum{
exchange_correlation{}

}

output_local_residuals

Calling sequence

run{ quantum_density{ output_local_residuals } }

7.4. run{ } 743

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs residuals as functions of position when output_local_residuals = yes. In case the attribute is en-
abled for both a classical and quantum iterations, the quantum iteration overwrites the respective files of the classical
iteration.

Example

run{
quantum_density{

output_local_residuals = yes
}

}

quantum{
exchange_correlation{}

}

Last update: 03/04/2025

7.4.7 quantum_poisson{ }
Calling sequence

run{ quantum_poisson{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The quantum{ } and poisson{ } must be defined.

Functionality

Triggers solving of the Schrödinger and Poisson equations self-consistently for the defined system.

Example

run{
quantum_poisson{}

}

poisson{}
quantum{}

744 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• residual

• iterations

• use_subspace

• subspace_iterations

• subspace_residual_factor

• alpha_potential

• output_log

• output_local_residuals

residual

Calling sequence

run{ quantum_poisson{ residual } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 105 for 1D; 𝑟 = 103 for 2D; 𝑟 = 10−3 for 3D

• unit: cm−2 for 1D; cm−1 for 2D; none for 3D

Functionality

Defines requested residual of the integrated total charge carrier density changes. Note that this is dimension
dependent and default is: 1e5/cm2 (1D), 1e3/cm (2D), 1e-3[dimensionless] (3D). This applies to exact Schrödinger
equation, not to subspace Schrödinger equation

ò Note

If you do not include enough eigenstates, the convergence behavior might be affected as the occupation of the
eigenstates is not considered in a useful way.

Example

run{
quantum_poisson{

residual = 1e4
}

}

poisson{}
quantum{}

7.4. run{ } 745

nextnano++ Documentation, Release 1.25.13

iterations

Calling sequence

run{ quantum_poisson{ iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 30

• unit: −

Functionality

Maximum number of iterations, i.e. self-consistency cycles

Example

run{
quantum_poisson{

iterations = 50
}

}

poisson{}
quantum{}

use_subspace

Calling sequence

run{ quantum_poisson{ use_subspace } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Solve Schrödinger equation within subspace of eigenvectors of previous iteration as long as achieved residual is
larger than desired residual * residual_factor and at least in every second iteration

Example

run{
quantum_poisson{

use_subspace = no
}

}

(continues on next page)

746 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

poisson{}
quantum{}

subspace_iterations

Calling sequence

run{ quantum_poisson{ subspace_iterations } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 1000

• default: 𝑧 = 1

• unit: −

Functionality

Number of subspace iterations

Example

run{
quantum_poisson{

subspace_iterations = 5
}

}

poisson{}
quantum{}

subspace_residual_factor

Calling sequence

run{ quantum_poisson{ subspace_residual_factor } }

Properties

• usage: optional
• type: real number

• values: [2.0, ...)

• default: 𝑟 = 1𝑒12

• unit: −

Functionality

Residual factor for subspace iterations

7.4. run{ } 747

nextnano++ Documentation, Release 1.25.13

Example

run{
quantum_poisson{

subspace_residual_factor = 1e10
}

}

poisson{}
quantum{}

alpha_potential

Calling sequence

run{ quantum_poisson{ alpha_potential } }

Properties

• usage: optional
• type: real number

• values: 10−3 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 1.0

• unit: −

Functionality

In case of stubborn convergence problems which do not appear to have any root cause such as not enough eigen-
values and which appear not to respond to any change in other parameters, try using a mildly smaller value than
1.0 such as 0.5.

Using values smaller than 1.0 per default is not recommended, as the run time is expected to increase as 1/
alpha_potential for normally converging input files.

Example

run{
quantum_poisson{

alpha_potential = 0.5
}

}

poisson{}
quantum{}

output_log

Calling sequence

run{ quantum_poisson{ output_log } }

748 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Output of convergence of Schrödinger-Poisson equation (residuals for quantum_poisson) into the logfile itera-
tion_quantum_poisson.dat

Example

run{
quantum_poisson{

output_log = no
}

}

poisson{}
quantum{}

output_local_residuals

Calling sequence

run{ quantum_poisson{ output_local_residuals } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs residuals as functions of position when output_local_residuals = yes. In case the attribute is en-
abled for both a classical and quantum iterations, the quantum iteration overwrites the respective files of the classical
iteration.

Example

run{
quantum_poisson{

output_local_residuals = yes
}

}

poisson{}
quantum{}

7.4. run{ } 749

nextnano++ Documentation, Release 1.25.13

7.4.8 quantum_current_poisson{ }
Calling sequence

run{ quantum_current_poisson{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The quantum{ } must be defined.

• The currents{ } must be defined.

• The poisson{ } must be defined.

Functionality

It solves the Schrödinger-Current-Poisson equations self-consistently. When quantum_current_poisson{ }
is desired, note that additionally either poisson{ } or current_poisson{ } is required and current_poisson
must be defined in the input file..

Example

run{
quantum_current_poisson{}

}

poisson{}
currents{}
quantum{}

Nested keywords

• residual

• iterations

• use_subspace

• subspace_iterations

• subspace_residual_factor

• fermi_limit

• current_repetitions

• limit_repetitions

• residual_fermi

• alpha_fermi

• alpha_iterations

• alpha_scale

• alpha_potential

• minimum_density_electrons

750 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• minimum_density_holes

• maximum_density_electrons

• maximum_density_holes

• smooth_currents

• output_log

• output_local_residuals

residual

Calling sequence

run{ quantum_current_poisson{ residual } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 105 for 1D; 𝑟 = 103 for 2D; 𝑟 = 10−3 for 3D

• unit: cm−2 for 1D; cm−1 for 2D; none for 3D

Functionality

Defines requested residual of the integrated total charge carrier density changes. Note that this is dimension
dependent and default is: 1e5/cm2 (1D), 1e3/cm (2D), 1e-3[dimensionless] (3D). This applies to exact Schrödinger
equation, not to subspace Schrödinger equation

ò Note

If you do not include enough eigenstates, the convergence behavior might be affected as the occupation of the
eigenstates is not considered in a useful way.

Example

run{
quantum_current_poisson{

residual = 1e4
}

}

poisson{}
currents{}
quantum{}

iterations

Calling sequence

run{ quantum_current_poisson{ iterations } }

7.4. run{ } 751

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 30

• unit: −

Functionality

Maximum number of iterations, i.e. self-consistency cycles

Example

run{
quantum_current_poisson{

iterations = 50
}

}

poisson{}
currents{}
quantum{}

use_subspace

Calling sequence

run{ quantum_current_poisson{ use_subspace } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Solve Schrödinger equation within subspace of eigenvectors of previous iteration as long as achieved residual is
larger than desired residual * residual_factor and at least in every second iteration

Example

run{
quantum_current_poisson{

use_subspace = no
}

}

poisson{}
currents{}
quantum{}

752 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

subspace_iterations

Calling sequence

run{ quantum_current_poisson{ subspace_iterations } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 1000

• default: 𝑧 = 1

• unit: −

Functionality

Number of subspace iterations

Example

run{
quantum_current_poisson{

subspace_iterations = 3
}

}

poisson{}
currents{}
quantum{}

subspace_residual_factor

Calling sequence

run{ quantum_current_poisson{ subspace_residual_factor } }

Properties

• usage: optional
• type: real number

• values: [2.0, ...)

• default: 𝑟 = 1𝑒12

• unit: −

Functionality

Residual factor for subspace iterations

Example

run{
quantum_current_poisson{

subspace_residual_factor = 1e11
}

(continues on next page)

7.4. run{ } 753

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

poisson{}
currents{}
quantum{}

fermi_limit

Calling sequence

run{ quantum_current_poisson{ fermi_limit } }

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 10.0

• default: 𝑟 = 2.0

• unit: eV

Functionality

—

Example

run{
quantum_current_poisson{

fermi_limit = 0.7
}

}

poisson{}
currents{}
quantum{}

current_repetitions

Calling sequence

run{ quantum_current_poisson{ current_repetitions } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 2

• unit: −

754 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

number of current-density iterations. The current equation is repeatedly solved for the quasi-Fermi levels. For
each iteration, the densities are adjusted according to the new quasi-Fermi levels of the previous iteration.
current_repetitions defines number of these repetitions. If generation/recombination is present, using a value
> 1 (e.g. 5) may stabilize the iteration and sometimes enable faster convergence (larger alpha_fermi may also be
possible then).

Example

run{
quantum_current_poisson{

current_repetitions = 4
}

}

poisson{}
currents{}
quantum{}

limit_repetitions

Calling sequence

run{ quantum_current_poisson{ limit_repetitions } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If enabled, the current-density loop is exited early as soon as residual_fermi is reached by the quasi-Fermi
levels.

Example

run{
quantum_current_poisson{

limit_repetitions = yes
}

}

poisson{}
currents{}
quantum{}

residual_fermi

Calling sequence

run{ quantum_current_poisson{ residual_fermi } }

7.4. run{ } 755

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 1𝑒− 5

• unit: eV

Functionality

—

Example

run{
quantum_current_poisson{

residual_fermi = 1e-6
}

}

poisson{}
currents{}
quantum{}

alpha_fermi

Calling sequence

run{ quantum_current_poisson{ alpha_fermi } }

Properties

• usage: optional
• type: real number

• values: 10−5 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 1.0

• unit: −

Functionality

The Fermi level is under-relaxed between repetitions using an under-relaxation parameter for the Fermi levels.
It should be used once an oscillation of residuals is observed while self-consistently solving the Poisson and
Schrödinger (and current) equations to improve convergence. For further information, please read comments on
alpha_fermi parameter above

Example

run{
quantum_current_poisson{

alpha_fermi = 0.2
}

}

(continues on next page)

756 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

poisson{}
currents{}
quantum{}

alpha_iterations

Calling sequence

run{ quantum_current_poisson{ alpha_iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 1000

• unit: −

Functionality

number of alpha iterations

Example

run{
quantum_current_poisson{

alpha_iterations = 100
}

}

poisson{}
currents{}
quantum{}

alpha_scale

Calling sequence

run{ quantum_current_poisson{ alpha_scale } }

Properties

• usage: optional
• type: real number

• values: 0.1 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 0.998

• unit: −

7.4. run{ } 757

nextnano++ Documentation, Release 1.25.13

Functionality

Both for classical and for quantum iterations, alpha_fermi will be reduced further as alpha_fermi <-
max(alpha_fermi * alpha_scale , 1e-5) at each iteration step once the number of iterations exceeds al-
pha_iterations. Use this feature to improve convergence (particularly convergence of Fermi levels) towards the end
of the iteration. Note that decreasing alpha_fermi too fast (a problem with older versions) will result in the iter-
ation stalling (only the residuals of the densities but none of the Fermi levels decrease). The total current equation
may then not be properly conserved.

Example

run{
quantum_current_poisson{

alpha_scale = 0.995
}

}

poisson{}
currents{}
quantum{}

alpha_potential

Calling sequence

run{ quantum_current_poisson{ alpha_potential } }

Properties

• usage: optional
• type: real number

• values: 10−3 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 1.0

• unit: −

Functionality

In case of stubborn convergence problems which do not appear to have any root cause such as not enough eigen-
values and which appear not to respond to any change in other parameters, try using a mildly smaller value than
1.0 such as 0.5.

Using values smaller than 1.0 per default is not recommended, as the run time is expected to increase as 1/
alpha_potential for normally converging input files.

Example

run{
quantum_current_poisson{

alpha_potential = 0.5
}

}

currents{}
quantum{}

758 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

minimum_density_electrons

Calling sequence

run{ quantum_current_poisson{ minimum_density_electrons } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1020

• default: 𝑟 = 1.0

• unit: cm−3

Functionality

—

minimum_density_holes

Calling sequence

run{ quantum_current_poisson{ minimum_density_holes } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1020

• default: 𝑟 = 1.0

• unit: cm−3

Functionality

—

maximum_density_electrons

Calling sequence

run{ quantum_current_poisson{ maximum_density_electrons } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1030

• default: 𝑟 = 1𝑒30

• unit: cm−3

7.4. run{ } 759

nextnano++ Documentation, Release 1.25.13

Functionality

—

maximum_density_holes

Calling sequence

run{ quantum_current_poisson{ maximum_density_holes } }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1030

• default: 𝑟 = 1𝑒30

• unit: cm−3

Functionality

—

smooth_currents

Calling sequence

run{ quantum_current_poisson{ smooth_currents } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then current equation is additionally solved at the very end of the algorithm.

output_log

Calling sequence

run{ quantum_current_poisson{ output_log } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

760 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Output of convergence of (quantum) current-Poisson equation (residuals for quantum_current_poisson) into
the logfile iteration_quantum_current_poisson.dat

Example

run{
quantum_current_poisson{

output_log = no
}

}

currents{}
quantum{}

output_local_residuals

Calling sequence

run{ quantum_current_poisson{ output_local_residuals } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs residuals as functions of position when output_local_residuals = yes. In case the attribute is en-
abled for both classical and quantum iterations, the quantum iteration overwrites the respective files of the classical
iteration.

ò Note

Both conditions specified by residual and residual_fermi are only checked between iterations but not
between repetitions.

Example

run{
quantum_current_poisson{

output_local_residuals = yes
}

}

currents{}
quantum{}

7.4. run{ } 761

nextnano++ Documentation, Release 1.25.13

7.4.9 quantum_optics{ }
Calling sequence

run{ quantum_optics{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The optics{ } must be defined.

• The optics{ quantum_spectra{ } } must be defined.

• The quantum{ } must be defined.

Functionality

Calculates optical properties based on solutions of the Schrödinger equation defined within the quantum{ } group.
Optical spectra are controlled within optics{ }, which is also additional redefining selected setting from the quan-
tum{ } group.

Example

run{
quantum_optics{}

}

quantum{}
optics{

quantum_spectra{}
}

Remarks
• Poisson: Only maximally one of poisson{ } and current_poisson{ } can be defined, which de-

fines the classical equation to be solved (also as first stage before possibly solving any quantum me-
chanics). If neither is set, only fixed potentials will be used.

• Quantum: If quantum mechanics is desired, one of quantum{ }, quantum_density{},
quantum_poisson{ }, and quantum_current_poisson{ } must be set.

• The quantum equations to be solved - only quantum, quantum with self-consistent den-
sity/exchange, self-consistent quantum-Poisson, and self-consistent quantum-current-Poisson - are
only defined by the choice of quantum{ }, quantum_density{}, quantum_poisson{ }, and
quantum_current_poisson{ }, irrespective of the choice of the classical solution method.
Note that one of poisson{ } and current_poisson{ } must be set when quantum_poisson{
} or quantum_current_poisson{ } is desired. Use poisson{ } in conjunction with
quantum_current_poisson{ } to skip classical current calculations.

• Quantum with self-consistent density/exchange is solved by selection of quantum_density{} (users
can change parameters in there as needed).

Further Remarks
2019-01-24: At the end of current_poisson{ }, Poisson is now solved once to make the band structure
consistent with the Fermi levels. In case of incomplete convergence, the partly converged output is then more
in line with physical intuition.

762 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Input residuals and tolerances are rescaled to various internal units (often in a dimension-dependent manner,
i.e. they are different for 1D, 2D and 3D simulations) before being passed to low-level numerical routines like
ARPACK, LAPACK, BLAS, nonlinear solvers, etc. Therefore, diagnostic output from low-level numerical
solvers usually contains values which are completely different from those which are output by the high-level
physics routines or output into files.

There are log files that track the convergence behavior of the iterations during the simulation. The conver-
gence information for the respective self-consistent equations can be plotted. It is best to use a logarithmic
scale.

• iteration_quantum_density.dat

quantum_density{} | Convergence of Schrödinger equation with self-consistent den-
sity/exchange

• iteration_quantum_poisson.dat

quantum_poisson{ } | Convergence of outer iteration loop for Schrödinger-Poisson

• iteration_quantum_current_poisson.dat

quantum_current_poisson{ } | Convergence of outer iteration loop, i.e. for Current-
Poisson-Schrödinger with quantum

• iteration_quantum_current_poisson_details.dat

quantum_current_poisson{ } | Convergence of current equation, i.e. for Current-Poisson
with quantum densities

7.5 global{ }
Calling sequence

global{ }

Properties

• usage: required
• items: exactly 1

Functionality

Contains global settings of the simulation domain.

Example

global{
simulate1D{}
crystal_zb{

x_hkl = [1, 0, 0]
x_hkl = [0, 1, 0]

}
substrate{ name = "GaAs" }
temperature = 300

}

• simulate1D{ }

• simulate2D{ }

• simulate3D{ }

7.5. global{ } 763

nextnano++ Documentation, Release 1.25.13

• crystal_zb{ }

• crystal_zb{ x_hkl }

• crystal_zb{ y_hkl }

• crystal_zb{ z_hkl }

• crystal_wz{ }

• crystal_wz{ x_hkl }

• crystal_wz{ y_hkl }

• crystal_wz{ z_hkl }

• crystal_wz{ rotation_c_a_ratio_use_substrate }

• crystal_wz{ rotation_c_a_ratio }

• substrate{ }

• substrate{ name }

• substrate{ alloy_x }

• substrate{ alloy_y }

• substrate{ alloy_z }

• temperature

• temperature_dependent_bandgap

• temperature_dependent_lattice

• magnetic_field{ }

• magnetic_field{ direction }

• magnetic_field{ strength }

• periodic{ }

• periodic{ x }

• periodic{ y }

• periodic{ z }

7.5.1 simulate1D{ }
Calling sequence

global{ simulate1D{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• Exactly one out of simulate1D{ }, simulate2D{ }, and simulate3D{ } must be defined.

764 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Instructs the solver that the simulation will be held in 1D, along the x-direction.

Example

global{
simulate1D{}
...

}

7.5.2 simulate2D{ }
Calling sequence

global{ simulate2D{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• Exactly one out of simulate1D{ }, simulate2D{ }, and simulate3D{ } must be defined.

Functionality

Instructs the solver that the simulation will be held in 2D, within the (x,y)-plane.

Example

global{
simulate2D{}
...

}

7.5.3 simulate3D{ }
Calling sequence

global{ simulate3D{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• Exactly one out of simulate1D{ }, simulate2D{ }, and simulate3D{ } must be defined.

Functionality

Instructs the solver that the simulation will be held in 3D, within the (x,y,z)-volume.

7.5. global{ } 765

nextnano++ Documentation, Release 1.25.13

Example

global{
simulate3D{}
...

}

7.5.4 crystal_zb{ }
Calling sequence

global{ crystal_zb{ } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Instructs the tool that models and routines for zincblende (including diamond) materials should be used within the
simulation. Organizes keywords to define orientation of the crystal coordinate system with respect to simulation
coordinate system.

Example

global{
crystal_zb{...}
...

}

7.5.5 crystal_zb{ x_hkl }
Calling sequence

global{ crystal_zb{ x_hkl } }

Dependencies

• Exactly two out of crystal_zb{ x_hkl }, crystal_zb{ y_hkl }, and crystal_zb{ z_hkl } must be defined.

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• unit: −

Functionality

Miller indices specifying a lattice plane that should be set perpendicular to the x-axis of the simulation coordinate
system.

766 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

ò Note

See Crystal coordinate systems for more details.

Example

global{
crystal_zb{

x_hkl = [1, 1, 1]
y_hkl = [-1, 2, -1]

}
...

}

7.5.6 crystal_zb{ y_hkl }
Calling sequence

global{ crystal_zb{ y_hkl } }

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• unit: −

Dependencies

• Exactly two out of crystal_zb{ x_hkl }, crystal_zb{ y_hkl }, and crystal_zb{ z_hkl } must be defined.

Functionality

Miller indices specifying a lattice plane that should be set perpendicular to the y-axis of the simulation coordinate
system.

ò Note

See Crystal coordinate systems for more details.

Example

global{
crystal_zb{

x_hkl = [0, -1, 1]
y_hkl = [1, 1, 0]

}
...

}

7.5. global{ } 767

nextnano++ Documentation, Release 1.25.13

7.5.7 crystal_zb{ z_hkl }
Calling sequence

global{ crystal_zb{ z_hkl } }

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• unit: −

Dependencies

• Exactly two out of crystal_zb{ x_hkl }, crystal_zb{ y_hkl }, and crystal_zb{ z_hkl } must be defined.

Functionality

Miller indices specifying a lattice plane that should be set perpendicular to the z-axis of the simulation coordinate
system.

ò Note

See Crystal coordinate systems for more details.

Example

global{
crystal_zb{

y_hkl = [1, -1, 0]
z_hkl = [0, 1, -1]

}
...

}

7.5.8 crystal_wz{ }
Calling sequence

global{ crystal_wz{ } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Instructs the tool that models and routines for wurtzite materials should be used within the simulation. Organizes
keywords to define orientation of the crystal coordinate system with respect to simulation coordinate system.

768 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

global{
crystal_wz{...}
...

}

7.5.9 crystal_wz{ x_hkl }
Calling sequence

global{ crystal_wz{ x_hkl } }

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• unit: −

Functionality

Miller indices specifying a lattice plane that should be set perpendicular to the x-axis of the simulation coordinate
system.

ò Note

See Crystal coordinate systems for more details.

Example

global{
crystal_wz{

x_hkl = [0, 0, 1]
y_hkl = [1, 0, 0]

}
...

}

7.5.10 crystal_wz{ y_hkl }
Calling sequence

global{ crystal_wz{ y_hkl } }

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• unit: −

7.5. global{ } 769

nextnano++ Documentation, Release 1.25.13

Functionality

Miller indices specifying a lattice plane that should be set perpendicular to the y-axis of the simulation coordinate
system.

ò Note

See Crystal coordinate systems for more details.

Example

global{
crystal_wz{

x_hkl = [1, 0, 0]
y_hkl = [-1, 2, 0]

}
...

}

7.5.11 crystal_wz{ z_hkl }
Calling sequence

global{ crystal_wz{ z_hkl } }

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• unit: −

Functionality

Miller indices specifying a lattice plane that should be set perpendicular to the z-axis of the simulation coordinate
system.

ò Note

See Crystal coordinate systems for more details.

Example

global{
crystal_wz{

x_hkl = [0, 0, 1]
z_hkl = [1, 1, 0]

}
...

}

770 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.5.12 crystal_wz{ rotation_c_a_ratio_use_substrate }
Calling sequence

global{ crystal_wz{ rotation_c_a_ratio_use_substrate } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If rotation_c_a_ratio_use_substrate = yes then ratio of lattice constants a and c in wurtzite crystal to
perform crystal coordination system rotation is computed based on the lattice constants of the substrate material.
Otherwise the ratio crystal_wz{ rotation_c_a_ratio } is used.

Example

global{
crystal_wz{

rotation_c_a_ratio_use_substrate = no
...

}
...

}

7.5.13 crystal_wz{ rotation_c_a_ratio }
Calling sequence

global{ crystal_wz{ rotation_c_a_ratio } }

Properties

• usage: optional
• type: real number

• values: 1.0 ≤ 𝑟 ≤ 2.0

• default: 𝑟 =
√︀
(8.0/3.0)

• unit: −

Functionality

If the ratio for entering rotation matrix is not computed based on lattice constants of the substrate material
rotation_c_a_ratio_use_substrate = no, then the default value or value assigned to this keyword is used.

Example

global{
crystal_wz{

rotation_c_a_ratio = 5.185 / 3.189
...

(continues on next page)

7.5. global{ } 771

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
...

}

7.5.14 substrate{ }
Calling sequence

global{ substrate{ } }

Properties

• usage: required
• items: exactly 1

Functionality

Organizes keywords specifying parameters of the substrate material. The substrate enters the simulation as a refer-
ence unstrained material onto which the simulated structure is grown, and strained to, if the strain{ } is triggered.
It also strongly impacts the symmetry of the first Brillouin zone, therefore also symmetry properties of all integrals
over the space of the wave vector.

Example

global{
substrate{...}
...

}

7.5.15 substrate{ name }
Calling sequence

global{ substrate{ name } }

Properties

• usage: required
• type: character string

Functionality

The reference name of the material to be used as the substrate. The name must exist either in the linked database
(see Material Database) file or in the database{ } group in the input file.

Example

global{
substrate{

name = "GaAs"
}
...

}

772 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.5.16 substrate{ alloy_x }
Calling sequence

global{ substrate{ alloy_x } }

Properties

• usage: conditional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 1.0

• unit: −

Dependencies

• This group is required if any of the groups substrate{ alloy_y } and substrate{ alloy_z } is already present.

Functionality

If a name of at least two-component alloy is assigned to substrate{ name }, then this parameter defines the mole
fraction “x” of the alloy.

Example

global{
substrate{

name = "Al(x)Ga(1-x)As"
alloy_x = 0.3

}
...

}

7.5.17 substrate{ alloy_y }
Calling sequence

global{ substrate{ alloy_y } }

Properties

• usage: conditional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 1.0

• unit: −

Functionality

If a name of at least three-component alloy is assigned to substrate{ name }, then this parameter defines the mole
fraction “y” of the alloy.

Example

7.5. global{ } 773

nextnano++ Documentation, Release 1.25.13

global{
substrate{

name = "Al(x)Ga(y)In(1-x-y)As"
alloy_x = 0.3
alloy_y = 0.1

}
...

}

7.5.18 substrate{ alloy_z }
Calling sequence

global{ substrate{ alloy_z } }

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 1.0

• unit: −

Functionality

If a name of at least six-component alloy is assigned to substrate{ name }, then this parameter defines the mole
fraction “z” of the alloy.

Example

global{
substrate{

name = "Al(x)Ga(y)In(1-x-y)As(z)P(1-z)"
alloy_x = 0.3
alloy_y = 0.1
alloy_z = 0.9

}
...

}

7.5.19 temperature
Calling sequence

global{ temperature }

Properties

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: K

774 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Specifies temperature of the crystal lattice and electrons.

Example

global{
temperature = 300
...

}

7.5.20 temperature_dependent_bandgap
Calling sequence

global{ temperature_dependent_bandgap }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If temperature_dependent_bandgap = yes then Varshni formula is used to calculate the band gap 𝐸g(𝑇) at
given temperature 𝑇

𝐸g (𝑇) = 𝐸g(0 K) + 𝛿𝐸g (𝑇) ,

where 𝛿𝐸g (𝑇) is the correction.

For pure materials, such as GaAs or Si, the correction is given as:

𝛿𝐸g (𝑇) =
−𝛼𝑇 2

𝑇 + 𝛽

In case of alloys, the correction is interpolated consistently with our Interpolation Schemes. For instance, the
correction for a two-component alloy with bowing parameters is computed as:

𝛿𝐸g,ABC (𝑇, 𝑥) = 𝑥
−𝛼AC 𝑇

2

𝑇 + 𝛽AC
+ (1− 𝑥)

−𝛼BC 𝑇
2

𝑇 + 𝛽BC
− 𝑥(1− 𝑥)

−𝛼ABC 𝑇
2

𝑇 + 𝛽ABC
,

Where 𝛼AC, 𝛼BC, 𝛽AC, and 𝛽BC are Varshni parameters of binary compounds AC and AB, while 𝛼ABC and 𝛽ABC

are related “bowing” parameters, all defined in the database. The latter ones are typically set to zero.

If temperature_dependent_bandgap = no then the energy gap from the database is taken without any correc-
tions, assumed to be for 0 K.

ò Note

The temperature dependence impacts only the conduction bands, since the valence bands are used as reference
energies for the band offsets.

Example

7.5. global{ } 775

nextnano++ Documentation, Release 1.25.13

global{
temperature_dependent_bandgap = no
...

}

7.5.21 temperature_dependent_lattice
Calling sequence

global{ temperature_dependent_lattice }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If temperature_dependent_lattice = yes then the linear temperature dependence is included for the lattice
constants. Otherwise, the lattice constant defined in the database as for 300 K is used.

𝑎 (𝑇) = 𝑎(300 K) + 𝑎exp (𝑇 − 300) ,

where 𝑎exp is the expansion coefficient defined in the database and properly interpolated for alloys.

Example

global{
temperature_dependent_lattice = no
...

}

7.5.22 magnetic_field{ }
Calling sequence

global{ magnetic_field{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The groups magnetic_field{ } and periodic{ } cannot be defined simultaneously.

776 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Adds magnetic effects to the quantum solver (see. quantum{ }) for the single-band, the 6-band k ·p and the 8-band
k · p Hamiltonians, such that effectively the Pauli equation is solved.

ò Note

The single-band model is assumed to be two-fold spin degenerate without the magnetic field. This assumption
is lifted when the magnetic_field{ } is defined.

. Attention

The magnetic effects are not yet included directly in the drift-diffusion current equations, therefore the Hall
effect is not covered by this model. Please contact us if you need this feature.

. Attention

For the magnetic effects are not fully implemented for 1D simulations. While the Zeeman Splitting seem to be
captured properly, other quantities, such as carrier densities, may be computed improperly. Please contact us
if you need this feature.

Example

global{
magnetic_field{...}
...

}

7.5.23 magnetic_field{ direction }
Calling sequence

global{ magnetic_field{ direction } }

Properties

• usage: conditional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• default 1D: 𝑟1 = 1.0, 𝑟2 = 0.0, 𝑟3 = 0.0

• default 2D: 𝑟1 = 0.0, 𝑟2 = 0.0, 𝑟3 = 1.0

• unit: −

Dependencies

• This group is not allowed if any of the groups simulate1D{ } and simulate2D{ } is already present.

• On the other hand, it is required if simulate3D{ } is defined.

7.5. global{ } 777

https://en.wikipedia.org/wiki/Pauli_equation
https://nextnano.atlassian.net/servicedesk/
https://nextnano.atlassian.net/servicedesk/

nextnano++ Documentation, Release 1.25.13

Functionality

Defines orientation of constant homogenous magnetic field (magnetic induction B) vector with respect to the
simulation coordinate system.

Example

global{
simulate3D{}
magnetic_field{

direction = direction = [3, 1, 1]
strength = 5.3

}
...

}

7.5.24 magnetic_field{ strength }
Calling sequence

global{ magnetic_field{ strength } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: T = Vs/m2

Functionality

Sets the strength of the constant magnetic field B.

� Hint

It is better to not define the group magnetic_field{ } instead of setting strength = 0 for 1-band simulations, as
including the magnetic effects is extending the 1-band model by spin. This extension results in longer runtime
of the quantum solver.

Example

global{
simulate1D{}
magnetic_field{

strength = 5.3
}
...

}

778 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.5.25 periodic{ }
Calling sequence

global{ periodic{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The groups magnetic_field{ } and periodic{ } cannot be defined simultaneously.

Functionality

When defined, allows triggering periodic boundary conditions for the entire simulation domain along selected
directions of the simulation coordinate system. These boundary conditions are applied to strain, electrostatic field
(the Poisson equation), and wave functions (the Schrödinger equation) overwriting all the other possible definitions
already present in the input file.

ò Note

The periodic boundary conditions will be imposed on the Schrödinger equation only if related quantum region
extends over the entire simulation domain along the relevant direction.

ò Note

Shapes defining the layout of materials (structure{ region{} } - shape objects) which extends beyond the defined
simulation domain are not automatically continued on the opposite side of the simulation domain.

Example

global{
periodic{...}
...

}

7.5.26 periodic{ x }
Calling sequence

global{ periodic{ x } }

Properties

• usage: required
• type: choice

• values: yes or no

• default: no

7.5. global{ } 779

nextnano++ Documentation, Release 1.25.13

Functionality

If x = yes then the periodic boundary conditions are applied along the x-axis of the simulation coordinate system
to the most outer points of the grid. Otherwise, other default or defined elsewhere boundary conditions apply.

Example

global{
simulate1D{}
periodic{

x = yes
}
...

}

7.5.27 periodic{ y }
Calling sequence

global{ periodic{ y } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• This group is required if simulate2D{ } or simulate3D{ } is specified.

• It is not allowed if simulate1D{ } is defined.

Functionality

If y = yes then the periodic boundary conditions are applied along the y-axis of the simulation coordinate system
to the most outer points of the grid. Otherwise, other default or defined elsewhere boundary conditions apply.

Example

global{
simulate2D{}
periodic{

x = no
y = yes

}
...

}

7.5.28 periodic{ z }
Calling sequence

global{ periodic{ z } }

780 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• This group is required if simulate3D{ } is specified.

• It is not allowed if simulate1D{ } or simulate2D{ } is defined.

Functionality

If z = yes then the periodic boundary conditions are applied along the z-axis of the simulation coordinate system
to the most outer points of the grid. Otherwise, other default or defined elsewhere boundary conditions apply.

Example

global{
simulate3D{}
periodic{

x = yes
y = no
z = yes

}
...

}

7.6 impurities{ }
Calling sequence

impurities{ }

Properties

• usage: optional
• items: maximum 1

Functionality

Specifies properties of impurities (donors, acceptor and fixed charges)

Example

impurities{
donor{...}
donor{...}
acceptor{...}

}

7.6. impurities{ } 781

nextnano++ Documentation, Release 1.25.13

Nested keywords

• donor{ }

• donor{ name }

• donor{ degeneracy }

• donor{ energy }

• donor{ N_ref }

• donor{ c }

• acceptor{ }

• acceptor{ name }

• acceptor{ degeneracy }

• acceptor{ energy }

• acceptor{ N_ref }

• acceptor{ c }

• charge{ }

• charge{ name }

• charge{ type }

7.6.1 donor{ }
Calling sequence

impurities{ donor{ } }

Properties

• usage: optional
• items: no constraints

Functionality

Defines properties of donors.

Example

impurities{
donor{...}
donor{...}

}

7.6.2 donor{ name }
Calling sequence

impurities{ donor{ name } }

782 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: character string

Functionality

Name of the impurity for referencing during definition of the structure

Example

impurities{
donor{

name = "n-Si"
...

}
}

7.6.3 donor{ degeneracy }
Calling sequence

impurities{ donor{ degeneracy } }

Properties

• usage: required
• type: integer

• values: 1 ≤ 𝑧 ≤ 12

• unit: −

Functionality

Degeneracy of the impurity. It affects the degree of ionization.

ò Note

The degeneracy of donors is usually assumed to be equal to 2 - degeneracy factor is 2. Outer s orbital is one-fold
occupied (neutral state). There is one possibility to get rid of one electron, but there are two to incorporate one
(spin up, spin down). More details on degenerate impurity levels can be found in e.g. [ChuangOpto1995].

Example

impurities{
donor{

name = "n-Si"
degeneracy = 2
...

}
}

7.6. impurities{ } 783

nextnano++ Documentation, Release 1.25.13

7.6.4 donor{ energy }
Calling sequence

impurities{ donor{ energy } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: eV

Functionality

Ionization (activation) energy of the impurity,𝐸(0)
𝑖𝑜𝑛. The positive value means that the donor level is located below

the conduction band edge, while the negative value means that the level is located within the conduction band. See
Doping for reference on typical activation energies.

� Hint

The negative value can be used to force full ionization of donors despite the quasi-Fermi levels. The degeneracy
factor effectively becomes irrelevant under the full ionization. This can be seen from eqs. (1.4) − (1.7) in
[BirnerPhD2011].

Example

impurities{
donor{

name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}

Available in the next release.

7.6.5 donor{ N_ref }
Calling sequence

impurities{ donor{ N_ref } }

Properties

• usage: optional
• type: real number

• values: [1e10, ...)

• default: 𝑟 = infinity

• unit: cm−3

784 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Reference doping 𝑁𝑟𝑒𝑓 for doping-density-dependent activation energy

𝐸𝑖𝑜𝑛 = 𝐸
(0)
𝑖𝑜𝑛 ×

[︂
1−

[︂
𝑁𝐴,0 +𝑁𝐷,0

𝑁𝑟𝑒𝑓

]︂𝑐]︂
where 𝑁𝐷,0 and 𝑁𝐴,0 are donor and acceptor densities, and 𝐸(0)

𝑖𝑜𝑛 is ionization energy of a dopant at low doping
concentrations.

Available in the next release.

7.6.6 donor{ c }
Calling sequence

impurities{ donor{ c } }

Properties

• usage: optional
• type: real number

• values: 0.3 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 1.0/3.0

• unit: −

Functionality

Exponent 𝑐 for doping-density-dependent activation energy formula.

7.6.7 acceptor{ }
Calling sequence

impurities{ acceptor{ } }

Properties

• usage: optional
• items: no constraints

Functionality

Defines properties of acceptors.

Example

impurities{
acceptor{...}
acceptor{...}

}

7.6. impurities{ } 785

nextnano++ Documentation, Release 1.25.13

7.6.8 acceptor{ name }
Calling sequence

impurities{ acceptor{ name } }

Properties

• usage: required
• type: character string

Functionality

Name of the impurity for referencing during definition of the structure

Example

impurities{
acceptor{

name = "p-C"
...

}
}

7.6.9 acceptor{ degeneracy }
Calling sequence

impurities{ acceptor{ degeneracy } }

Properties

• usage: required
• type: integer

• values: 1 ≤ 𝑧 ≤ 12

• unit: −

Functionality

Degeneracy of the impurity. It affects the degree of ionization.

ò Note

The degeneracy of acceptors is usually assumed to be equal to 4 - degeneracy factor is 4. The 𝑠𝑝3 orbital is
threefold occupied. Thus, one possibility to incorporate an electron, four possibilities to get rid of one. More
details on degenerate impurity levels can be found in e.g. [ChuangOpto1995].

The degeneracy factor may vary from 4 to 6 in nitride semiconductors crystallizing in the wurtzite structure
because of a small valence band splitting.

Example

786 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

impurities{
acceptor{

name = "p-C"
degeneracy = 4
...

}
}

7.6.10 acceptor{ energy }
Calling sequence

impurities{ acceptor{ energy } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: eV

Functionality

Ionization (activation) energy of the impurity. The positive value means that the acceptor level is located above the
valence band edge, while the negative value means that the level is located within the valence band. See Doping
for reference on typical activation energies.

� Hint

The negative value can be used to force full ionization of acceptors despite the quasi-Fermi levels. The degen-
eracy factor effectively becomes irrelevant under the full ionization. This can be seen from eqs. (1.4)− (1.7)
in [BirnerPhD2011].

Example

impurities{
acceptor{

name = "p-C"
degeneracy = 4
energy = 0.027

}
}

Available in the next release.

7.6.11 acceptor{ N_ref }
Calling sequence

impurities{ acceptor{ N_ref } }

7.6. impurities{ } 787

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: [1e10, ...)

• default: 𝑟 = infinity

• unit: cm−3

Functionality

Reference doping 𝑁𝑟𝑒𝑓 for doping-density-dependent activation energy

𝐸𝑖𝑜𝑛 = 𝐸
(0)
𝑖𝑜𝑛 ×

[︂
1−

[︂
𝑁𝐴,0 +𝑁𝐷,0

𝑁𝑟𝑒𝑓

]︂𝑐]︂
where 𝑁𝐷,0 and 𝑁𝐴,0 are donor and acceptor densities, and 𝐸(0)

𝑖𝑜𝑛 is ionization energy of a dopant at low doping
concentrations.

Available in the next release.

7.6.12 acceptor{ c }
Calling sequence

impurities{ acceptor{ c } }

Properties

• usage: optional
• type: real number

• values: 0.3 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 1.0/3.0

• unit: −

Functionality

Exponent 𝑐 for doping-density-dependent activation energy formula.

7.6.13 charge{ }
Calling sequence

impurities{ charge{ } }

Properties

• usage: optional
• items: no constraints

Functionality

Defines the type of charges which can be used to add positive or negative charges into the device, e.g., to describe
interface charges.

788 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

impurities{
charge{...}
charge{...}

}

7.6.14 charge{ name }
Calling sequence

impurities{ charge{ name } }

Properties

• usage: required
• type: character string

Functionality

A reference name.

Example

impurities{
charge{

name = "positive_charges"
...

}
}

7.6.15 charge{ type }
Calling sequence

impurities{ charge{ type } }

Properties

• usage: required
• type: choice

• values: positive or negative

Functionality

Defines sign of the charge.

Example

impurities{
charge{

name = "positive_charges"
type = positive

}
}

7.6. impurities{ } 789

nextnano++ Documentation, Release 1.25.13

7.7 contacts{ }
Calling sequence

contacts{ }

Properties

• usage: required
• items: exactly 1

Dependencies

• At least one of fermi{ }, fermi_electron{ }, fermi_hole{ }, schottky{ }, ohmic{ }, zero_field{ }, and
charge_neutral{ } must be defined.

Functionality

Defines available boundary conditions for the Current and Poisson equations. These conditions can be assigned to
specific regions by referring to assigned attribute name. We use the name contacts for these boundary conditions
since typically they are chosen as the most outer regions of the structures aiming at simulating real contacts of
some devices. It is, however, important to remember that whether these regions correspond to any contact in a
real device or not depends on how semiconductors behave near the contact at specific conditions. To model the
contacts properly, some knowledge about physics around contacts, specifically about Fermi levels and (or) electric
potential, in the modeled device is required and should be applied as the boundary conditions for our solver.

All available groups for specifying boundary conditions for the Current and Poisson equations are described
below. It is important to remember that, on top of them, the global boundary conditions are applied to the electro-
static potential 𝜑(𝑥) and quasi-Fermi levels 𝐸𝐹,𝑒/ℎ(𝑥) at the boundaries of the entire simulation. These are either,
default, Neumann boundary conditions (d

d𝑥𝜑(𝑥) = 0 and d
d𝑥𝐸𝐹,𝑒/ℎ(𝑥) = 0) or periodic boundary conditions.

. Attention

At each grid point, only one type of contact can exist. For overlapping contact regions, the last defined contact
on this grid point is used.

Example

In this example, there are three bias configurations computed
1) gate = 0.0 V, source = 0.0 V, drain = 0.0 V
2) gate = 0.5 V, source = 0.0 V, drain = 0.2 V
3) gate = 1.0 V, source = 0.0 V, drain = 0.2 V

contacts{
vacuum_level = 6.2
schottky{

name = "gate"
bias = [0.0, 0.5, 1.0]
barrier = 0.2

}
ohmic{

name = "source"
bias = 0.0

}
ohmic{

name = "drain"
bias = [0.0, 0.2]

(continues on next page)

790 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
bias_steps = 1

}

In this example, there are three bias configurations computed
1) gate = 0.00 V, source = 0.0 V, drain = 0.0 V (as with bias_steps = 0)
2) gate = 0.00 V, source = 0.0 V, drain = 0.1 V
3) gate = 0.50 V, source = 0.0 V, drain = 0.2 V (as with bias_steps = 0)
4) gate = 0.75 V, source = 0.0 V, drain = 0.2 V
3) gate = 1.00 V, source = 0.0 V, drain = 0.2 V (as with bias_steps = 0)

contacts{
vacuum_level = 6.2
schottky{

name = "gate"
bias = [0.0, 0.5, 1.0]
barrier = 0.2

}
ohmic{

name = "source"
bias = 0.0

}
ohmic{

name = "drain"
bias = [0.0, 0.2]

}
bias_steps = 2

}

Nested keywords

• vacuum_level

• schottky{ }

• schottky{ name }

• schottky{ bias }

• schottky{ barrier }

• schottky{ work_function }

• ohmic{ }

• ohmic{ name }

• ohmic{ bias }

• ohmic{ shift }

• fermi{ }

• fermi{ name }

• fermi{ bias }

• fermi_electron{ }

• fermi_electron{ name }

7.7. contacts{ } 791

nextnano++ Documentation, Release 1.25.13

• fermi_electron{ bias }

• fermi_hole{ }

• fermi_hole{ name }

• fermi_hole{ bias }

• charge_neutral{ }

• charge_neutral{ name }

• charge_neutral{ bias }

• zero_field{ }

• zero_field{ name }

• zero_field{ bias }

• long_directory_names

• bias_steps

• reuse_previous

• bias_output_level

7.7.1 vacuum_level
Calling sequence

contacts{ vacuum_level }

Properties

• usage: optional
• type: real number

• values: −102 ≤ 𝑟 ≤ 102

• default: 𝑟 = 6.3

• unit: eV

Functionality

Energy of vacuum level 𝐸𝑣𝑎𝑐, used for schottky{ }. The value 6.3 eV is predefined in correspondence to the band
offsets in the default database.

7.7.2 schottky{ }
Calling sequence

contacts{ schottky{ } }

Properties

• usage: conditional
• items: no constraints

792 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Dependencies

• Exatly one of schottky{ barrier } and schottky{ work_function } must be defined within this group.

Functionality

This keyword applies Dirichlet boundary conditions to the Fermi levels 𝐸𝐹,𝑒(𝑥) and 𝐸𝐹,ℎ(𝑥)

𝐸𝐹,𝑒(𝑥) = 𝐸𝐹,ℎ(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias, and Dirichlet boundary conditions to the
electrostatic potential 𝜑(𝑥)

𝜑(𝑥) = 𝜑0,

where 𝜑0 is determined numerically by requiring that the difference of the conduction band edge 𝐸Γ
𝑐 (𝑥) and the

Fermi level 𝐸𝐹 is equal to the value of given Schottky barrier 𝐵,

𝐸Γ
𝑐 (𝑥)− 𝐸𝐹 = 𝐵,

or by requiring that the difference of the vacuum level 𝐸𝑣𝑎𝑐 and the Fermi level 𝐸𝐹 is equal to the value of given
work function 𝑊 ,

𝐸𝑣𝑎𝑐 − 𝐸𝐹 =𝑊.

. Attention

The Schottky contact with schottky{ barrier } defined requires paying attention to the material chosen for the
region of the contact, as this material is used as a reference for the definition.

7.7.3 schottky{ name }
Calling sequence

contacts{ schottky{ name } }

Properties

• usage: required
• type: character string

Functionality

A name of the contact for referencing it in contact{ }

7.7.4 schottky{ bias }
Calling sequence

contacts{ schottky{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

7.7. contacts{ } 793

nextnano++ Documentation, Release 1.25.13

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.5 schottky{ barrier }
Calling sequence

contacts{ schottky{ barrier } }

Properties

• usage: conditional
• type: real number

• values: −102 ≤ 𝑟 ≤ 102

• unit: eV

Functionality

A Schottky barrier 𝐵 - a difference between conduction band minimum and the Fermi level

7.7.6 schottky{ work_function }
Calling sequence

contacts{ schottky{ work_function } }

Properties

• usage: conditional
• type: real number

• values: −102 ≤ 𝑟 ≤ 102

• unit: eV

Functionality

Work function 𝑊 - a difference between vacuum level and the Fermi level The Schottky-Mott is be used to deter-
mine the barrier height of the contact.

ò Note

Due to Fermi level pinning, experimentally measured Schottky barrier heights may be quite different.

� Hint

You can check the section about Band Offsets to estimate the energy of vacuum level in respect to band extrema
of materials in your simulation.

794 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

� Hint

This keyword can be successfully used to model the effect of Fermi level pinning due to surface states under
equilibrium conditions.

7.7.7 ohmic{ }
Calling sequence

contacts{ ohmic{ } }

Properties

• usage: conditional
• items: no constraints

Functionality

This keyword applies Dirichlet boundary conditions to the electrostatic potential 𝜑(𝑥)

𝜑(𝑥) = 𝜑0,

where 𝜑0 is determined numerically by requiring local charge neutrality for each grid point of the contact if the
shift parameter ∆𝑈 = 0, and Dirichlet boundary conditions to the Fermi levels 𝐸𝐹,𝑒(𝑥) and 𝐸𝐹,ℎ(𝑥)

𝐸𝐹,𝑒(𝑥) = 𝐸𝐹,ℎ(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias. If ∆𝑈 ̸= 0 then, after the procedure described
above, band edges are moved by the value −𝑞∆𝑈 and 𝜑0 is recalculated.

. Attention

Material under the ohmic contact influences computing charge neutrality conditions. Therefore, one should
pay attention to the material (and doping) chosen for the region of this type of contact.

ò Note

Check bisection{ } to learn about applied algorithm for definition of quasi-Fermi levels in this contact.

7.7.8 ohmic{ name }
Calling sequence

contacts{ ohmic{ name } }

Properties

• usage: required
• type: character string

7.7. contacts{ } 795

nextnano++ Documentation, Release 1.25.13

Functionality

A name of the contact for referencing it in contact{ }.

7.7.9 ohmic{ bias }
Calling sequence

contacts{ ohmic{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.10 ohmic{ shift }
Calling sequence

contacts{ ohmic{ shift } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: eV

Functionality

Shift potential energy of the bands ∆𝑈 .

� Hint

You may find this keyword useful to calculate the energy levels in a quantum well (QW) or quantum cascade
laser (QCL) as a function of applied bias.

ò Note

Check bisection{ } to learn about applied algorithm for definition of quasi-Fermi levels in this contact.

796 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.7.11 fermi{ }
Calling sequence

contacts{ fermi{ } }

Properties

• usage: conditional
• items: no constraints

Functionality

Applies Dirichlet boundary conditions to the Fermi levels 𝐸𝐹,𝑒(𝑥) and 𝐸𝐹,ℎ(𝑥)

𝐸𝐹,𝑒(𝑥) = 𝐸𝐹,ℎ(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias. No boundary conditions are specified for the
electrostatic potential 𝜑(𝑥).

7.7.12 fermi{ name }
Calling sequence

contacts{ fermi{ name } }

Properties

• usage: required
• type: character string

Functionality

A name of the contact for referencing it in contact{ }

. Attention

When triggered, both Poisson and Schrödinger equations are solved in the regions with these boundary condi-
tions.

7.7.13 fermi{ bias }
Calling sequence

contacts{ fermi{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

7.7. contacts{ } 797

nextnano++ Documentation, Release 1.25.13

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.14 fermi_electron{ }
Calling sequence

contacts{ fermi_electron{ } }

Properties

• usage: conditional
• items: no constraints

Functionality

This keyword applies only Dirichlet boundary conditions to the quasi-Fermi level for electrons 𝐸𝐹,𝑒(𝑥)

𝐸𝐹,𝑒(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias. No boundary conditions are specified for the
electrostatic potential 𝜑(𝑥) and for quasi-Fermi level for holes 𝐸𝐹,ℎ(𝑥).

. Attention

As quasi-Fermi level for holes 𝐸𝐹,ℎ(𝑥) is not defined within this group, other contacts are necessary to do so.

. Attention

When triggered, both Poisson and Schrödinger equations are solved in the regions with these boundary condi-
tions.

. Warning

Using fermi_electron{ } and fermi_hole{ } for current calculations within biased structures may cause violation
of charge conservation.

7.7.15 fermi_electron{ name }
Calling sequence

contacts{ fermi_electron{ name } }

Properties

• usage: required
• type: character string

798 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

A name of the contact for referencing it in contact{ }

7.7.16 fermi_electron{ bias }
Calling sequence

contacts{ fermi_electron{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.17 fermi_hole{ }
Calling sequence

contacts{ fermi_hole{ } }

Properties

• usage: conditional
• items: no constraints

Functionality

This keyword applies only Dirichlet boundary conditions to the quasi-Fermi level for holes 𝐸𝐹,ℎ(𝑥)

𝐸𝐹,ℎ(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias. No boundary conditions are specified for the
electrostatic potential 𝜑(𝑥) and for quasi-Fermi level for electrons 𝐸𝐹,𝑒(𝑥).

. Warning

Using fermi_electron{ } and fermi_hole{ } for current calculations within biased structures may cause violation
of charge conservation.

7.7.18 fermi_hole{ name }
Calling sequence

contacts{ fermi_hole{ name } }

7.7. contacts{ } 799

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: character string

Functionality

A name of the contact for referencing it in contact{ }

. Attention

As quasi-Fermi level for electrons 𝐸𝐹,𝑒(𝑥) is not defined within this group, other contacts are necessary to do
so.

. Attention

When triggered, both Poisson and Schrödinger equations are solved in the regions with these boundary condi-
tions.

7.7.19 fermi_hole{ bias }
Calling sequence

contacts{ fermi_hole{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.20 charge_neutral{ }
Calling sequence

contacts{ charge_neutral{ } }

Properties

• usage: conditional
• items: no constraints

800 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

This keyword applies Dirichlet boundary conditions to the electrostatic potential 𝜑(𝑥)

𝜑(𝑥) = 𝜑0,

where 𝜑0 determined numerically by requiring local charge neutrality for each grid point of the contact, and Dirich-
let boundary conditions to the Fermi levels 𝐸𝐹,𝑒(𝑥) and 𝐸𝐹,ℎ(𝑥)

𝐸𝐹,𝑒(𝑥) = 𝐸𝐹,ℎ(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias.

. Attention

Material under the Charge-Neutral contact influences computing charge neutrality conditions. Therefore, one
should pay attention to the material (and doping) chosen for the region of this type of contact.

� Hint

You may find this keyword useful to calculate the energy levels in a quantum well (QW) or quantum cascade
laser (QCL) as a function of applied bias.

ò Note

Check bisection{ } to learn about applied algorithm for definition of quasi-Fermi levels in this contact.

7.7.21 charge_neutral{ name }
Calling sequence

contacts{ charge_neutral{ name } }

Properties

• usage: required
• type: character string

Functionality

A name of the contact for referencing it in contact{ }.

7.7.22 charge_neutral{ bias }
Calling sequence

contacts{ charge_neutral{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

7.7. contacts{ } 801

nextnano++ Documentation, Release 1.25.13

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.23 zero_field{ }
Calling sequence

contacts{ zero_field{ } }

Properties

• usage: conditional
• items: no constraints

Functionality

This keyword applies Neumann boundary conditions to the electrostatic potential 𝜑(𝑥)

d
d𝑥
𝜑(𝑥) = 0,

and Dirichlet boundary conditions to the Fermi levels 𝐸𝐹,𝑒(𝑥) and 𝐸𝐹,ℎ(𝑥)

𝐸𝐹,𝑒(𝑥) = 𝐸𝐹,ℎ(𝑥) = −𝑞𝑈,

where 𝑞 is the elementary charge and 𝑈 is an explicitly defined bias.

. Attention

Material under the Zero-Field contact influences computing charge neutrality conditions. Therefore, one
should pay attention to the material (and doping) chosen for the region of this type of contact.

7.7.24 zero_field{ name }
Calling sequence

contacts{ zero_field{ name } }

Properties

• usage: required
• type: character string

Functionality

A name of the contact for referencing it in contact{ }

. Attention

Use of this group is typically not recommended. Quantum regions extending into zero field contacts will
cause carrier densities higher than those in metals and Fermi levels in the range of keV. The cause of this is a
nonphysical way in which zero field contacts are calculated, by enforcing a Neumann zero-field condition at
the contact.

802 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.7.25 zero_field{ bias }
Calling sequence

contacts{ zero_field{ bias } }

Properties

• usage: required
• type: vector of up to 100 real numbers: (𝑟1), (𝑟1, 𝑟2), ldots, (𝑟1, 𝑟2, . . . , 𝑟100)

• values: no constraints

• unit: V

Functionality

Explicitly defined set of values set to both electron and quasi-Fermi levels as minus bias multiplied by the electron
charge. Often it corresponds directly to applied voltage.

7.7.26 long_directory_names
Calling sequence

contacts{ long_directory_names }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

An attribute allowing to use longer names for bias subdirectories, dependent on the number of defined contacts.
If long_directory_names = no then bias subdirectories are enumerated as bias_***** independently of the
numbers of contacts defined.

If long_directory_names = yes: bias subdirectories are named bias_000_001_***_... which could result
in issues with too long file paths for inputs with a large number of contacts.

7.7.27 bias_steps
Calling sequence

contacts{ bias_steps }

Properties

• usage: conditional
• type: integer

• values: 1 ≤ 𝑧 ≤ 999

• default: 𝑧 = 1

• unit: −

7.7. contacts{ } 803

nextnano++ Documentation, Release 1.25.13

Functionality

Defines the number 𝑁 of bias steps (𝑁 − 1 intermediate values of voltages applied to all the contacts) between
explicitly defined values within the bias attribute defined separately for each of the contacts. These values are
linear interpolations of the values defined within the bias vectors. For instance, having contacts{ ohmic{
bias = [0, 10] } } and contacts{ bias_steps = 5 } results in a sweep for biasses: 0, 2, 4, 6, 8, and 10
V (6 bias points) for this specific contact. If other contacts have more explicit bias points defined, e.g., [0, 10,
20] resulting in 11 bias points: 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. Then the contact with bias = [0, 10] will be
swept multiple times repeating the last voltage to provide 6+5 biasses as well. Therefore, it will be swept through
biasses: 0, 2, 4, 6, 8, 10, 10, 10, 10, 10, and 10 V.

� Hint

See file bias_points.log to see the actual bias values used. This file contains the mapping between bias values
and bias index for all bias points.

7.7.28 reuse_previous
Calling sequence

contacts{ reuse_previous }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

It turns on the bias ramping when set to yes. As a result the electrostatic potential and quasi-Fermi levels obtained
within simulations of preceding bias point are used to initialize simulations for the next bias point (set of voltages
for all contacts). If this keyword is used in conjunctions with importing electrostatic potential, the potential is
imported only to initialize the first iteration of the entire sweep.

7.7.29 bias_output_level
Calling sequence

contacts{ bias_output_level }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

• default: 𝑧 = 2

804 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

It controls output for the sweep. All regular outputs are always generated for the last bias point of the entire sweep.
If set to 0, then only convergence outputs and data entering I-V characteristics are included in the output for non-
last bias point. If set to 1, then also all densities, potentials, band edges, and currents are included for non-last bias
points. If set to 2, then all regular outputs are generated for all bias points.

Last update: 02/04/2025

7.8 structure{ }
Calling sequence

structure{ }

Properties

• usage: required
• items: exactly 1

Functionality

definition of device structure (including doping{})

Example

structure{
region{...}

}

Nested keywords

7.8.1 region{ }
Calling sequence

structure{ region{ } }

Properties

• usage: required
• items: minimum 1

Functionality

Defines regions in the simulation domain and manages assigning materials, contacts (boundary conditions), im-
purities, fixed generation rates, and fixed injection rates. Each region is automatically indexed in the ascending
manner as defined in the input file from top to bottom. Material regions, the regions assigning materials, contain
additional indexing related to order of definition of materials in the database file used for the simulation.

Example

structure{
region{...}

}

7.8. structure{ } 805

nextnano++ Documentation, Release 1.25.13

Nested keywords

user_index

Calling sequence

structure{ region{ user_index } }

Properties

• usage: optional
• type: integer

• unit: −
• values: 𝑧 ≥ 0

Functionality

Additional arbitrary index assigned to a region.

Example

structure{
region{

user_index = 1
...

}
}

array_x{ }

Calling sequence

structure{ region{ array_x } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Copies the region object along the x-direction.

Example

structure{
region{

array_x{...}
...

}
}

Nested keywords

• shift

• max

806 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• min

shift

Calling sequence

structure{ region{ array_x{ shift } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines a shift distance in the x-direction used for creating the array of regions.

Example

structure{
region{

array_x{
shift = 11.0
...

}
...

}
}

max

Calling sequence

structure{ region{ array_x{ max } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of regions added in the positive direction of the x-axis.

7.8. structure{ } 807

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

array_x{
shift = 11.0
max = 3

}
...

}
}

min

Calling sequence

structure{ region{ array_x{ min } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of regions added in the negative direction of the x-axis.

Example

structure{
region{

array_x{
shift = 11.0
max = 3
min = 2

}
...

}
}

array_y{ }

Calling sequence

structure{ region{ array_y } }

Properties

• usage: conditional
• items: maximum 1

808 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Copies the region object along the y-direction.

Example

structure{
region{

array_y{...}
...

}
}

Nested keywords

• shift

• max

• min

shift

Calling sequence

structure{ region{ array_y{ shift } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines a shift distance in the y-direction used for creating the array of regions.

Example

structure{
region{

array_y{
shift = 11.0
...

}
...

}
}

7.8. structure{ } 809

nextnano++ Documentation, Release 1.25.13

max

Calling sequence

structure{ region{ array_y{ max } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of regions added in the positive direction of the y-axis.

Example

structure{
region{

array_y{
shift = 11.0
max = 3

}
...

}
}

min

Calling sequence

structure{ region{ array_y{ min } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of regions added in the negative direction of the y-axis.

Example

structure{
region{

array_y{
shift = 11.0
max = 3

(continues on next page)

810 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

min = 2
}
...

}
}

array_z{ }

Calling sequence

structure{ region{ array_z } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Copies the region object along the z-direction.

Example

structure{
region{

array_z{...}
...

}
}

Nested keywords

• shift

• max

• min

shift

Calling sequence

structure{ region{ array_z{ shift } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

7.8. structure{ } 811

nextnano++ Documentation, Release 1.25.13

Functionality

Defines a shift distance in the z-direction used for creating the array of regions.

Example

structure{
region{

array_z{
shift = 11.0
...

}
...

}
}

max

Calling sequence

structure{ region{ array_z{ max } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of regions added in the positive direction of the z-axis.

Example

structure{
region{

array_z{
shift = 11.0
max = 3

}
...

}
}

min

Calling sequence

structure{ region{ array_z{ min } } }

812 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of regions added in the negative direction of the z-axis.

Example

structure{
region{

array_z{
shift = 11.0
max = 3
min = 2

}
...

}
}

array2_x{ }

Calling sequence

structure{ region{ array2_x } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Copies the region of interest and its copies generated by array_x{ } along the x-direction.

Example

structure{
region{

array2_x{...}
array_x{...}
...

}
}

Nested keywords

• shift

• max

7.8. structure{ } 813

nextnano++ Documentation, Release 1.25.13

• min

shift

Calling sequence

structure{ region{ array2_x{ shift } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines a shift distance in the x-direction used for creating the second level array of regions.

Example

structure{
region{

array2_x{
shift = 11.0
...

}
array_x{...}
...

}
}

max

Calling sequence

structure{ region{ array2_x{ max } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of copies added in the positive direction of the x-axis.

814 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

array2_x{
shift = 11.0
max = 3

}
array_x{...}
...

}
}

min

Calling sequence

structure{ region{ array2_x{ min } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of copies added in the negative direction of the x-axis.

Example

structure{
region{

array2_x{
shift = 11.0
max = 3
min = 2

}
array_x{...}
...

}
}

array2_y{ }

Calling sequence

structure{ region{ array2_y } }

Properties

• usage: conditional
• items: maximum 1

7.8. structure{ } 815

nextnano++ Documentation, Release 1.25.13

Functionality

Copies the region of interest and its copies generated by array_y{ } along the y-direction.

Example

structure{
region{

array2_y{...}
array_y{...}
...

}
}

Nested keywords

• shift

• max

• min

shift

Calling sequence

structure{ region{ array2_y{ shift } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines a shift distance in the y-direction used for creating the second level array of regions.

Example

structure{
region{

array2_y{
shift = 11.0
...

}
array_y{...}
...

}
}

816 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

max

Calling sequence

structure{ region{ array2_y{ max } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of copies added in the positive direction of the y-axis.

Example

structure{
region{

array2_y{
shift = 11.0
max = 3

}
array_y{...}
...

}
}

min

Calling sequence

structure{ region{ array2_y{ min } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of copies added in the negative direction of the y-axis.

Example

structure{
region{

array2_y{
shift = 11.0

(continues on next page)

7.8. structure{ } 817

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

max = 3
min = 2

}
array_y{...}
...

}
}

array2_z{ }

Calling sequence

structure{ region{ array2_z } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Copies the region of interest and its copies generated by array_z{ } along the z-direction.

Example

structure{
region{

array2_z{...}
array_z{...}
...

}
}

Nested keywords

• shift

• max

• min

shift

Calling sequence

structure{ region{ array2_z{ shift } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

818 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Defines a shift distance in the z-direction used for creating the second level array of regions.

Example

structure{
region{

array2_z{
shift = 11.0
...

}
array_z{...}
...

}
}

max

Calling sequence

structure{ region{ array2_z{ max } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of copies added in the positive direction of the z-axis.

Example

structure{
region{

array2_z{
shift = 11.0
max = 3

}
array_z{...}
...

}
}

min

Calling sequence

structure{ region{ array2_z{ min } } }

7.8. structure{ } 819

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of copies added in the negative direction of the z-axis.

Example

structure{
region{

array2_z{
shift = 11.0
max = 3
min = 2

}
array_z{...}
...

}
}

repeat_profiles

Calling sequence

structure{ region{ repeat_profiles } }

Properties

• usage: conditional
• type: enumerator

• values: alloy; doping; generation; injection; other

• default: all

Functionality

Specifies which profiles are repeated.

ò Note

To repeat various profiles independently of each other, one have to define separate regions for each of them.

Examples

structure{
region{

repeat_profiles = 'doping alloy other'
array_x{...}

}
}

820 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

contact{ }

Calling sequence

structure{ region{ contact{ } } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Allows assigning/removing boundary conditions for the Poisson equation and drift-diffusion model to/from the
region.

Example

structure{
region{

contact{...}
...

}
}

Nested keywords

• name

• remove

name

Calling sequence

structure{ region{ contact{ name } } }

Properties

• usage: conditional
• type: character string

Functionality

Refers to a set of boundary conditions defined within a global group contacts{ } and assigns them to the region.

Example

structure{
region{

contact{
name = "my_boundary_conditions"

}
...

}
(continues on next page)

7.8. structure{ } 821

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
contacts{

schottky{
name = "my_boundary_conditions"
...

}
}

remove

Calling sequence

structure{ region{ contact{ remove{ } } } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Removes previously defined (if defined) boundary conditions for the Poisson equation and drift-diffusion model
from the region.

Example

structure{
region{

contact{
remove{ }

}
...

}
}

doping{ }

Calling sequence

structure{ region{ doping{ } } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Assigns dopants defined in the global group impurities{ } with selected concentrations.

Examples

822 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

structure{
region{

doping{...}
...

}
}
impurities{

...
}

ò Note

See — FREE — Schrödinger-Poisson - A comparison to the tutorial file of Greg Snider’s code as an example
of use of gaussian1D{ } and gaussian2D{ } for donors and acceptors.

The Figure 7.8.1.1 shows a 3D doping profile that is defined inside a 20 nm x 20 nm x 50 nm cube where the 50
nm are the z direction. The doping rate profile is homogeneous with respect to the (x,y) plane, it only varies along
the z direction.

The doping rate profile is constant between z = 10 nm and z = 25 nm with a rate of 1 x 1018 [1/𝑐𝑚3]. It has
Gaussian shape from z = 25 nm to z = 45 nm (gaussian1D). It is zero between z = 0 nm and z = 10 nm, as well as
between z = 45 nm and z = 50 nm.

Figure 7.8.1.1: Three-dimensional doping profile (image generated by ParaView).

position along z-direction (nm) generation rate (1/cm^3)
0 ~ 10 nm 0.0
10 ~ 25 nm constant (1.0 × 1018)
25 ~ 45 nm Gaussian (center = 25 nm, sigma_z = 6.0 nm)
45 ~ 50 nm 0.0

7.8. structure{ } 823

nextnano++ Documentation, Release 1.25.13

structure{
region{

everywhere{}
binary{ name = GaAs }
contact{ name = contact }

}
region{

binary{ name = GaAs }
cuboid{

x = [0E0, 20E0]
y = [0E0, 20E0]
z = [0E0, 10E0]

}
}
region{

binary{ name = GaAs }
cuboid{

x = [0E0, 20E0]
y = [0E0, 20E0]
z = [10E0, 25E0]

}
doping{

constant{
name = "n-Si-in-GaAs"
conc = 1.0E18

}
}

}
region{

binary{ name = GaAs }
cuboid{

x = [0E0, 20E0]
y = [0E0, 20E0]
z = [25E0, 45E0]

}
doping{

gaussian1D{
name = "n-Si-in-GaAs"
conc = 1.0E18
z = 25
sigma_z = 6.0

}
}

}

output_impurities{}
}
impurities{

donor{
name = "n-Si-in-GaAs"
...

}
}
global{

simulate3D{}
...

}

824 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• remove{ }

• constant{ }

• constant{ name }

• constant{ conc }

• constant{ add }

• linear{ }

• linear{ name }

• linear{ conc }

• linear{ x }

• linear{ y }

• linear{ z }

• linear{ add }

• gaussian1D{ }

• gaussian1D{ name }

• gaussian1D{ conc }

• gaussian1D{ dose }

• gaussian1D{ x }

• gaussian1D{ y }

• gaussian1D{ z }

• gaussian1D{ sigma_x }

• gaussian1D{ sigma_y }

• gaussian1D{ sigma_z }

• gaussian1D{ add }

• gaussian2D{ }

• gaussian2D{ name }

• gaussian2D{ conc }

• gaussian2D{ dose }

• gaussian2D{ x }

• gaussian2D{ y }

• gaussian2D{ z }

• gaussian2D{ sigma_x }

• gaussian2D{ sigma_y }

• gaussian2D{ sigma_z }

• gaussian2D{ add }

• gaussian3D{ }

• gaussian3D{ name }

7.8. structure{ } 825

nextnano++ Documentation, Release 1.25.13

• gaussian3D{ conc }

• gaussian3D{ dose }

• gaussian3D{ x }

• gaussian3D{ y }

• gaussian3D{ z }

• gaussian3D{ sigma_x }

• gaussian3D{ sigma_y }

• gaussian3D{ sigma_z }

• gaussian3D{ add }

• import{ }

• import{ name }

• import{ import_from }

remove{ }

Calling sequence

structure{ region{ doping{ remove{ } } } }

Properties

• usage: optional
• items: no constraints

Functionality

Removes all dopants from a specific region.

Example

structure{
region{

doping{
remove{}

}
...

}
}
impurities{

...
}

constant{ }

Calling sequence

structure{ region{ doping{ constant{ } } } }

826 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: no constraints

Functionality

Defines constant doping profile over the region.

Example

structure{
region{

doping{
constant{

name = "n-Si"
conc = 1.0e18
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}

constant{ name }

Calling sequence

structure{ region{ doping{ constant{ name } } } }

Properties

• usage: required
• type: character string

Functionality

Refers to a dopant definition in impurities{ }.

Example

structure{
region{

doping{
constant{

name = "n-Si"
...

}
}

(continues on next page)

7.8. structure{ } 827

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
}

}
impurities{

donor{
name = "n-Si"
...

}
}

constant{ conc }

Calling sequence

structure{ region{ doping{ constant{ conc } } } }

Properties

• usage: required
• type: real number

• values: [0.0, ...)

• unit: cm−3

Functionality

Defines value dopant concentration.

Example

structure{
region{

doping{
constant{

conc = 1.0e18
...

}
}
...

}
}
impurities{

...
}

constant{ add }

Calling sequence

structure{ region{ doping{ constant{ add } } } }

828 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Choses the mode of assigning doping. If add = yes then the doping in the region is added to already defined
ones. Otherwise, the previously defined doping is replaced.

Example

structure{
region{

doping{
constant{

add = no
...

}
}
...

}
}
impurities{

...
}

linear{ }

Calling sequence

structure{ region{ doping{ linear{ } } } }

Properties

• usage: optional
• items: no constraints

Functionality

Defines linear doping profile along a defined line

Examples

structure{
region{

doping{
linear{

name = "n-Si"
conc = [1.0e18, 2.0e18]
x = [50.0, 100.0]
add = no

}
(continues on next page)

7.8. structure{ } 829

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}
global{

simulate1D{ }
}

structure{
region{

doping{
linear{

name = "n-Si"
conc = [1.0e18, 2.0e18]
x = [50.0, 100.0]
y = [50.0, 100.0]
z = [50.0, 100.0]
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}
global{

simulate3D{ }
}

linear{ name }

Calling sequence

structure{ region{ doping{ linear{ name } } } }

Properties

• usage: required
• type: character string

830 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Refers to a dopant definition in impurities{ }.

Example

structure{
region{

doping{
linear{

name = "n-Si"
...

}
}
...

}
}
impurities{

donor{
name = "n-Si"
...

}
}

linear{ conc }

Calling sequence

structure{ region{ doping{ linear{ conc } } } }

Properties

• usage: required
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: [0.0, ...) for every dimension

• unit: cm−3

Functionality

Defines values of linear dopant profile at the ends of the ends of defined line. The first value corresponds to the
starting point of the line and the second value to the ending point of the line.

Example

structure{
region{

doping{
linear{

conc = [1.0e18, 2.0e18]
...

}
}
...

}
}

(continues on next page)

7.8. structure{ } 831

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

impurities{
...

}

linear{ x }

Calling sequence

structure{ region{ doping{ linear{ x } } } }

Properties

• usage: conditional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• unit: nm

Functionality

Defines x-coordinates of the starting point and ending point of the line, along which the linear distribution of
dopants is defined.

Example

structure{
region{

doping{
linear{

x = [50.0, 100.0]
...

}
}
...

}
}
impurities{

...
}

linear{ y }

Calling sequence

structure{ region{ doping{ linear{ y } } } }

Properties

• usage: conditional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• unit: nm

832 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Defines y-coordinates of the starting point and ending point of the line, along which the linear distribution of
dopants is defined.

Example

structure{
region{

doping{
linear{

x = [50.0, 100.0]
y = [50.0, 100.0]
...

}
}
...

}
}
impurities{

...
}

linear{ z }

Calling sequence

structure{ region{ doping{ linear{ z } } } }

Properties

• usage: conditional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• unit: nm

Functionality

Defines z-coordinates of the starting point and ending point of the line, along which the linear distribution of
dopants is defined.

Example

structure{
region{

doping{
linear{

x = [50.0, 100.0]
y = [50.0, 100.0]
z = [50.0, 100.0]
...

}
}
...

}
(continues on next page)

7.8. structure{ } 833

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
impurities{

...
}

linear{ add }

Calling sequence

structure{ region{ doping{ linear{ add } } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Choses the mode of assigning doping. If add = yes then the doping in the region is added to already defined
ones. Otherwise, the previously defined doping is replaced.

Example

structure{
region{

doping{
linear{

add = no
...

}
}
...

}
}
impurities{

...
}

gaussian1D{ }

Calling sequence

structure{ region{ doping{ gaussian1D{ } } } }

Properties

• usage: optional
• items: no constraints

834 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Defines Gaussian distribution function in one direction, constant in remaining perpendicular directions.

ò Note

This profile corresponds to LSS theory (Lindhard, Scharff, Schiott theory) for doping - Gaussian distribution
of ion implantation.

Examples

structure{
region{

doping{
gaussian1D{

name = "n-Si"
conc = 1.0e18
x = 50.0
sigma_x = 5.0
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}
global{

simulate1D{ }
}

structure{
region{

doping{
gaussian1D{

name = "n-Si"
dose = 1e12
y = 50.0
sigma_y = 5.0
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}

(continues on next page)

7.8. structure{ } 835

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

global{
simulate2D{ }

}

gaussian1D{ name }

Calling sequence

structure{ region{ doping{ gaussian1D{ name } } } }

Properties

• usage: required
• type: character string

Functionality

Refers to a dopant definition in impurities{ }.

Example

structure{
region{

doping{
gaussian1D{

name = "n-Si"
...

}
}
...

}
}
impurities{

donor{
name = "n-Si"
...

}
}

gaussian1D{ conc }

Calling sequence

structure{ region{ doping{ gaussian1D{ conc } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: cm−3

836 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Defines maximum of dopant concentration.

Example

structure{
region{

doping{
gaussian1D{

conc = 1.0e18
...

}
}
...

}
}
impurities{

...
}

gaussian1D{ dose }

Calling sequence

structure{ region{ doping{ gaussian1D{ dose } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: cm−2

Functionality

Defines implantation dose. It is an integrated density of Gaussian function conc = dose / (SQRT(2*pi) * sigma_x
).

� Hint

Typical values range from 1e11 cm-2 to 1e16 cm-2.

Example

structure{
region{

doping{
gaussian1D{

dose = 1.0e12
...

}
}
...

(continues on next page)

7.8. structure{ } 837

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
}
impurities{

...
}

gaussian1D{ x }

Calling sequence

structure{ region{ doping{ gaussian1D{ x } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the x-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian1D{

x = 50.0
...

}
}
...

}
}
impurities{

...
}

gaussian1D{ y }

Calling sequence

structure{ region{ doping{ gaussian1D{ y } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

838 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Defines the y-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian1D{

y = 50.0
...

}
}
...

}
}
impurities{

...
}

gaussian1D{ z }

Calling sequence

structure{ region{ doping{ gaussian1D{ z } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the z-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian1D{

z = 50.0
...

}
}
...

}
}
impurities{

...
}

7.8. structure{ } 839

nextnano++ Documentation, Release 1.25.13

gaussian1D{ sigma_x }

Calling sequence

structure{ region{ doping{ gaussian1D{ sigma_x } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the x-axis.

Example

structure{
region{

doping{
gaussian1D{

x = 50.0
sigma_x = 5.0
...

}
}
...

}
}
impurities{

...
}

gaussian1D{ sigma_y }

Calling sequence

structure{ region{ doping{ gaussian1D{ sigma_y } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the y-axis.

840 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

doping{
gaussian1D{

y = 50.0
sigma_y = 5.0
...

}
}
...

}
}
impurities{

...
}

gaussian1D{ sigma_z }

Calling sequence

structure{ region{ doping{ gaussian1D{ sigma_z } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the z-axis.

Example

structure{
region{

doping{
gaussian1D{

z = 50.0
sigma_z = 5.0
...

}
}
...

}
}
impurities{

...
}

7.8. structure{ } 841

nextnano++ Documentation, Release 1.25.13

gaussian1D{ add }

Calling sequence

structure{ region{ doping{ gaussian1D{ add } } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Choses the mode of assigning doping. If add = yes then the doping in the region is added to already defined
ones. Otherwise, the previously defined doping is replaced.

Example

structure{
region{

doping{
gaussian1D{

add = no
...

}
}
...

}
}
impurities{

...
}

gaussian2D{ }

Calling sequence

structure{ region{ doping{ gaussian2D{ } } } }

Properties

• usage: optional
• items: no constraints

Functionality

Defines Gaussian distribution function in two directions, constant in remaining perpendicular direction.

Examples

structure{
region{

doping{
gaussian2D{

(continues on next page)

842 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

name = "n-Si"
conc = 1.0e18
x = 50.0
y = 50.0
sigma_x = 5.0
sigma_y = 5.0
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}
global{

simulate2D{ }
}

structure{
region{

doping{
gaussian2D{

name = "n-Si"
dose = 1e6
x = 50.0
z = 50.0
sigma_x = 5.0
sigma_z = 5.0
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}
global{

simulate3D{ }
}

7.8. structure{ } 843

nextnano++ Documentation, Release 1.25.13

gaussian2D{ name }

Calling sequence

structure{ region{ doping{ gaussian2D{ name } } } }

Properties

• usage: required
• type: character string

Functionality

Refers to a dopant definition in impurities{ }.

Example

structure{
region{

doping{
gaussian2D{

name = "n-Si"
...

}
}
...

}
}
impurities{

donor{
name = "n-Si"
...

}
}

gaussian2D{ conc }

Calling sequence

structure{ region{ doping{ gaussian2D{ conc } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: cm−3

Functionality

Defines maximum of dopant concentration.

844 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

doping{
gaussian2D{

conc = 1.0e18
...

}
}
...

}
}
impurities{

...
}

gaussian2D{ dose }

Calling sequence

structure{ region{ doping{ gaussian2D{ dose } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: cm−1

Functionality

Defines implantation dose. It is an integrated density of Gaussian function.

Example

structure{
region{

doping{
gaussian2D{

dose = 1.0e6
...

}
}
...

}
}
impurities{

...
}

7.8. structure{ } 845

nextnano++ Documentation, Release 1.25.13

gaussian2D{ x }

Calling sequence

structure{ region{ doping{ gaussian2D{ x } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the x-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian2D{

x = 50.0
y = 50.0
...

}
}
...

}
}
impurities{

...
}

gaussian2D{ y }

Calling sequence

structure{ region{ doping{ gaussian2D{ y } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the y-coordinate of the center of the Gauss distribution.

846 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

doping{
gaussian2D{

y = 50.0
z = 50.0
...

}
}
...

}
}
impurities{

...
}

gaussian2D{ z }

Calling sequence

structure{ region{ doping{ gaussian2D{ z } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the z-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian2D{

z = 50.0
x = 50.0
...

}
}
...

}
}
impurities{

...
}

7.8. structure{ } 847

nextnano++ Documentation, Release 1.25.13

gaussian2D{ sigma_x }

Calling sequence

structure{ region{ doping{ gaussian2D{ sigma_x } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the x-axis.

Example

structure{
region{

doping{
gaussian2D{

x = 50.0
y = 50.0
sigma_x = 5.0
sigma_y = 5.0
...

}
}
...

}
}
impurities{

...
}

gaussian2D{ sigma_y }

Calling sequence

structure{ region{ doping{ gaussian2D{ sigma_y } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the y-axis.

848 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

doping{
gaussian2D{

y = 50.0
z = 50.0
sigma_y = 5.0
sigma_z = 5.0
...

}
}
...

}
}
impurities{

...
}

gaussian2D{ sigma_z }

Calling sequence

structure{ region{ doping{ gaussian2D{ sigma_z } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the z-axis.

Example

structure{
region{

doping{
gaussian2D{

z = 50.0
x = 50.0
sigma_z = 5.0
sigma_x = 5.0
...

}
}
...

}
}
impurities{

...
}

7.8. structure{ } 849

nextnano++ Documentation, Release 1.25.13

gaussian2D{ add }

Calling sequence

structure{ region{ doping{ gaussian2D{ add } } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Choses the mode of assigning doping. If add = yes then the doping in the region is added to already defined
ones. Otherwise, the previously defined doping is replaced.

Example

structure{
region{

doping{
gaussian2D{

add = no
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ }

Calling sequence

structure{ region{ doping{ gaussian3D{ } } } }

Properties

• usage: optional
• items: no constraints

Functionality

Defines Gaussian distribution function in three directions.

850 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

structure{
region{

doping{
gaussian3D{

name = "n-Si"
conc = 1.0e18
x = 50.0
y = 50.0
z = 50.0
sigma_x = 5.0
sigma_y = 5.0
sigma_z = 5.0
add = no

}
}
...

}
}
impurities{

donor{
name = "n-Si"
degeneracy = 2
energy = 0.0058

}
}
global{

simulate3D{ }
}

gaussian3D{ name }

Calling sequence

structure{ region{ doping{ gaussian3D{ name } } } }

Properties

• usage: required
• type: character string

Functionality

Refers to a dopant definition in impurities{ }.

Example

structure{
region{

doping{
gaussian3D{

name = "n-Si"
...

}
}

(continues on next page)

7.8. structure{ } 851

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
}

}
impurities{

donor{
name = "n-Si"
...

}
}

gaussian3D{ conc }

Calling sequence

structure{ region{ doping{ gaussian3D{ conc } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: cm−3

Functionality

Defines maximum of dopant concentration.

Example

structure{
region{

doping{
gaussian3D{

conc = 1.0e18
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ dose }

Calling sequence

structure{ region{ doping{ gaussian3D{ dose } } } }

852 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: −

Functionality

Defines implantation dose. It is an integrated density of Gaussian function.

Example

structure{
region{

doping{
gaussian3D{

dose = 1.0
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ x }

Calling sequence

structure{ region{ doping{ gaussian3D{ x } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the x-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian3D{

x = 50.0
y = 50.0
z = 50.0

(continues on next page)

7.8. structure{ } 853

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
}

}
...

}
}
impurities{

...
}

gaussian3D{ y }

Calling sequence

structure{ region{ doping{ gaussian3D{ y } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the y-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian3D{

x = 50.0
y = 50.0
z = 50.0
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ z }

Calling sequence

structure{ region{ doping{ gaussian3D{ z } } } }

854 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• type: real number

• values: no constraints

• unit: nm

Functionality

Defines the z-coordinate of the center of the Gauss distribution.

Example

structure{
region{

doping{
gaussian3D{

x = 50.0
y = 50.0
z = 50.0
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ sigma_x }

Calling sequence

structure{ region{ doping{ gaussian3D{ sigma_x } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the x-axis.

Example

structure{
region{

doping{
gaussian3D{

x = 50.0
(continues on next page)

7.8. structure{ } 855

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

y = 50.0
z = 50.0
sigma_x = 5.0
sigma_y = 5.0
sigma_z = 5.0
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ sigma_y }

Calling sequence

structure{ region{ doping{ gaussian3D{ sigma_y } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the y-axis.

Example

structure{
region{

doping{
gaussian3D{

x = 50.0
y = 50.0
z = 50.0
sigma_x = 5.0
sigma_y = 5.0
sigma_z = 5.0
...

}
}
...

}
}
impurities{

...
}

856 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

gaussian3D{ sigma_z }

Calling sequence

structure{ region{ doping{ gaussian3D{ sigma_z } } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• unit: nm

Functionality

Defines standard deviation of the Gauss distribution along the z-axis.

Example

structure{
region{

doping{
gaussian3D{

x = 50.0
y = 50.0
z = 50.0
sigma_x = 5.0
sigma_y = 5.0
sigma_z = 5.0
...

}
}
...

}
}
impurities{

...
}

gaussian3D{ add }

Calling sequence

structure{ region{ doping{ gaussian3D{ add } } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

7.8. structure{ } 857

nextnano++ Documentation, Release 1.25.13

Functionality

Choses the mode of assigning doping. If add = yes then the doping in the region is added to already defined
ones. Otherwise, the previously defined doping is replaced.

Example

structure{
region{

doping{
gaussian3D{

add = no
...

}
}
...

}
}
impurities{

...
}

import{ }

Calling sequence

structure{ region{ doping{ import{ } } } }

Properties

• usage: optional
• items: no constraints

Functionality

Imports generation profile from an external file and adds it to already defined (if defined) profiles.

Example

structure{
region{

doping{
import{

name = "n-Si"
import_from = "importing_dopant_profile"

}
}
...

}
}
impurities{

donor{
name = "n-Si"
...

}
}

(continues on next page)

858 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

import{
file{

name = "importing_dopant_profile"
filename = "precious_dopant_profile.dat"
...

}
}

import{ name }

Calling sequence

structure{ region{ doping{ import{ name } } } }

Properties

• usage: required
• type: character string

Functionality

Refers to a dopant definition in impurities{ }.

Example

structure{
region{

doping{
import{

name = "n-Si"
...

}
}
...

}
}
impurities{

donor{
name = "n-Si"
...

}
}
import{

...
}

import{ import_from }

Calling sequence

structure{ region{ doping{ import{ import_from } } } }

7.8. structure{ } 859

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: character string

Functionality

Reference to imported data in import{ }.

Example

structure{
region{

doping{
import{

import_from = "importing_dopant_profile"
...

}
}
...

}
}
impurities{

...
}
import{

file{
name = "importing_dopant_profile"
filename = "precious_dopant_profile.dat"
...

}
}

7.8.2 output_region_index{ }
Calling sequence

structure{ output_region_index{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs last index of the regions and material region assigned to each grid point. Each region has associated
number ordered from top to bottom as written in the input file. In the case of overlapping regions, the number of
the last defined region is taken into account. Material region is a region which specifies a material.

Examples

structure{
output_region_index{ }

}

860 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_region_index{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_region_index{

boxes = yes
}

}

7.8.3 output_material_index{ }
Calling sequence

structure{ output_material_index{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs material index at each grid point. Each material has associated index assigned based on the order of
materials defined in the database file used for the simulation. The material on top of the file has the index 1
assigned.

Examples

structure{
output_material_index{ }

}

7.8. structure{ } 861

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_material_index{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_material_index{

boxes = yes
}

}

7.8.4 output_user_index{ }
Calling sequence

structure{ output_user_index{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs last user-defined index for each grid point.

Examples

structure{
output_user_index{ }

}

862 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_user_index{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_user_index{

boxes = yes
}

}

7.8.5 output_contact_index{ }
Calling sequence

structure{ output_contact_index{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs contact index for each grid point.

Examples

structure{
output_contact_index{ }

}

7.8. structure{ } 863

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_contact_index{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_contact_index{

boxes = yes
}

}

7.8.6 output_alloy_composition{ }
Calling sequence

structure{ output_alloy_composition{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs alloy composition for each grid point

Examples

structure{
output_alloy_composition{ }

}

864 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_alloy_composition{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_alloy_composition{

boxes = yes
}

}

7.8.7 output_impurities{ }
Calling sequence

structure{ output_impurities{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs doping concentration for each grid point in units of [1018/𝑐𝑚3]

Examples

structure{
output_impurities{ }

}

7.8. structure{ } 865

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_impurities{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_impurities{

boxes = yes
}

}

7.8.8 output_generation{ }
Calling sequence

structure{ output_generation{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs generation rate for each grid point in units of [1018/(𝑐𝑚3𝑠)].

Examples

structure{
output_generation{ }

}

866 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_generation{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_generation{

boxes = yes
}

}

7.8.9 output_injection{ }
Calling sequence

structure{ output_injection{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs injection rate for each grid point in units of [1018/(𝑐𝑚3𝑠)].

Examples

structure{
output_injection{ }

}

7.8. structure{ } 867

nextnano++ Documentation, Release 1.25.13

Nested keywords

• boxes

boxes

Calling sequence

structure{ output_injection{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

structure{
output_injection{

boxes = yes
}

}

7.8.10 structure{ region{} } - generation & electron injection

• injection{}

• Specifications of generation rate profile

• Print out

• Remove

– Example

• 3D

Specifications that define information on generation and injection rates.

injection{}

Injection refers here to explicit electron injection e.g. by electron beam (no holes for now). It used the same
keywords as generation. Similarly to generation, this only has an effect when the current equations are solved.

. Attention

The injection{} group can be used in exactly the same way as the generation{} group.

868 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Specifications of generation rate profile

The generation rate profile is assiged to a certain region. The following syntaxes are put under structure{
region{ generation{} } }.

• constant

• linear

• gaussian1D

• gaussian2D

• gaussian3D

• import (import generation rate profile from external file)

constant
constant generation rate over the region

Example

constant{
rate = 1.0e18 # generation rate [1/cm3s] (applies␣

→˓to 1D, 2D and 3D)
add = yes # (optional) yes or no (default =␣

→˓yes)
}

linear
linearly varying generation rate along the line from start to end point

Example

linear{
rate = [1e18,2e18] # start and end value of generation␣

→˓rate [1/cm3s]
x = [50.0,100.0] # x coordinates of start and end␣

→˓point [nm]
y = [50.0,100.0] # y coordinates of start and end␣

→˓point [nm] (2D or 3D only)
z = [50.0,100.0] # z coordinates of start and end␣

→˓point [nm] (3D only)
This defines a generation rate␣

→˓profile, which varies linearly along the line from the point (50,
→˓50,50) to the point (100,100,100)

→˓# and stays constant in the perpendicular planes.
add = yes # (optional) yes or no (default =␣

→˓yes)
}

gaussian1D
Gaussian distribution function in one direction, constant in perpendicular directions

Example

gaussian1D{ # Gaussian distribution function in␣
→˓one direction, constant in perpendicular directions
rate = 1.0e18 # maximum of generation rate [1/cm3s]
dose = 1e12 # dose of implant [cm-2] (integrated␣

→˓density of Gaussian function), typical ranges are from 1e11 to␣
→˓1e16.

(continues on next page)

7.8. structure{ } 869

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

Either rate or dose has to be␣
→˓specified, but not both simultaneously.

rate = dose / (SQRT(2*pi) * sigma_
→˓x)
x = 50.0 # x coordinate of Gauss center (ion

→˓'s projected range Rp, i.e. the depth where most ions stop) [nm]
sigma_x = 5.0 # standard deviation in x direction␣

→˓(statistical fluctuation of Rp) [nm]
y = ... # (2D or 3D only)
sigma_y = ... #
z = ... # (3D only)
sigma_z = ... #

Only one out of x, y, z and the␣
→˓appropriate standard deviation (sigma) has to be specified.
add = yes # (optional) yes or no (default =␣

→˓yes)
}

ò Note

This profile corresponds to LSS theory (Lindhard, Scharff, Schiott theory) for doping - Gaus-
sian distribution of ion implantation.

gaussian2D
Gaussian distribution function in two directions, constant in perpendicular direction (2D or
3D only)

Example

gaussian2D{ # Gaussian distribution function in␣
→˓two directions, constant in perpendicular direction (2D or 3D only)
rate = 1.0e18 # maximum of generation rate [1/cm3s]
dose = 1.0 # dose of implant [cm-1] (integrated␣

→˓density of 2D Gaussian function)
Either rate or dose has to be␣

→˓specified, but not both simultaneously.
x = 50.0 # x coordinate of Gauss center [nm]
sigma_x = 5.0 # standard deviation in x direction␣

→˓[nm]
y = 50.0 # y coordinate of Gauss center [nm]
sigma_y = 5.0 # standard deviation in y direction␣

→˓[nm]
z = ... # (3D only)
sigma_z = ... #

Exactly two out of x, y, z and the␣
→˓appropriate standard deviations (sigma) have to be specified.
add = yes # (optional) yes or no (default =␣

→˓yes)
}

gaussian3D
Gaussian distribution function in three directions (3D only)

Example

gaussian3D{ # Gaussian distribution function in␣
(continues on next page)

870 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓three directions (3D only)
rate = 1.0e18 # maximum of generation rate in [1/

→˓cm3s]
dose = 1.0 # dose of implant [dimensionless]␣

→˓(integrated density of 3D Gaussian function)
x = 50.0 # x coordinate of Gauss center [nm]
sigma_x = 5.0 # standard deviation in x direction␣

→˓[nm]
y = 50.0 # y coordinate of Gauss center [nm]
sigma_y = 5.0 # standard deviation in y direction␣

→˓[nm]
z = 50.0 # z coordinate of Gauss center [nm]
sigma_z = 5.0 # standard deviation in z direction␣

→˓[nm]
All three x, y, z and the␣

→˓appropriate standard deviations (sigma) have to be specified.
add = yes # (optional) yes or no (default =␣

→˓yes)
}

import
import generation profile from external file

import{ # import␣
→˓generation profile from external file.
import_from = "import_generation_profile" # reference to␣

→˓imported data in import{ }. The file being imported must have␣
→˓exactly one data component.
}

Print out

These generation rate profile can be printed out by output_generation{} under structure{ }:

output_generation{}

structure{
output_generation{ # output generation rate for each␣

→˓grid point in units of [10^18/(cm3 s)]
boxes = yes/no # (optional)

}
}

Remove

It is also possible to remove a generation rate from a specific region.

remove{}

structure{
region{

generation{ remove{} } # remove generation rate␣
→˓from this region, to keep certain regions free from generation rate.

} # region
} # structure

7.8. structure{ } 871

nextnano++ Documentation, Release 1.25.13

ò Note

doping{} and generation{} is always additive per default (add = yes) (unless import is different), i.e. each
profile adds to the already existing dopants/fixed charges/generation at a given point. At the same time, using
remove{}, all species of the already existing doping or generation concentrations can be removed. However,
there is also the problem that remove{} removes all species of dopants/fixed charges at a given point. Thus,
removing e.g. only donors but not acceptors is difficult. This problem is solved by the new “add = yes/no”
flag, which the user can specify for each profile (and thus for the species of that profile), whether the profile
should add to (which is the default) or replace the already existing concentration of the profile species.

For import{ }, this flag has not been implemented yet.

Example

3D

Figure 7.8.10.1 shows a 3D generation profile that is defined inside a 20 nm x 20 nm x 50 nm cube where the 50
nm are the z direction. The generation rate profile is homogeneous with respect to the (x,y) plane, it only varies
along the z direction.

Figure 7.8.10.1: Three-dimensional generation rate profile. (Image generated by ParaView.)

The generation rate profile is constant between z = 10 nm and z = 25 nm with a rate of 1 x 1018 [1/(𝑐𝑚3𝑠)]. It has
Gaussian shape from z = 25 nm to z = 45 nm (gaussian1D). It is zero between z = 0 nm and z = 10 nm, as well as
between z = 45 nm and z = 50 nm.

872 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

z = 0 ~ 10
nm

z = 10 ~ 25 nm z = 25 ~ 45 nm z = 45 ~ 50
nm

generation rate
[1/(𝑐𝑚3𝑠)]

0.0 constant (1.0 ×
1018)

Gaussian (center = 25 nm, 𝜎𝑧 =
6.0 nm)

0.0

Here is the structure part of the input file that generates the above generation profile.

structure{
output_generation{} # output generation rate for each grid point in␣

→˓units of [10^18/(cm3 s)]

region{ # default material
everywhere{}
binary{ name = GaAs }
contact{ name = contact }

}
region{

binary{ name = GaAs }
cuboid{

x = [0E0, 20E0]
y = [0E0, 20E0]
z = [0E0, 10E0]

}
}
region{

binary{ name = GaAs }
cuboid{

x = [0E0, 20E0]
y = [0E0, 20E0]
z = [10E0, 25E0]

}
generation{

constant{
rate = 1.0E18 # generation rate [1/cm3s] (applies to 1D, 2D and␣

→˓3D)
}

}
}
region{

binary{ name = GaAs }
cuboid{

x = [0E0, 20E0]
y = [0E0, 20E0]
z = [25E0, 45E0]

}
generation{

gaussian1D{
rate = 1.0E18 # maximum of generation rate [1/cm3s]
z = 25 # z coordinate of Gauss center (ion's projected␣

→˓range Rp, i.e. the depth where most ions stop) [nm]
sigma_z = 6.0 # root mean square deviation in z direction␣

→˓(statistical fluctuation of Rp) [nm]
}

}
}

}<>

7.8. structure{ } 873

nextnano++ Documentation, Release 1.25.13

7.8.11 structure{ region{ integrate{ } } }
integrate{}

spatial integration of profiles in the region.

Example

integrate{ # spatial integration of profiles in this␣
→˓region.

electron_density{} # integrate electron density.
hole_density{} # integrate hole density.
ionized_donor_density{} # integrates density of ionized donors
ionized_acceptor_density{} # integrates density of ionized acceptors
piezo_density{} # integrate piezo charge density.
pyro_density{} # integrate pyro charge density.
polarization_density{} # integrate the polarization charges␣

→˓density. (= piezo + pyro)
fixed_charge_density{} # integrates density of fixed charges.
label = "channel" # (optional) defines meaningful label for␣

→˓columns in output files.
If not defined, the number of the␣

→˓region is taken as a label.
}

ò Note

Due to the finite descretization of the space, it is advised to define the region for integration slightly larger than
the region of actual interest, especially if there is a significantly high density at the boundaries of the integration
region.

7.8.12 structure{ region{} } - assigning materials
Binary, ternary and quaternary materials are possible, with several choices of alloy functions. Depending on the
dimension of the simulation domain, different options are available.

binary{}

binary material

Example

binary{
name = "GaAs" # binary material name for this region

}

ternary_constant{}

ternary material with constant alloy profile

Example

ternary_constant{
name = "Al(x)Ga(1-x)As" # ternary material name for this region with␣

→˓constant alloy profile
alloy_x = 0.2 # x content of the alloy (minimum value is 0.0,␣

→˓maximum value is 1.0)
}

874 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

ternary_linear{}

ternary material name which varies linearly along the line from start to end point

Example

ternary_linear{
name = "In(x)Al(1-x)As" # ternary material name for this region with␣

→˓linear alloy profile
alloy_x = [0.8, 0.2] # start and end value of x content (minimum value␣

→˓is 0.0, maximum value is 1.0)
x = [75.0, 125.0] # x coordinates of start and end point [nm]
y = [10.0, 20.0] # y coordinates of start and end point [nm] (2D␣

→˓or 3D only)
z = [10.0, 20.0] # z coordinates of start and end point [nm] (3D␣

→˓only)
This defines an alloy profile, which varies␣

→˓linearly along the line from the point (75,10,10) to the point (125,20,20)
and stays constant in the perpendicular planes.

}

(3D quantum dot)

ternary_pyramid{}

ternary material name with pyramidal alloy profile

Example

ternary_pyramid{ # (e.g. for InGaAs quantum dots) starting point␣
→˓and direction (3D only)

name = "In(x)Ga(1-x)As" # ternary material name for this region with␣
→˓pyramidal alloy profile

alloy_x = [0.28, 0.80] # c_{min} and c_{max} value of x content (minimum␣
→˓value is 0.0, maximum value is 1.0)

vary alloy concentration from apex/axis x = 0.
→˓80 (In0.80Ga0.20As)

to plane through apex perpendicular to axis x =␣
→˓0.28 (In0.28Ga0.72As) (see figure below)

x = [20.0, 0] # x coordinate of apex and x component of axis␣
→˓direction [nm]

y = [20.0, 0] # y coordinate of apex and y component of axis␣
→˓direction [nm]

z = [11.0, 1] # z coordinate of apex and z component of axis␣
→˓direction [nm]

apex located at point (20.0,20.0,11.0) (top of␣
→˓inverted pyramid)

direction of center axis (0,0,1), i.e. along z␣
→˓axis

The profile is symmetric with respect to the␣
→˓inverse of the direction of the center axis,

i.e. (0,0,1) will lead to the same pyramidal␣
→˓profile as (0,0,-1).
}

7.8. structure{ } 875

nextnano++ Documentation, Release 1.25.13

ò Note

The indium content is given by the following formula, which considers an additional lateral variation of the
indium content:

𝑐 = 𝑐𝑚𝑖𝑛 + (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) cos
2 𝜑

where 𝜑 is the angle to the center axis. The formula is based on the model proposed by Tersoff (N. Liu et al.,
PRL 84, 334 (2000)). For simplicity the alloy profile is still isotropic around the center axis of the quantum dot.
The indium content depends solely on the angle to the center axis, with high indium content for small angles
as indicated by the light regions in the figure shown below.

(3D quantum dot)

ternary_trumpet{}

ternary material with “trumpet” alloy profile

Example

ternary_trumpet{ # (e.g. for InGaAs quantum dots) starting point␣
→˓and direction (3D only)

name = "In(x)Ga(1-x)As" # ternary material name for this region with
→˓"trumpet" alloy profile

alloy_x = [0.2, 0.5] # :math:`c_{min}` and :math:`c_{max}` value of x␣
→˓content (minimum value is 0.0, maximum value is 1.0)

x = [20.0, 0] # x coordinate of apex and x component of axis␣
→˓direction [nm]

y = [20.0, 0] # y coordinate of apex and y component of axis␣
→˓direction [nm]

z = [11.0, 1] # z coordinate of apex and z component of axis␣
→˓direction [nm]

apex located at point (20.0,20.0,11.0) (top of␣
→˓inverted pyramid)

direction of center axis (0,0,1), i.e. along z␣
→˓axis

The profile is symmetric with respect to the␣
→˓inverse of the direction of the center axis,

i.e. (0,0,1) will lead to the same trumpet␣
→˓profile as (0,0,-1).

z0 = 1.25 # parameter to vary the shape of the alloy␣
→˓profile (minimum value is 1e-10)

rho0 = 0.6 # parameter to vary the shape of the alloy␣
→˓profile (minimum value is 1e-10)
}

ò Note

The indium content is given by the formula:

𝑐 = 𝑐𝑚𝑖𝑛 + (𝑐𝑚𝑎𝑥 − 𝑐𝑚𝑖𝑛) exp
[︁
(−
√︀
𝑥2 + 𝑦2 exp(−𝑧1/𝑧0))/𝜌0

]︁
The formula is based on the more refined model proposed by Migliorato (M.A. Migliorato et al., PRB 65,

876 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

115316 (2002)). This profile resembles the horn of a trumpet and is thus called ‘trumpet’. The maximum
indium concentration is on the center axis of the quantum dot. The parameters z0 and rho0 can be used to vary
the shape of the alloy profile while keeping the average indium content fixed.

(3D quantum dot)

ternary_import{ }

ternary material which uses imported alloy profile

Example

ternary_import{
name = "In(x)Al(1-x)As" # ternary material name for this␣

→˓region which uses imported alloy profile
import_from = "import_alloy_profile1D" # reference to imported data in␣

→˓``import{ }``. The imported profile must have exactly one data component (x).
}

quaternary_import{ }

quaternary material which uses imported alloy profile

Example

quaternary_import{
name = "Al(x)Ga(y)In(1-x-y)As" # quaternary material name for this␣

→˓region which uses imported alloy profile
import_from = "import_alloy_profile1D" # reference to imported data in import

→˓{ }. The imported profile must have exactly two data components (x,y).
}

quinternary_import{ }

quinternary material which uses imported alloy profile

Example

quinternary_import{
... # analogous for quaternaries:

}

quaternary_constant{}

quaternary material with constant alloy profile

Example

quaternary_constant{
name = "Al(x)Ga(y)In(1-x-y)As" # quaternary material name for this␣

→˓region with constant alloy profile
alloy_x = 0.2 # x content of the alloy (minimum value␣

→˓is 0.0, maximum value is 1.0)
alloy_y = 0.5 # y content of the alloy (minimum value␣

(continues on next page)

7.8. structure{ } 877

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓is 0.0, maximum value is 1.0)
}

ò Note

For quaternaries of type AxByC1-x-yH, 𝑥+ 𝑦 ≤ 1 must hold.

The interpolation of AxByC1-x-yH is done according to eq. (E.10) in PhD thesis of T. Zibold apart from
changes in sign of bowing parameters. The interpolation of AxB1-xCyD1-y is done according to eq. (E.15) in
PhD thesis of T. Zibold apart from changes in sign of bowing parameters.

quaternary_linear{}

quaternary material with linear alloy profile

Example

quaternary_linear{
name = "Al(x)Ga(y)In(1-x-y)As" # quaternary material name for this region␣

→˓with linear alloy profile
alloy_x = [0.2, 0.5] # start and end value of x content (minimum␣

→˓value is 0.0, maximum value is 1.0)
alloy_y = [0.1, 0.3] # start and end value of y content (minimum␣

→˓value is 0.0, maximum value is 1.0)
x = [20.0, 20.0] # x coordinates of start and end point [nm]
y = [20.0, 20.0] # y coordinates of start and end point [nm]␣

→˓(2D or 3D only)
z = [11.0, 20.0] # z coordinates of start and end point [nm]␣

→˓(3D only)
}

quaternary_pyramid{}

quaternary material with pyramid alloy profile

Example

quaternary_pyramid{ # (e.g. for InGaAs quantum dots) (3D only)
name = "Al(x)Ga(y)In(1-x-y)As" # quaternary material name for this region␣
→˓with pyramidal alloy profile
alloy_x = [0.2, 0.5] # minimum and maximum value of x content
alloy_y = [0.1, 0.3] # minimum and maximum value of y content
x = [20.0, 0] # x coordinate of apex and x component of␣
→˓axis direction [nm]
y = [20.0, 0] # y coordinate of apex and y component of␣
→˓axis direction [nm]
z = [11.0, 1] # z coordinate of apex and z component of␣
→˓axis direction [nm]

apex located at point (20.0,20.0,11.0) (top␣
→˓of inverted pyramid)

direction of center axis (0,0,1), i.e.␣
→˓along z axis

The profile is symmetric with respect to␣
→˓the inverse of the direction of the center axis,

i.e. (0,0,1) will lead to the same␣
→˓pyramidal profile as (0,0,-1).
}

878 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

quaternary_trumpet{}

quaternary material with “trumpet” alloy profile

Example

quaternary_trumpet{ # (e.g. for InGaAs quantum dots) (3D only)
name = "Al(x)Ga(y)In(1-x-y)As" # quaternary material name for this region␣

→˓with "trumpet" alloy profile
alloy_x = [0.2, 0.5] # minimum and maximum value of x content
alloy_y = [0.1, 0.3] # minimum and maximum value of y content
x = [20.0, 0] # x coordinate of apex and x component of␣

→˓axis direction [nm]
y = [20.0, 0] # y coordinate of apex and y component of␣

→˓axis direction [nm]
z = [11.0, 1] # z coordinate of apex and z component of␣

→˓axis direction [nm]
apex located at (20.0,20.0,11.0) (top␣

→˓of inverted pyramid)
direction of center axis (0,0,1), i.e.␣

→˓along z axis
The profile is symmetric with respect␣

→˓to the inverse of the direction of the center axis,
i.e. (0,0,1) will lead to the same␣

→˓trumpet profile as (0,0,-1).
z0 = 1.25 # parameter to vary the shape of the alloy␣

→˓profile (minimum value is 1e-10)
rho0 = 0.6 # parameter to vary the shape of the alloy␣

→˓profile (minimum value is 1e-10)
}

analogous for quinternaries:

quinternary_constant{}

quinternary_linear{}

quinternary_pyramid{}

quinternary_trumpet{}

7.8.13 structure{ region{} } - shape objects

• 1D simulations

– line{}

• 2D simulations

– rectangle{}

– circle{}

– trapezoid{}

– semiellipse{}

– triangle{}

– polygon{}

– regular_polygon{}

7.8. structure{ } 879

nextnano++ Documentation, Release 1.25.13

– hexagon{}

• 3D simulations

– cuboid{}

– sphere{}

– cylinder{}

– obelisk{}

– hexagon_obelisk{}

– semiellipsoid{}

– cone{}

– polygonal_prism{}

– regular_prism{}

– hexagonal_prism{}

– polygonal_pyramid{}

– regular_pyramid{}

– hexagonal_pyramid{}

– pyramid{}

Every region needs to have a certain shape, which can be defined by several objects. It consists of a certain material
and/or contact, and it can have a doping profile.

Any subsequently defined region overwrites previously defined ones in the overlapping area. For exclusive prop-
erties such as material and contact, this implies a substitution of the old value.

Concerning doping, the new profile is added to any previously defined one.

Geometric objects may also be defined such that they are partially, mostly, or completely outside of the simulation
region. Only the parts of structures which are inside of the simulation region will be used, everything else is
ignored.

The following structures are supported. These are put under structure{ region{} }.

1D simulations

line{}

1D object. a line from start to end point along the specified direction

Example

line{ # 1D object
x = [10.0, 20.0] # a line from 10 nm to 20 nm along␣

→˓the x direction
}

2D simulations

rectangle{}

2D object, a rectangle defined by two lines along the x and y directions

Example

880 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

rectangle{ # 2D object, a rectangle defined by␣
→˓two lines along the x and y directions

x = [10.0, 20.0] # a line from 10 nm to 20 nm along␣
→˓the x direction

y = [0.0, 5.0] # a line from 0 nm to 5 nm along␣
→˓the y dire

circle{}

2D object, a circle is defined by its center and radius

Example

circle{ # 2D object, a circle␣
→˓is defined by its center and radius

center{ x = 10.5 y = 14.0 } # same as for regular_
→˓polygon

radius = 10.0 # radius
}

trapezoid{}

2D object e.g. a simple trapezoid along the x axis

Example

trapezoid{ # 2D object e.g. a simple trapezoid␣
→˓along the x axis

base_x = [5, 15] # base line extends in x direction␣
→˓from 5 to 15 nm

base_y = [25, 25] # base line has a constant y␣
→˓coordinate y = 25 nm

top_x = [8, 12] # top line extends in x direction␣
→˓from 8 to 12 nm

top_y = [30, 30] # top line has a constant y␣
→˓coordinate y = 30 nm
}

ò Note

Exactly one of the elements base_x and base_y has to be set by two equal numbers to define the base line.
The same holds for top_x and top_y to define the top line.

semiellipse{}

2D object, e.g. a simple semiellipse along the x axis

Example

semiellipse{ # 2D object, e.g. a simple␣
→˓semiellipse along the x axis

base_x = [45, 55] # extension of base plane in x␣
→˓direction, i.e. from 45 to 55 nm.

base_y = [5, 5] # base line at y = 5 nm
top = [50, 15] # top coordinate of the semiellipse␣

→˓(x,y) = (50,15) in units of [nm]
}

7.8. structure{ } 881

nextnano++ Documentation, Release 1.25.13

ò Note

Exactly one of the elements base_x, and base_y has to be set by two equal numbers to define the base line.

triangle{}

2D object, a triangle defined by its 3 vertices

Example

triangle{ # 2D object, a triangle defined␣
→˓by its 3 vertices.

vertex{ x = 10.5 y = 14.0 } # a vertex P is defined by its␣
→˓x and y coordinates: P=(x,y).

vertex{ x = 0.0 y = 0.0 } #
vertex{ x = 5.0 y = 10.0 } #

}

polygon{}

2D object, a polygon defined by its vertices. If the first and the last defined vertex are not identical, then they are
joined with a line.

Example

polygon{ # 2D object, a polygon defined␣
→˓by its vertices. If the first and the last defined vertex are not␣
→˓identical, then they are joined with a line.

vertex{ x = 10.5 y = 14.0 } # a vertex P is defined by its␣
→˓x and y coordinates: P=(x,y). Multiple vertices can and must be␣
→˓defined for a polygon.

Vertices must be ordered␣
→˓either clockwise or counterclockwise, otherwise the behavior during␣
→˓structure generation will be undefined.
}

regular_polygon{}

2D object, a polygon with equal angles and equal side lengths. It is defined by its center, one vertex and the number
of facets.

Example

regular_polygon{ # 2D object, a polygon with␣
→˓equal angles and equal side lengths. It is defined by its center, one␣
→˓vertex and the number of facets.

center{ x = 10.5 y = 14.0 } # The center point M is defined␣
→˓by its x and y coordinates: M=(x,y).

corner{ x = 20.0 y = 30.0 } # A corner vertex P is defined␣
→˓by its x and y coordinates: P=(x,y). Only one corner must be␣
→˓specified. By modifying the corner coordinates the whole polygon can␣
→˓easily be rotated around its center.

number_of_facets = 7 # number of facets (= number of␣
→˓vertices), must be >= 3
}

882 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

hexagon{}

2D object, a polygon with equal angles and equal side lengths and 6 facets. It is defined by its center and one corner
vertex.

Example

hexagon{ # 2D object, a polygon with␣
→˓equal angles and equal side lengths and 6 facets. It is defined by␣
→˓its center and one corner vertex.

center{ x = 10.5 y = 14.0 } # same as for regular_polygon
corner{ x = 20.0 y = 30.0 } # same as for regular_polygon

}

3D simulations

cuboid{}

3D object, a cuboid defined by three lines along the x, y and z directions

Example

cuboid{ # 3D object, a cuboid defined by␣
→˓three lines along the x, y and z directions

x = [10.0, 20.0] # a line from 10 nm to 20 nm along␣
→˓the x direction

y = [0.0, 5.0] # a line from 0 nm to 5 nm along␣
→˓the y direction

z = [0.0, 5.0] # a line from 0 nm to 5 nm along␣
→˓the z direction
}

sphere{}

3D object, a sphere is defined by its center and radius

Example

sphere{ # 3D object, a sphere␣
→˓is defined by its center and radius

center{ x = 10.5 y = 14.0 z = 1.0 } # similar as for circle
radius = 10.0 # radius

}

cylinder{}

3D object, e.g. a cylinder with a freely oriented axis

Example

cylinder{ # 3D object, e.g. a cylinder␣
→˓with a freely oriented axis

axis_start = [50.0, 50.0, 30.0] # coordinates of starting␣
→˓point of cylinder axis

axis_end = [50.0, 50.0, 60.0] # coordinates of ending point␣
→˓of cylinder axis

radius = 20.0 # radius of cylinder
}

7.8. structure{ } 883

nextnano++ Documentation, Release 1.25.13

obelisk{}

3D object, e.g. an obelisk parallel to the (x,y) plane with top below bottom

Example

obelisk{ # 3D object, e.g. an obelisk␣
→˓parallel to the (x,y) plane with top below bottom

base_x = [11, 19] # extension of base plane in x␣
→˓direction, i.e. from 11 to 19 nm.

base_y = [9, 21] # extension of base plane in y␣
→˓direction, i.e. from 9 to 21 nm.

base_z = [10, 10] # base plane at z = 10 nm
top_x = [12, 18] # extension of top plane in x␣

→˓direction, i.e. from 12 to 18 nm.
top_y = [11, 19] # extension of top plane in y␣

→˓direction, i.e. from 11 to 19 nm.
top_z = [22, 22] # top plane at z = 22 nm

}

ò Note

Exactly one of the elements base_x, base_y and base_z has to be set by two equal numbers to define the
base plane. The same holds for top_x, top_y and top_z to define the top line.

hexagon_obelisk{}

3D object, an obelisk with its base and top planes given by hexagons

Example

hexagon_obelisk{ # 3D object, an obelisk with its␣
→˓base and top planes given by hexagons

(continues on next page)

884 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

... (same as obelisk to define position, orientation and␣
→˓extension of object)

permute = yes/no # (optional) switch between two␣
→˓possible orientations of the hexagon within the rectangularly defined␣
→˓planes
}

semiellipsoid{}

3D object, e.g. a semiellipsoid parallel to the (y,z) plane with top below bottom

Example

semiellipsoid{ # 3D object, e.g. a␣
→˓semiellipsoid parallel to the (x, y) plane with top below bottom

base_x = [9, 21] # extension of base plane in x␣
→˓direction, i.e. from 9 to 21 nm.

base_y = [11, 20] # extension of base plane in y␣
→˓direction, i.e. from 11 to 20 nm.

base_z = [10, 10] # base plane at z = 10 nm
top = [11, 15, 24] # top coordinate of the␣

→˓semiellipsoid (x,y,z) = (11,15,24) in units of [nm]
}

ò Note

Exactly one of the elements base_x, base_y, and base_z has to be set by two equal numbers to define the
base plane.

7.8. structure{ } 885

nextnano++ Documentation, Release 1.25.13

cone{}

3D object, e.g. a cone parallel to the (x,z) plane

Example

cone{ # 3D object, e.g. a cone parallel␣
→˓to the (x,z) plane

base_x = [5, 20] # extension of base plane in x␣
→˓direction, i.e. from 5 to 20 nm.

base_y = [20, 20] # base plane at y = 20 nm
base_z = [7, 19] # extension of base plane in z␣

→˓direction, i.e. from 7 to 19 nm.
top = [10, 30, 11] # top coordinate of the cone (x,y,

→˓z) = (10,30,11) in units of [nm]
diminution = 0.0 # (optional) minimum value is 0.0␣

→˓(i.e. cone), maximum value is 1.0 (i.e. cylinder)
diminution = 0.5 corresponds to

→˓"half diameter of base diameter", default is 0.0 (i.e. cone)
}

ò Note

Exactly one of the elements base_x, base_y, and base_z has to be set by two equal numbers to define the
base plane.

polygonal_prism{}

3D object (= 2D polygon with extension into the perpendicular direction; vertices define the circumference of the
prism.)

Example

886 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

polygonal_prism{ # 3D object (= 2D polygon with␣
→˓extension into the perpendicular direction; vertices define the␣
→˓circumference of the prism.)

z = [0, 10] # define the extent in the␣
→˓desired height direction. Here: Height is defined with respect to z␣
→˓direction.

vertex{ x = 10.5 y = 14.0 } # a vertex P is defined by its␣
→˓x and y coordinates: P=(x,y). Multiple vertices can and must be␣
→˓defined for a polygon.

Vertices must be ordered␣
→˓either clockwise or counterclockwise, otherwise the behavior during␣
→˓structure generation will be undefined.

axis = [0, 1, 1] # (optional) inclination␣
→˓(shear) of prism structure

(Obviously, cyclic␣
→˓permutation of x, y, z are possible.)
}

regular_prism{}

3D object (= 2D regular_polygon with extension into the perpendicular direction; center and/or corner define the
circumference of the prism.)

Example

regular_prism{ # 3D object (= 2D regular_
→˓polygon with extension into the perpendicular direction; center and/
→˓or corner define the circumference of the prism.)

z = [0, 10] # define the extent in the␣
→˓desired height direction. Here: Height is defined with respect to z␣
→˓direction.

center{ x = 10.5 y = 14.0 } # The center point M is defined␣
→˓by its x and y coordinates: M=(x,y).

corner{ x = 20.0 y = 30.0 } # A corner vertex P is defined␣
→˓by its x and y coordinates: P=(x,y). Only one corner must be␣
→˓specified. By modifying the corner coordinates the whole polygon can␣
→˓easily be rotated around its center.

number_of_side_facets = 7 # number of side facets (=␣
→˓number of vertices), must be >= 3

axis = [0, 1, 1] # (optional) inclination␣
→˓(shear) of prism structure

(Obviously, cyclic␣
→˓permutation of x, y, z are possible.)
}

hexagonal_prism{}

3D object (= 2D hexagon with extension into the perpendicular direction; center and/or corner define the circum-
ference of the prism.)

Example

hexagonal_prism{ # 3D object (= 2D hexagon with␣
→˓extension into the perpendicular direction; center and/or corner␣
→˓define the circumference of the prism.)

z = [0, 10] # define the extent in the␣
→˓desired height direction. Here: Height is defined with respect to z␣

(continues on next page)

7.8. structure{ } 887

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓direction.
center{ x = 10.5 y = 14.0 } # same as for regular_polygon
corner{ x = 20.0 y = 30.0 } # same as for regular_polygon
axis = [0, 1, 1] # (optional) inclination␣

→˓(shear) of prism structure
(Obviously, cyclic␣

→˓permutation of x, y, z are possible.)
}

ò Note

Per default, all prisms (polygonal_prism, regular_prism, hexagonal_prism) are assumed to extend
along the respective layer thickness direction (i.e. normal to the defining coordinate plane). But, using the
axis vector, an arbitrary axis (inclination) direction for the prism can be defined in the simulation system. The
axis vector does not need to be normalized, however, its orientation defines which side of the prism layer is the
base to be used as reference for the inclination. For example,

regular_prism{
z = [50, -70] # automatically reordered to [-70, 50]
center{ x = 10 y = 10 }
corner{ x = 30 y = 40 }
number_of_side_facets = 8 # regular octagon wanted
axis = [15 , 25 , 120] # no normalization needed here

}

defines a regular octahedral prism extending primarily in the z direction (end surfaces are x-y planes at z =
-70 and z = +50). Since the axis points upwards in z direction (z = 120), the base surface to be taken as
reference is the lower x-y plane at z = -70. There, the octagon center is at { x = 10 y = 10 } with an
octagon corner at { x = 30 y = 40 } With the axis vector defined as above, we then find for the x-y plane
at z = +50

• the octagon center at { x = 10+15 y = 10+25 } and

• the octagon corner at { x = 30+15 y = 40+25 }.

In analogy to polygon, we provide pyramidal structures.

polygonal_pyramid{}

Example

polygonal_pyramid{ # 3D object
z = [70, -70] # same as for polygonal_prism
vertex{ x = 10.5 y = 14.0 } # a vertex P is defined by its␣

→˓x and y coordinates: P=(x,y). Multiple vertices can and must be␣
→˓defined for a polygon.

Vertices must be ordered␣
→˓either clockwise or counterclockwise, otherwise the behavior during␣
→˓structure generation will be undefined.

apex{ x = 10 y = 10 z = 120}
}

888 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

regular_pyramid{}

Example

regular_pyramid{ # 3D object
z = [70, -70] # same as for regular_prism
center{ x = 10 y = 10 } # same as for regular_prism
corner{ x = 70 y = 70 } # same as for regular_prism
number_of_side_facets = 8 # same as for regular_prism
apex{ x = 10 y = 10 z = 120}

}

hexagonal_pyramid{}

Example

hexagonal_pyramid{ # 3D object
z = [70, -70] # same as for hexagonal_prism
center{ x = 10 y = 10 } # same as for hexagonal_prism
corner{ x = 70 y = 70 } # same as for hexagonal_prism
apex{ x = 10 y = 10 z = 120}

}

ò Note

Similar to the prismatic structures, use x, y, and z at the beginning of the respective primitive to define the
extent in the desired height direction, use vertex, center, and/or corner to define the circumference of the base
of the pyramid, and apex to define the position of the apex of the pyramid.

Note that, for polygonal_pyramid (as for polygon), the vertices must be ordered either clockwise or counter-
clockwise, otherwise the behavior during structure generation will be undefined.

Also note that if the apex is located outside of the interval defined by x, y, or z at the beginning in the height
direction, the pyramid will be truncated. Also, the pyramid will point upwards if the apex is above the center
of said interval (and the lower plane is used as base), and will point downwards if the apex is below the center
(and the upper plane is used as base). And in case a symmetric regular pyramid is desired, please make sure to
laterally align the apex with the center point.

For example

regular_pyramid{
z = [70, -70]
center{ x = 10 y = 10 }
corner{ x = 70 y = 70 }
number_of_side_facets = 8
apex{ x = 10 y = 10 z = 120}

}

defines a regular octahedral pyramid with base at z = -70, centered there at { x = 10 y = 10 } and a
corner there at { x = 70 y = 70 }. The apex of the pyramid would be at { x = 10 y = 10 z = 120},
making the structure rotationally symmetric, except that the pyramid is truncated at z = +70. Thus, a rota-
tionally symmetric truncated octahedral pyramid has been defined.

pyramid{}

3D object, e.g. a pyramid with 4 freely defined corner points

Example

7.8. structure{ } 889

nextnano++ Documentation, Release 1.25.13

pyramid{ # 3D object, e.g. a pyramid with␣
→˓4 freely defined corner points
point1 = [50.0, 20.0, 30.0] # coordinates of first point of␣

→˓pyramid
point2 = [50.0, 50.0, 80.0] # coordinates of second point of␣

→˓pyramid
point3 = [80.0, 50.0, 50.0] # coordinates of third point of␣

→˓pyramid
point4 = [50.0, 80.0, 30.0] # coordinates of fourth point of␣

→˓pyramid
}

ò Note

When periodic{...} is used, objects extending over an edge of the simulation region will not automatically
be continued on the opposite side. If such objects are present in a periodic simulation, for each periodic co-
ordinate direction (x, y or z), please either define a repetition (using the size of the simulation region as shift
with max = 1 and/or min = 1 as needed), or extend an already present repetition to the edge of the simulation
region (by increasing min and max as needed).

Additional Examples and Comments

The pattern above can be produced by

structure{
region{

repeat_profiles = 'other doping'
binary{ name = "InAs" }
array_x{ shift=20 num=5 }
array_y{ shift=20 num=5 }
array2_x{ shift=150 num=3 }
array2_y{ shift=150 num=3 }
circle{

center{ x = 100 y = 100 }
radius = 30

}
doping{

gaussian2D{
name = B
conc = 1e18
x = 100
y = 100
sigma_x = 7
sigma_y = 7
add = yes

}
(continues on next page)

890 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
}

}

Two identical layers containing 16 quantum dots each, can be easily generated by specifying only one quantum dot
geometry.

region{
cone{ # Here, the quantum dot has the shape of a cone.

base_x = [1.0,7.0] # extension of base plane in x direction, i.e.␣
→˓from 1.0 to 7.0 nm

base_y = [1.0,7.0] # extension of base plane in y direction, i.e.␣
→˓from 1.0 to 7.0 nm

base_z = [6.0,6.0] # base plane at z = 6.0 nm
top = [4.0,4.0,10.0] # top coordinate of the cone (x,y,z) = (4.0,4.0,

→˓10.0) in units of [nm]
diminution = 0.25 # cone: diminution = 0.0, cylinder: diminution =␣

→˓1.0
}

Note: Exactly one of the elements base_x, base_y, and base_z has to be set by␣
→˓two equal numbers to define the base plane.

ternary_linear{
name = "Al(x)Ga(1-x)As" # AlxGa1-xAs
alloy_x = [0.25, 1.0] # vary alloy composition from x = 0.25 (Al0.25Ga0.

→˓75As) to x = 1.0 (AlAs)
z = [10, 6] # vary alloy content from z = 10 nm to z = 6 nm

}

array_x{
shift = 11.0
max = 3

}
(continues on next page)

7.8. structure{ } 891

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

array_y{
shift = 11.0
max = 3

}
array_z{

shift = 20.0
max = 1

}
repeat_profiles = "alloy"

}

. Warning

Special care has to be taken when using remove{} or add = no for doping{}/fixed charge/generation{}
in some repeated regions. Namely, repeated regions are created by sequentially creating multiple instances of a
given region at the different positions defined by the array_* and array2_* statements. But the order in which
these instances are created depends on undocumented implementation details and thus may change from release
to release. For additive dopants/fixed charges/generation, or for repeated regions which do not self-overlap, the
final structure and profiles do not depend on this undocumented creation order and thus no problems will occur.
However, for repeated regions which self-overlap (e.g. due to small region shifts), using remove{} or add =
no results in the final structure and profiles being dependent on that creation order and often being different
from the user’s intentions. Therefore, in case of doubt, please visually inspect your structure and profiles to
avoid such issues.

7.9 grid{ }
Calling sequence

grid{ }

Properties

• usage: required
• items: exactly 1

Functionality

Specifications of the non-uniform rectangular grid lines.

Example

grid{
xgrid{}

}

global{
simulate1D{}

}

grid{
xgrid{}
ygrid{}

}

(continues on next page)

892 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

global{
simulate2D{}

}

grid{
xgrid{}
ygrid{}
zgrid{}

}

global{
simulate3D{}

}

Nested keywords

• xgrid{ }

• xgrid{ min_pos }

• xgrid{ max_pos }

• xgrid{ allow_spacing_jumps }

• xgrid{ line{ } }

• xgrid{ line{ pos } }

• xgrid{ line{ spacing } }

• xgrid{ line{ array{ } } }

• xgrid{ line{ array{ shift } } }

• xgrid{ line{ array{ min } } }

• xgrid{ line{ array{ max } } }

• xgrid{ line{ array2{ } } }

• xgrid{ line{ array2{ shift } } }

• xgrid{ line{ array2{ min } } }

• xgrid{ line{ array2{ max } } }

• ygrid{ }

• zgrid{ }

• energy_grid{ }

• energy_grid{ min_energy }

• energy_grid{ max_energy }

• energy_grid{ energy_resolution }

7.9. grid{ } 893

nextnano++ Documentation, Release 1.25.13

7.9.1 xgrid{ }
Calling sequence

grid{ xgrid{ } }

Properties

• usage: required
• items: exactly 1

Functionality

This group is used to define simulation space grid along the 𝑥-axis.

Example

grid{
xgrid{}

}

7.9.2 xgrid{ min_pos }
Calling sequence

grid{ xgrid{ min_pos } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: nm

Functionality

Definition of the smallest, possible 𝑥-coordinate of the simulation domain. Grid lines specified with smaller x-
coordinates are ignored.

Example

grid{
xgrid{

min_pos = -50
}

}

7.9.3 xgrid{ max_pos }
Calling sequence

grid{ xgrid{ max_pos } }

894 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: nm

Functionality

Definition of the largest, possible x-coordinate of the simulation domain. Grid lines specified with larger 𝑥-
coordinates are ignored.

Example

grid{
xgrid{

min_pos = 150
}

}

7.9.4 xgrid{ allow_spacing_jumps }
Calling sequence

grid{ xgrid{ allow_spacing_jumps } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes, then it is possible to assign two different grid spacing values to the same grid line, which creates a
jump in the grid spacing.

Example

grid{
xgrid{

allow_spacing_jumps = yes
}

}

7.9.5 xgrid{ line{ } }
Calling sequence

grid{ xgrid{ line{ } } }

7.9. grid{ } 895

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• items: minimum 2

Functionality

Group defining a grid lines. As the lines define the total size of the device, at least two of them have to be present
for each simulation direction.

Example

grid{
xgrid{

line{ }
}

}

7.9.6 xgrid{ line{ pos } }
Calling sequence

grid{ xgrid{ line{ pos } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

Position of the line.

� Hint

A good practice is to define lines on all interfaces in the device to provide the geometry definition possibly
independent to the choice of the spacing.

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2 }
}

}

7.9.7 xgrid{ line{ spacing } }
Calling sequence

grid{ xgrid{ line{ spacing } } }

896 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: [1e-3, ...)

• unit: nm

Functionality

A grid spacing in the vicinity of the position of the line.

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2 }
}

}

7.9.8 xgrid{ line{ array{ } } }
Calling sequence

grid{ xgrid{ line{ array{ } } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• xgrid{ line{ array{ } } } is required if xgrid{ line{ array2{ } } } is specified.

Functionality

Repeating a single grid line multiple times at equidistant positions. The grid lines are placed according to the
following equation:

𝑥𝑛 = pos + shift ×𝑛,

where 𝑛 = min , . . . , max

Example

grid{
xgrid{

line{
pos = 5.0 spacing = 0.2
array{...}

}
}

}

7.9. grid{ } 897

nextnano++ Documentation, Release 1.25.13

7.9.9 xgrid{ line{ array{ shift } } }
Calling sequence

grid{ xgrid{ line{ array{ shift } } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

The distance between repeated grid lines.

Example

grid{
xgrid{

line{
line{

pos = 5.0 spacing = 0.2
repeat{ shift = 1.8 }

}
}

}

7.9.10 xgrid{ line{ array{ min } } }
Calling sequence

grid{ xgrid{ line{ array{ min } } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

Functionality

Number of repeated grid lines in negative 𝑥-direction, without counting the original grid line.

Example

grid{
xgrid{

line{
pos = 5.0 spacing = 0.2
array{ shift = 1.8 min = 5 }

(continues on next page)

898 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
}

}

7.9.11 xgrid{ line{ array{ max } } }
Calling sequence

grid{ xgrid{ line{ array{ max } } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of repeated grid lines in positive 𝑥-direction, without counting the original grid line.

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 max = 5 }

}
}

}

7.9.12 xgrid{ line{ array2{ } } }
Calling sequence

grid{ xgrid{ line{ array2{ } } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• xgrid{ line{ array{ } } } is required to use xgrid{ line{ array2{ } } }.

Functionality

This group is intended to be used in conjunction with the group xgrid{ line{ array{ } } }. It allows to repeat the
pattern of grid lines generated by xgrid{ line{ array{ } } } multiple times at equidistant positions.

7.9. grid{ } 899

nextnano++ Documentation, Release 1.25.13

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 max = 5 }
array2{...}

}
}

}

7.9.13 xgrid{ line{ array2{ shift } } }
Calling sequence

grid{ xgrid{ line{ array2{ shift } } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm

Functionality

The distance between repeated grid lines.

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 max = 5 }
array2{ shift = 20.0 }

}
}

}

7.9.14 xgrid{ line{ array2{ min } } }
Calling sequence

grid{ xgrid{ line{ array2{ min } } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• unit: −
• default: 𝑧 = 0

900 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Number of repetitions in negative 𝑥-direction, without counting the original array of grid lines.

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 max = 5 }
array2{ shift = 20.0 min = 7 }

}
}

}

7.9.15 xgrid{ line{ array2{ max } } }
Calling sequence

grid{ xgrid{ line{ array2{ max } } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• unit: −

Functionality

Number of repetitions in positive 𝑥-direction, without counting the original array of grid lines.

Example

grid{
xgrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 min = 2 max = 5 }
array2{ shift = 20.0 min = 1 max = 3 }

}
}

}

7.9.16 ygrid{ }
Calling sequence

grid{ ygrid{ } }

Properties

• usage: conditional
• items: maximum 1

7.9. grid{ } 901

nextnano++ Documentation, Release 1.25.13

Dependencies

• This keyword is required if either simulate2D{ } or simulate2D{ } is specified in the global{ } group.

• It is not allowed if simulate1D{ } is specified in the global{ } group.

Functionality

This group is used to define simulation space grid along the 𝑦-axis. This group has the same properties and allowed
keywords as xgrid{ }.

Example

grid{
ygrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 min = 2 max = 5 }
array2{ shift = 20.0 min = 1 max = 3 }

}
}

}

7.9.17 zgrid{ }
Calling sequence

grid{ zgrid{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is required if simulate3D{ } is specified in the global{ } group.

• It is not allowed if either simulate1D{ } or simulate2D{ } is specified in the global{ } group.

Functionality

This group is used to define simulation space grid along the 𝑧-axis. This group has the same properties and allowed
keywords as xgrid{ }.

Example

grid{
zgrid{

line{ pos = 5.0 spacing = 0.2
array{ shift = 1.8 min = 2 max = 5 }
array2{ shift = 20.0 min = 1 max = 3 }

}
}

}

902 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.9.18 energy_grid{ }
Calling sequence

grid{ energy_grid{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Specifying the discretization of energy.

Example

grid{
energy_grid{...}

}

7.9.19 energy_grid{ min_energy }
Calling sequence

grid{ energy_grid{ min_energy } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: eV

Functionality

Low-energy boundary of the energy grid.

Example

grid{
energy_grid{

min_energy = - 2.1
max_energy = 1.7

}
}

7.9.20 energy_grid{ max_energy }
Calling sequence

grid{ energy_grid{ max_energy } }

7.9. grid{ } 903

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: no constraints

• unit: eV

Functionality

High-energy boundary of the energy grid.

Example

grid{
energy_grid{

min_energy = - 2.1
max_energy = 1.7

}
}

7.9.21 energy_grid{ energy_resolution }
Calling sequence

grid{ energy_grid{ energy_resolution } }

Properties

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
• default: 𝑟 = 1𝑒− 2

Functionality

Spacing between subsequent energy grid points.

Example

grid{
energy_grid{

min_energy = - 2.1
max_energy = 1.7
energy_resolution = 0.005

}
}

7.10 classical{ }
Calling sequence

classical{ }

904 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• items: exactly 1

Functionality

This group specifies bands entering simulation, allows computing bulk electronic band structures, selects carrier
statistics, initializes some energy resolved calculations, controls outputs of bulk-like properties.

Examples

classical{
Gamma{}
X{}
L{}
HH{}
LH{}
SO{}

}

global{
...
crystal_zb{...}

}

classical{
Gamma{}
HH{}
LH{}
SO{}

}

global{
...
crystal_wz{...}

}

Nested keywords

7.10.1 Gamma{ }
Calling sequence

classical{ Gamma{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of the following: Gamma{ }, X{ }, Delta{ }, and L{ } is required if global{ crystal_zb{ } } is
present in the input file.

• The Gamma{ } is required if global{ crystal_wz{ } } is present in the input file.

7.10. classical{ } 905

nextnano++ Documentation, Release 1.25.13

Functionality

By calling this group, a conduction band with a minimum at Γ point becomes available in the model. This band
is referred to as Gamma in output files.

Example

classical{
Gamma{}
HH{}

}

Nested keywords

• output_bandedge{ }

• output_bandedge{ averaged }

output_bandedge{ }

Calling sequence

classical{ Gamma{ output_bandedge{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
Gamma{

output_bandedge{}
}
HH{}

}

output_bandedge{ averaged }

Calling sequence

classical{ Gamma{ output_bandedge{ averaged } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

906 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

Example

classical{
Gamma{

output_bandedge{
averaged = yes

}
}
HH{}

}

7.10.2 HH{ }
Calling sequence

classical{ HH{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of LH{ }, HH{ }, and SO{ } is required.

Functionality

By calling this group, a heavy-hole valence band with maximum at Γ point becomes available in the model. This
band is referred to as HH in output files.

Example

classical{
Gamma{}
HH{}

}

Nested keywords

• output_bandedge{ }

• output_bandedge{ averaged }

output_bandedge{ }

Calling sequence

classical{ HH{ output_bandedge{ } } }

7.10. classical{ } 907

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
HH{

output_bandedge{}
}
Gamma{}

}

output_bandedge{ averaged }

Calling sequence

classical{ HH{ output_bandedge{ averaged } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

Example

classical{
HH{

output_bandedge{
averaged = yes

}
}
Gamma{}

}

7.10.3 LH{ }
Calling sequence

classical{ LH{ } }

908 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of LH{ }, HH{ }, and SO{ } is required.

Functionality

By calling this group, a light-hole valence band with maximum at Γ point becomes available in the model. This
band is referred to as LH in output files.

Example

classical{
Gamma{}
LH{}

}

Nested keywords

• output_bandedge{ }

• output_bandedge{ averaged }

output_bandedge{ }

Calling sequence

classical{ LH{ output_bandedge{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
LH{

output_bandedge{}
}
Gamma{}

}

7.10. classical{ } 909

nextnano++ Documentation, Release 1.25.13

output_bandedge{ averaged }

Calling sequence

classical{ LH{ output_bandedge{ averaged } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

Example

classical{
LH{

output_bandedge{
averaged = yes

}
}
Gamma{}

}

7.10.4 SO{ }
Calling sequence

classical{ SO{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of LH{ }, HH{ }, and SO{ } is required.

Functionality

By calling this group, a split-off valence (or crystal-field split-off in wurtzite) band with maximum at Γ point
becomes available in the model. This band is referred to as SO in output files.

Example

classical{
Gamma{}
SO{}

}

910 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• output_bandedge{ }

• output_bandedge{ averaged }

output_bandedge{ }

Calling sequence

classical{ SO{ output_bandedge{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
SO{

output_bandedge{}
}
Gamma{}

}

output_bandedge{ averaged }

Calling sequence

classical{ SO{ output_bandedge{ averaged } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

Example

7.10. classical{ } 911

nextnano++ Documentation, Release 1.25.13

classical{
SO{

output_bandedge{
averaged = yes

}
}
Gamma{}

}

7.10.5 X{ }
Calling sequence

classical{ X{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The X{ } and Delta{ } cannot be defined simultaneously.

• The X{ } is not allowed if global{ crystal_wz{ } } is present in the input file.

• At least one of Gamma{ }, X{ }, Delta{ }, and L{ } is required if global{ crystal_zb{ } } is present in the input
file.

Functionality

By calling this group, three conduction bands with minimums at 𝑋 points become available in the model. The
bands are referred to as X_1, X_2, and X_3 for the𝑋 valleys located at [1 0 0], [0 1 0], and [0 0 1] directions,
respectively, in output files.

. Attention

This group does not apply to Si, Ge, GaP, and to materials with wurtzite symmetry

Example

classical{
X{}
HH{}

}

global{
...
crystal_zb{...}

}

Nested keywords

• output_bandedge{ }

912 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• output_bandedge{ averaged }

output_bandedge{ }

Calling sequence

classical{ X{ output_bandedge{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
X{

output_bandedge{}
}
HH{}

}

global{
...
crystal_zb{...}

}

output_bandedge{ averaged }

Calling sequence

classical{ X{ output_bandedge{ averaged } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

7.10. classical{ } 913

nextnano++ Documentation, Release 1.25.13

Example

classical{
X{

output_bandedge{
averaged = yes

}
}
HH{}

}

global{
...
crystal_zb{...}

}

7.10.6 Delta{ }
Calling sequence

classical{ Delta{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The X{ } and Delta{ } cannot be defined simultaneously.

• The Delta{ } is not allowed if global{ crystal_wz{ } } is present in the input file.

• At least one of Gamma{ }, X{ }, Delta{ }, and L{ } is required if global{ crystal_zb{ } } is present in the input
file.

Functionality

By calling this group, three conduction bands with minimums along the ∆ lines become available in the model.
The bands are referred to as Delta_1, Delta_2, and Delta_3 for the ∆ valleys located at [1 0 0], [0 1 0],
and [0 0 1] directions, respectively, in output files.

. Attention

This group applies to Si, Ge, GaP

Example

classical{
Delta{}
HH{}

}

global{
...
crystal_zb{...}

}

914 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• output_bandedge{ }

• output_bandedge{ averaged }

output_bandedge{ }

Calling sequence

classical{ Delta{ output_bandedge{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
Delta{

output_bandedge{}
}
HH{}

}

global{
...
crystal_zb{...}

}

output_bandedge{ averaged }

Calling sequence

classical{ Delta{ output_bandedge{ averaged } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

7.10. classical{ } 915

nextnano++ Documentation, Release 1.25.13

Example

classical{
Delta{

output_bandedge{
averaged = yes

}
}
HH{}

}

global{
...
crystal_zb{...}

}

7.10.7 L{ }
Calling sequence

classical{ L{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The L{ } is not allowed if global{ crystal_wz{ } } is present in the input file.

• If global{ crystal_zb{ } } is present in the input file, then at least one of the following: Gamma{ }, X{ },
Delta{ }, and L{ } must be defined.

Functionality

By calling this group, four conduction bands with minimums at 𝐿 points become available in the model. The
bands are referred to as L_1, L_2, L_3, and L_4 for the 𝐿 valleys located at [1 1 1], [1 -1 1], [1 -1 -1], and
[1 1 -1] directions, respectively, in output files.

ò Note

This group does not apply to materials with wurtzite symmetry.

Example

classical{
L{}
HH{}

}

global{
...
crystal_zb{...}

}

916 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• Maintained Keywords

– output_bandedge{ }

– output_bandedge{ averaged }

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

output_bandedge{ }

Calling sequence

classical{ L{ output_bandedge{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output minimum (band edge) of this band as energy profile in a single file [eV].

Example

classical{
L{

output_bandedge{}
}
HH{}

}

global{
...
crystal_zb{...}

}

output_bandedge{ averaged }

Calling sequence

classical{ L{ output_bandedge{ averaged } } }

7.10. classical{ } 917

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then, for each grid point, the energy profile will be averaged between neighboring material grid points.
If set to no then abrupt discontinuities at interfaces are visible in the output files (in 1D two points, in 2D four points,
in 3D eight points for each grid point).

Example

classical{
L{

output_bandedge{
averaged = yes

}
}
HH{}

}

global{
...
crystal_zb{...}

}

7.10.8 carrier_statistics
Calling sequence

classical{ carrier_statistics }

Properties

• usage: optional
• type: choice

• values: maxwell_boltzmann or fermi_dirac

• default: fermi_dirac

Functionality

Attribute to chose carrier statistics.

If set to maxwell_boltzmann, then Maxwell-Boltzmann statistics is used for the classical densities. If set to
fermi_dirac, then Fermi-Dirac statistics is used for the classical densities. It is not recommended as this is only
an approximation which is only applicable in certain cases.

In order to maintain consistency, also the (integrated) energy distribution (density_vs_energy) and the classical
emission spectra and densities are computed using the same statistics. Use together with quantum regions is pos-
sible but not recommended, and convergence of the current-Poisson or quantum-current-Poisson equation may
become worse (please readjust convergence parameters accordingly).

ò Note

918 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• 𝑛 = 𝑁𝑐 ℱ1/2

(︁
𝐸𝐹−𝐸𝑐

𝑘𝐵𝑇

)︁
(electron density for fermi_dirac)

• 𝑝 = 𝑁𝑐 ℱ1/2

(︁
𝐸𝑣−𝐸𝐹

𝑘𝐵𝑇

)︁
(hole density for fermi_dirac)

• 𝑛 = 𝑁𝑐 exp
(︁
𝐸𝐹−𝐸𝑐

𝑘𝐵𝑇

)︁
(electron density for maxwell_boltzmann)

• 𝑝 = 𝑁𝑐 exp
(︁
𝐸𝑣−𝐸𝐹

𝑘𝐵𝑇

)︁
(hole density for maxwell_boltzmann)

• where ℱ𝑛(𝐸) is a Fermi-Dirac integral of the order 𝑛.

Example

classical{
carrier_statistics = maxwell_boltzmann

Gamma{}
HH{}

}

7.10.9 limit_classical_density
Calling sequence

classical{ limit_classical_density }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

• default: 𝑧 = 0

Functionality

This keyword can be used to improve convergence of classical Poisson and current equations by using different
Fermi-Dirac Integral. It may help for solving systems with locally degenerate materials, like systems with 2DEGs,
as semi-classical convergence will be reached more likely. Using it for degenerate systems may notably alter
solutions and is not advised. When set to 0 then integral 𝐹1/2 is used. 1 results in 𝐹0, and 2 in 𝐹−1 being used.
See Charge densities for more details.

ò Note

The choice of the value does not impact solutions when quasi-Fermi levels are located deep in the band gap.

Last update: 02/04/2025

7.10.10 energy_distribution{ }
Calling sequence

classical{ energy_distribution{ } }

7.10. classical{ } 919

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Definition and output of integrated electron and hole density as a function of energy, 𝑛(𝐸), 𝑝(𝐸) in units of
[cm−2eV−1] in 1D, [cm−1eV−1] in 2D, and [eV−1] in 3D.

. Attention

• min_energy, max_energy always refer to a zero point at the (local) conduction band edge, and not to the
photon energy.

• max should be set high enough above 0 to contain all occupied electron states and min should be set far
enough below the band gap to contain all occupied hole states.

• The respective values for energy_resolution should be set smaller than 𝑘𝐵𝑇 if one wishes to fully resolve
the structures of the integrated densities and/or of the emission spectra.

• However, while setting energy_resolution as low as 0.001 eV has little influence on program execution
time, using similarly small values for energy_resolution in energy_resolved_density{ } will result in mas-
sive slowdowns (and in 3D also in massive memory use), since the computational effort for obtaining
emission spectra grows quadratically with the number of energy bins.

ò Note

Currently available only for 1-band models.

Example

classical{
energy_distribution{...}

Gamma{}
HH{}

}

Nested keywords

• min_energy

• max_energy

• energy_resolution

• only_density_quantum_regions

min_energy

Calling sequence

classical{ energy_distribution{ min_energy } }

920 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: no constraints

• unit: eV

Functionality

minimum energy

Example

classical{
energy_distribution{

min_energy = -0.5
max_energy = 1.8

}

Gamma{}
HH{}

}

max_energy

Calling sequence

classical{ energy_distribution{ max_energy } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: eV

Functionality

maximum energy

Example

classical{
energy_distribution{

min_energy = -0.5
max_energy = 1.8

}

Gamma{}
HH{}

}

7.10. classical{ } 921

nextnano++ Documentation, Release 1.25.13

energy_resolution

Calling sequence

classical{ energy_distribution{ energy_resolution } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV
• default: 𝑟 = 0.1

Functionality

energy spacing

Example

classical{
energy_distribution{

min_energy = -0.5
max_energy = 1.8
energy_resolution = 0.01

}

Gamma{}
HH{}

}

only_density_quantum_regions

Calling sequence

classical{ energy_distribution{ only_density_quantum_regions } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• quantum{ region{ } } must be defined in the input file to use only_density_quantum_regions.

Functionality

This keyword can be used to suppress contributions from outside the quantum regions of interest. This works even
if quantum mechanics is not enabled in run{ }.

922 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

ò Note

Note that energy_distribution{ }, which directly calculates the space-integrated energy-resolved density, is in-
dependent on the group energy_resolved_density{ }.

Example

classical{
energy_distribution{

only_density_quantum_regions = yes

min_energy = -0.5
max_energy = 1.8

}

Gamma{}
HH{}
quantum{

region{...}
}

}

7.10.11 energy_resolved_density{ }
Calling sequence

classical{ energy_resolved_density{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The group grid{ energy_grid{ } } must be present in the input file.

Functionality

Generates and outputs electron and hole density as a function of energy and position, 𝑛(𝑥,𝐸), 𝑝(𝑥,𝐸) in units of
[cm−3eV−1] in 1D, [cm−3eV−1] in 2D, and [cm−3eV−1] in 3D.

Examples

classical{
energy_resolved_density{}

Gamma{}
HH{}

}

grid{
energy_grid{...}

}

7.10. classical{ } 923

nextnano++ Documentation, Release 1.25.13

Nested keywords

• only_density_quantum_regions

• output_energy_resolved_densities{ }

• output_LDOS{ }

only_density_quantum_regions

Calling sequence

classical{ energy_resolved_density{ only_density_quantum_regions } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• quantum{ region{ } } must be defined in the input file to use only_density_quantum_regions.

Functionality

If set to yes then only quantum regions are considered for densities of states. It can be used to suppress contributions
from outside the quantum regions of interest. The keyword works also if quantum mechanics is not enabled in run{
}.

Examples

classical{
energy_resolved_density{

only_density_quantum_regions = yes
}

Gamma{}
HH{}

}

grid{
energy_grid{...}

}
quantum{

region{...}
}

output_energy_resolved_densities{ }

Calling sequence

classical{ energy_resolved_density{ output_energy_resolved_densities{ } } }

924 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The output_energy_resolved_densities{ } is not allowed if global{ simulate3D{ } } is already present in the
input file.

Functionality

If defined then energy-resolved carrier densities 𝑛(𝑥,𝐸), 𝑝(𝑥,𝐸) in units of [cm−3eV−1] in 1D and [cm−3eV−1]
in 2D.

ò Note

Currently available only for 1-band models.

Examples

classical{
energy_resolved_density{

output_energy_resolved_densities{}
}

Gamma{}
HH{}

}

grid{
energy_grid{...}

}
global{

simulate1D{...}
}

output_LDOS{ }

Calling sequence

classical{ energy_resolved_density{ output_LDOS{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The output_LDOS{ } is not allowed if global{ simulate3D{ } } is already present in the input file.

7.10. classical{ } 925

nextnano++ Documentation, Release 1.25.13

Functionality

If defined then energy-resolved densities of states in units of [cm−3eV−1] in 1D and [cm−3eV−1] in 2D.

ò Note

Currently available only for 1-band models.

Examples

classical{
energy_resolved_density{s

output_LDOS{}
}

Gamma{}
HH{}

}

grid{
energy_grid{...}

}
global{

simulate2D{...}
}

7.10.12 bulk_dispersion{ }
Calling sequence

classical{ bulk_dispersion{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• The global{ magnetic_field{ } } is must not be specified in the input file.

Functionality

This group allows calculating bulk band structures of the materials at specific positions in the simulation domain
within 1-band approximations ork·pmodels. The computation is performed just after initialization of the structure.
Related outputs are located in the root output directory of the simulation.

Example

classical{
bulk_dispersion{

Gamma{}
KP8{}
KP30{}

path{
name = "name_1"

(continues on next page)

926 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
}
path{

name = "name_2"
...

}
full{

name = "name_3"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

Nested keywords

• Gamma{ }

• X{ }

• Delta{ }

• L{ }

• HH{ }

• LH{ }

• SO{ }

• KP6{ }

• KP6{ use_Luttinger_parameters }

• KP6{ approximate_kappa }

• KP8{ }

• KP8{ use_Luttinger_parameters }

• KP8{ from_6band_parameters }

• KP8{ evaluate_S }

• KP8{ rescale_S_to }

• KP8{ approximate_kappa }

• KP8{ electron_far_band }

• KP8{ correct_electron_gfactor }

• KP8{ rescale_kp_everywhere }

• KP8{ avoid_spurious }

• KP14{ }

7.10. classical{ } 927

nextnano++ Documentation, Release 1.25.13

• KP14{ use_Luttinger_parameters }

• KP14{ from_6band_parameters }

• KP14{ evaluate_S }

• KP30{ }

• full{ }

• full{ name }

• full{ position{ } }

• full{ position{ x } }

• full{ position{ y } }

• full{ position{ z } }

• full{ shift_holes_to_zero }

• full{ kxgrid{ } }

• full{ kxgrid{ line{ } } }

• full{ kxgrid{ line{ pos } } }

• full{ kxgrid{ line{ spacing } } }

• full{ kygrid{ } }

• full{ kzgrid{ } }

• path{ }

• path{ name }

• path{ position{ } }

• path{ position{ x } }

• path{ position{ y } }

• path{ position{ z } }

• path{ shift_holes_to_zero }

• path{ point{ } }

• path{ point{ k } }

• path{ spacing }

• path{ num_points }

• lines{ }

• lines{ name }

• lines{ position{ } }

• lines{ position{ x } }

• lines{ position{ y } }

• lines{ position{ z } }

• lines{ shift_holes_to_zero }

• lines{ k_max }

• lines{ spacing }

• output_bulk_dispersions{ }

928 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• output_masses{ }

• output_inverse_masses{ }

• output_k_vectors{ }

Gamma{ }

Calling sequence

classical{ bulk_dispersion{ Gamma{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, or KP8{ } is required if global{ crystal_wz{ } } is
already present.

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the conduction band at Γ.

Example

classical{
bulk_dispersion{

Gamma{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

X{ }

Calling sequence

classical{ bulk_dispersion{ X{ } } }

7.10. classical{ } 929

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• items: maximum 1

Dependencies

—

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the conduction band at 𝑋 .

Delta{ }

Calling sequence

classical{ bulk_dispersion{ Delta{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

—

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the conduction band at ∆.

L{ }

Calling sequence

classical{ bulk_dispersion{ L{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

—

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the conduction band at 𝐿.

930 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

HH{ }

Calling sequence

classical{ bulk_dispersion{ HH{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, or KP8{ } is required if global{ crystal_wz{ } } is
already present.

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the heavy-hole valence band.

Example

classical{
bulk_dispersion{

HH{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

LH{ }

Calling sequence

classical{ bulk_dispersion{ LH{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, or KP8{ } is required if global{ crystal_wz{ } } is
already present.

7.10. classical{ } 931

nextnano++ Documentation, Release 1.25.13

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the light-hole valence band.

Example

classical{
bulk_dispersion{

LH{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

SO{ }

Calling sequence

classical{ bulk_dispersion{ SO{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, or KP8{ } is required if global{ crystal_wz{ } } is
already present.

Functionality

When this group is defined, the bulk electronic band structure is computed within 1-band parabolic model using
effective mass tensor for the split-off valence band.

Example

classical{
bulk_dispersion{

SO{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
(continues on next page)

932 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

Gamma{}
HH{}

}

KP6{ }

Calling sequence

classical{ bulk_dispersion{ KP6{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, or KP8{ } is required if global{ crystal_wz{ } } is
already present.

Functionality

When this group is defined, 6-band k · p model is applied to compute the bulk electronic band structure.

Example

classical{
bulk_dispersion{

KP6{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

KP6{ use_Luttinger_parameters }

Calling sequence

classical{ bulk_dispersion{ KP6{ use_Luttinger_parameters } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

7.10. classical{ } 933

nextnano++ Documentation, Release 1.25.13

Dependencies

• KP6{ use_Luttinger_parameters } and KP6{ approximate_kappa } are not allowed if global{ crystal_wz{ }
} is already present.

Functionality

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger
parameters (𝛾1, 𝛾2, 𝛾3) instead.

Example

classical{
bulk_dispersion{

KP6{
use_Luttinger_parameters = yes

}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP6{ approximate_kappa }

Calling sequence

classical{ bulk_dispersion{ KP6{ approximate_kappa } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• KP6{ use_Luttinger_parameters } and KP6{ approximate_kappa } are not allowed if global{ crystal_wz{ }
} is already present.

Functionality

By default the 𝜅 for zinc blende crystal structure is taken from the database or input file. If this is enabled then
the solver is forced to approximate kappa through others 6-band k · p parameters, even though kappa is given in
database or input file.

934 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

classical{
bulk_dispersion{

KP6{
approximate_kappa = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP8{ }

Calling sequence

classical{ bulk_dispersion{ KP8{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, or KP8{ } is required if global{ crystal_wz{ } } is
already present.

Functionality

When this group is defined, 8-band k · p model is applied to compute the bulk electronic band structure.

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
(continues on next page)

7.10. classical{ } 935

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

Gamma{}
HH{}

}

KP8{ use_Luttinger_parameters }

Calling sequence

classical{ bulk_dispersion{ KP8{ use_Luttinger_parameters } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• KP6{ use_Luttinger_parameters } and KP6{ approximate_kappa } is not allowed if global{ crystal_wz{ } }
is already present.

Functionality

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger
parameters (𝛾1, 𝛾2, 𝛾3) instead.

Example

classical{
bulk_dispersion{

KP8{
use_Luttinger_parameters = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

936 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

KP8{ from_6band_parameters }

Calling sequence

classical{ bulk_dispersion{ KP8{ from_6band_parameters } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

By default the 8-band k ·p parameters are taken from database or input file. If enabled then it evaluates the 8-band
k · p parameters from 6-band k · p parameters, Kane parameter 𝐸𝑃 and temperature dependent band gap 𝐸𝑔 .

Example

classical{
bulk_dispersion{

KP8{
from_6band_parameters = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP8{ evaluate_S }

Calling sequence

classical{ bulk_dispersion{ KP8{ evaluate_S } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.10. classical{ } 937

nextnano++ Documentation, Release 1.25.13

Functionality

By default 𝑆 (𝑆1, 𝑆2 for wurtzite) k·p parameter(s) is (are) taken from database or input file. If enabled it evaluates
𝑆 (𝑆1, 𝑆2 for wurtzite)k·p parameter(s) from effective mass𝑚𝑒 (𝑚𝑒,𝑝𝑎𝑟,𝑚𝑒,𝑝𝑒𝑟𝑝 for wurtzite), Kane parameter(s),
spin-orbit coupling(s) and temperature dependent band gap.

Example

classical{
bulk_dispersion{

KP8{
evaluate_S = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP8{ rescale_S_to }

Calling sequence

classical{ bulk_dispersion{ KP8{ rescale_S_to } } }

Properties for Zincblende: - usage: optional - type: real number - values: no constraints - default: 𝑟 = 0.0 -
unit: −
Properties for Wurtzite: - usage: optional - type: vector of 2 real numbers: (𝑟1, 𝑟2) - values: no constraints -
default: 𝑟1 = 0.0, 𝑟2 = 0.0 - unit: −

Functionality

Sets 𝑆 for zinc blende crystal structure to specified value and rescale 𝐸𝑃 , 𝐿′, 𝑁+ in order to preserve electron’s
effective mass.

Sets 𝑆1, 𝑆2 for wurtzite crystal structure to specified values respectively and rescale 𝐸𝑃1, 𝐸𝑃2, 𝐿′
1, 𝐿′

2, 𝑁+
1 , 𝑁+

2

in order to preserve electron’s effective masses.

Examples

classical{
bulk_dispersion{

KP8{
rescale_S_to = 1.0

}
path{

name = "name"
...

(continues on next page)

938 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

classical{
bulk_dispersion{

KP8{
rescale_S_to = [1.0, 1.0]

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_wz{...}

}

KP8{ approximate_kappa }

Calling sequence

classical{ bulk_dispersion{ KP8{ approximate_kappa } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

• KP6{ use_Luttinger_parameters } and KP6{ approximate_kappa } is not allowed if global{ crystal_wz{ } }
is already present.

7.10. classical{ } 939

nextnano++ Documentation, Release 1.25.13

Functionality

By default, the 𝜅 for zincblende crystal structure is taken from the database or input file. If this is enabled then
the solver is forced to approximate kappa through others 8-band k · p parameters, even though kappa is given in
database or input file.

Example

classical{
bulk_dispersion{

KP8{
approximate_kappa = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP8{ electron_far_band }

Calling sequence

classical{ bulk_dispersion{ KP8{ electron_far_band = ... } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: −

Dependencies

—

Functionality

Far-band contribution to electrons 𝑆 = 1.0 + 𝑟. The default results in rescaling such that 𝑆 = 1.0.

ò Note

It can be useful to set this value to r = -1.0 which then corresponds to setting 𝑆 = 0.0.

940 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

KP8{ correct_electron_gfactor }

Calling sequence

classical{ bulk_dispersion{ KP8{ correct_electron_gfactor = ... } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = −1.0

Dependencies

—

Functionality

When 𝑟 < 0 then the g-factor is set to 2.
When 𝑟 = 0 then the g-factor is computed.
When 𝑟 > 0 then the g-factor is computed assuming energy gap equal 𝑟.
See more details in Zeeman Term.

KP8{ rescale_kp_everywhere }

Calling sequence

classical{ bulk_dispersion{ KP8{ rescale_kp_everywhere } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: yes

Dependencies

—

Functionality

If set to yes then 𝑁,𝑀 , and 𝑃 parameters are rescaled. See more details in Zeeman Term.

KP8{ avoid_spurious }

Calling sequence

classical{ bulk_dispersion{ KP8{ avoid_spurious } } }

7.10. classical{ } 941

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

—

Functionality

If set to yes then algorithm avoiding spurious solutions is used.

KP14{ }

Calling sequence

classical{ bulk_dispersion{ KP14{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• KP14{ } and KP30{ } is not allowed if global{ crystal_wz{ } } is already present.

Functionality

When this group is defined, 30-band k · p model is applied to compute the bulk electronic band structure.

Example

classical{
bulk_dispersion{

KP14{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

942 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

KP14{ use_Luttinger_parameters }

Calling sequence

classical{ bulk_dispersion{ KP14{ use_Luttinger_parameters } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger
parameters (𝛾1, 𝛾2, 𝛾3) instead.

Example

classical{
bulk_dispersion{

KP14{
use_Luttinger_parameters = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP14{ from_6band_parameters }

Calling sequence

classical{ bulk_dispersion{ KP14{ from_6band_parameters } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.10. classical{ } 943

nextnano++ Documentation, Release 1.25.13

Functionality

By default the 14-band k · p parameters are taken from database or input file. If enabled then it evaluates the
14-band k ·p parameters from 6-band k ·p parameters, Kane parameter 𝐸𝑃 and temperature dependent band gap
𝐸𝑔 .

Example

classical{
bulk_dispersion{

KP14{
from_6band_parameters = yes

}
path{

name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP14{ evaluate_S }

Calling sequence

classical{ bulk_dispersion{ KP14{ evaluate_S } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

By default 𝑆 k ·p parameter(s) is (are) taken from database or input file. If enabled it evaluates 𝑆 k ·p parameter(s)
from effective mass 𝑚𝑒 (𝑚𝑒,𝑝𝑎𝑟, 𝑚𝑒,𝑝𝑒𝑟𝑝 for wurtzite), Kane parameter(s), spin-orbit coupling(s) and temperature
dependent band gap.

Example

classical{
bulk_dispersion{

KP14{
evaluate_S = yes

}
path{

name = "name"
(continues on next page)

944 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

KP30{ }

Calling sequence

classical{ bulk_dispersion{ KP30{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of Gamma{ }, HH{ }, LH{ }, SO{ }, KP6{ }, KP8{ }, KP14{ }, or KP30{ } is required if global{
crystal_zb{ } } is already present.

• KP14{ } and KP30{ } is not allowed if global{ crystal_wz{ } } is already present.

Functionality

When this group is defined, 30-band k ·p model [RideauPRB2006] is applied to compute the bulk electronic band
structure.

Example

classical{
bulk_dispersion{

KP30{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
crystal_zb{...}

}

7.10. classical{ } 945

nextnano++ Documentation, Release 1.25.13

full{ }

Calling sequence

classical{ bulk_dispersion{ full{ } } }

Properties

• usage: conditional
• items: no constraints

Dependencies

• At least one of full{ }, path{ }, or lines{ } is required.

Functionality

Calculates bulk k · p dispersion in 3D k-space. Multiple instances are allowed.

Example

classical{
bulk_dispersion{

KP8{}

full{
name = "name_1"
...

}
full{

name = "name_2"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ name }

Calling sequence

classical{ bulk_dispersion{ full{ name } } }

Properties

• usage: required
• type: character string

Functionality

Name of the dispersion which also defines the names of the output files.

946 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

classical{
bulk_dispersion{

KP8{}

full{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ position{ } }

Calling sequence

classical{ bulk_dispersion{ full{ position{ } } } }

Properties

• usage: required
• items: exactly 1

Functionality

Specifies the point (x,y,z) in the simulation domain, where the dispersion has to be calculated.

Example

classical{
bulk_dispersion{

KP8{}

full{
name = "name"
position{...}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ position{ x } }

Calling sequence

classical{ bulk_dispersion{ full{ position{ x } } } }

7.10. classical{ } 947

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

𝑥-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

full{
name = "name"
position{

x = 10.5
}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate1D{}

}

full{ position{ y } }

Calling sequence

classical{ bulk_dispersion{ full{ position{ y } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

948 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Dependencies

• full{ position{ y } } is required if any global{ simulate1D{ } } or global{ simulate2D{ } } is specified in the
input file.

• full{ position{ y } } is not allowed if global{ simulate1D{ } } is specified in the input file.

Functionality

𝑦-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

full{
name = "name"
position{

x = 10.5
y = 35.0

}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate2D{}

}

full{ position{ z } }

Calling sequence

classical{ bulk_dispersion{ full{ position{ z } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm
usage: conditional - full{ position{ z } } is required if global{ simulate1D{ } } is specified in the input file. - full{
position{ z } } is not allowed if any global{ simulate1D{ } } or global{ simulate2D{ } } is specified in the input file.

7.10. classical{ } 949

nextnano++ Documentation, Release 1.25.13

Functionality

𝑧-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

full{
name = "name"
position{

x = 10.5
y = 35.0
z = 12.3

}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate3D{}

}

full{ shift_holes_to_zero }

Calling sequence

classical{ bulk_dispersion{ full{ shift_holes_to_zero } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If enabled shifts the whole dispersion, so that the energy for the Gamma point for the highest hole band is equal to
0.0 (eV).

Example

classical{
bulk_dispersion{

KP8{}

full{
shift_holes_to_zero = yes

(continues on next page)

950 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

name = "name"
position{...}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ kxgrid{ } }

Calling sequence

classical{ bulk_dispersion{ full{ kxgrid{ } } } }

Properties

• usage: required
• items: no constraints

Functionality

Specifies a grid along 𝑘𝑥 for a 1D/2D/3D plot of the energy dispersion 𝐸(𝑘𝑥, 𝑘𝑦, 𝑘𝑧).

Example

classical{
bulk_dispersion{

KP8{}

full{
shift_holes_to_zero = yes
name = "name"
position{...}
kxgrid{...}

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ kxgrid{ line{ } } }

Calling sequence

classical{ bulk_dispersion{ full{ kxgrid{ line{ } } } } }

Properties

• usage: required
• items: minimum 2

7.10. classical{ } 951

nextnano++ Documentation, Release 1.25.13

Functionality

Setting options defining the grid in k-space.

Example

classical{
bulk_dispersion{

KP8{}

full{
shift_holes_to_zero = yes
name = "name"
position{...}
kxgrid{

line{...}
line{...}
line{...}

}
}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ kxgrid{ line{ pos } } }

Calling sequence

classical{ bulk_dispersion{ full{ kxgrid{ line{ pos } } } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm−1

Functionality

Position of defined k-grid spacing along kx direction.

Example

classical{
bulk_dispersion{

KP8{}

full{
shift_holes_to_zero = yes
name = "name"
position{...}
kxgrid{

line{ pos =-1.0 spacing = 0.2 }
line{ pos = 0.0 spacing = 0.2 }

(continues on next page)

952 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

line{ pos = 1.0 spacing = 0.2 }
}

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ kxgrid{ line{ spacing } } }

Calling sequence

classical{ bulk_dispersion{ full{ kxgrid{ line{ spacing } } } } }

Properties

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Functionality

k-grid spacing at defined positions

Example

classical{
bulk_dispersion{

KP8{}

full{
shift_holes_to_zero = yes
name = "name"
position{...}
kxgrid{

line{ pos =-1.0 spacing = 0.2 }
line{ pos = 0.0 spacing = 0.2 }
line{ pos = 1.0 spacing = 0.2 }

}
}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ kygrid{ } }

Calling sequence

classical{ bulk_dispersion{ full{ kygrid{ } } } }

7.10. classical{ } 953

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• items: no constraints

Functionality

Specifies a grid along 𝑘𝑦 for a 1D/2D/3D plot of the energy dispersion𝐸(𝑘𝑥, 𝑘𝑦, 𝑘𝑧). The keywords allowed within
this group are analogous to full{ kxgrid{ } }.

Example

classical{
bulk_dispersion{

KP8{}

full{
shift_holes_to_zero = yes
name = "name"
position{...}
kxgrid{...}
kygrid{

line{ pos =-1.0 spacing = 0.2 }
line{ pos = 0.0 spacing = 0.2 }
line{ pos = 1.0 spacing = 0.2 }

}
}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

full{ kzgrid{ } }

Calling sequence

classical{ bulk_dispersion{ full{ kzgrid{ } } } }

Properties

• usage: required
• items: no constraints

Functionality

Specifies a grid along 𝑘𝑧 for a 1D/2D/3D plot of the energy dispersion𝐸(𝑘𝑥, 𝑘𝑦, 𝑘𝑧). The keywords allowed within
this group are analogous to full{ kxgrid{ } }.

Example

classical{
bulk_dispersion{

KP8{}

full{
(continues on next page)

954 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

shift_holes_to_zero = yes
name = "name"
position{...}
kxgrid{...}
kygrid{...}
kzgrid{

line{ pos =-1.0 spacing = 0.2 }
line{ pos = 0.0 spacing = 0.2 }
line{ pos = 1.0 spacing = 0.2 }

}
}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate3D{}

}

path{ }

Calling sequence

classical{ bulk_dispersion{ path{ } } }

Properties

• usage: conditional
• items: no constraints

Dependencies

• At least one of full{ }, path{ }, or lines{ } is required.

Functionality

Calculate bulk k · p dispersion along custom path in k-space. Multiple instances are allowed.

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name_1"
spacing = 0.2
...

}
path{

name = "name_2"
num_points = 10

(continues on next page)

7.10. classical{ } 955

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

path{ name }

Calling sequence

classical{ bulk_dispersion{ path{ name } } }

Properties

• usage: required
• type: character string

Dependencies

name of the dispersions which also defines the names of the output files.

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

path{ position{ } }

Calling sequence

classical{ bulk_dispersion{ path{ position{ } } } }

Properties

• usage: required
• items: exactly 1

Functionality

Specifies the point (x,y,z) in the simulation domain, where the dispersion has to be calculated.

956 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{ }
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

path{ position{ x } }

Calling sequence

classical{ bulk_dispersion{ path{ position{ x } } } }

Properties

• usage: required
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

𝑥-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{

x = 10.5
}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
(continues on next page)

7.10. classical{ } 957

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
simulate1D{}

}

path{ position{ y } }

Calling sequence

classical{ bulk_dispersion{ path{ position{ y } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Dependencies

• path{ position{ y } } is required if any global{ simulate1D{ } } or global{ simulate2D{ } } is specified in the
input file.

• path{ position{ y } } is not allowed if global{ simulate1D{ } } is specified in the input file.

Functionality

𝑦-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{

x = 10.5
y = 35.0

}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate2D{}

}

958 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

path{ position{ z } }

Calling sequence

classical{ bulk_dispersion{ path{ position{ z } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm
usage: conditional - path{ position{ z } } is required if global{ simulate1D{ } } is specified in the input file. - path{
position{ z } } is not allowed if any global{ simulate1D{ } } or global{ simulate2D{ } } is specified in the input file.

Functionality

𝑧-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{

x = 10.5
y = 35.0
z = 12.3

}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate3D{}

}

path{ shift_holes_to_zero }

Calling sequence

classical{ bulk_dispersion{ path{ shift_holes_to_zero } } }

7.10. classical{ } 959

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If enabled shifts the whole dispersion, so that the energy for the Gamma point for the highest hole band is equal to
0.0 (eV).

Example

classical{
bulk_dispersion{

KP8{}

path{
shift_holes_to_zero = yes
name = "name"
position{...}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

path{ point{ } }

Calling sequence

classical{ bulk_dispersion{ path{ point{ } } } }

Properties

• usage: required
• items: minimum 2

Functionality

Specifies points in the path through k-space. At least two k points have to be defined. Line between two such points
is called segment.

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{...}

(continues on next page)

960 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

point{...}
point{...}
point{...}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

path{ point{ k } }

Calling sequence

classical{ bulk_dispersion{ path{ point{ k } } } }

Properties

• usage: required
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0, 𝑟3 = 0.0

• unit: nm−1

Functionality

k-point represented by vector [𝑘𝑥, 𝑘𝑦, 𝑘𝑧].

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{...}
point{ k = [-0.1,-0.1,-0.1] }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [0.1, 0.0, 0.0] }
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

7.10. classical{ } 961

nextnano++ Documentation, Release 1.25.13

path{ spacing }

Calling sequence

classical{ bulk_dispersion{ path{ spacing } } }

Properties

• usage: conditional
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Dependencies

• Exactly one of path{ spacing } or path{ num_points } required.

Functionality

It specifies approximate spacing for intermediate points in the path segments.

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{...}
point{ k = [-0.1,-0.1,-0.1] }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [0.1, 0.0, 0.0] }
spacing = 0.2

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

path{ num_points }

Calling sequence

classical{ bulk_dispersion{ path{ num_points } } }

Properties

• usage: conditional
• type: integer

• values: 𝑧 ≥ 2

962 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Dependencies

• Exactly one of path{ spacing } or path{ num_points } required.

Functionality

It specifies number of points (intermediate + two corner-points) for each single path segment.

Example

classical{
bulk_dispersion{

KP8{}

path{
name = "name"
position{...}
point{ k = [-0.1,-0.1,-0.1] }
point{ k = [0.0, 0.0, 0.0] }
point{ k = [0.1, 0.0, 0.0] }
num_points = 20

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

lines{ }

Calling sequence

classical{ bulk_dispersion{ lines{ } } }

Properties

• usage: conditional
• items: no constraints

Dependencies

• At least one of full{ }, path{ }, or lines{ } is required.

Functionality

Calculates dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their
equivalents (13 in total).

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name_1"
...

(continues on next page)

7.10. classical{ } 963

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}
lines{

name = "name_2"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

lines{ name }

Calling sequence

classical{ bulk_dispersion{ lines{ name } } }

Properties

• usage: required
• type: character string

Dependencies

Name of the dispersions which also defines the names of the output files.

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

lines{ position{ } }

Calling sequence

classical{ bulk_dispersion{ lines{ position{ } } } }

Properties

• usage: required
• items: exactly 1

964 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Specifies the point (x,y,z) in the simulation domain, where the dispersion has to be calculated.

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
position{ }
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

lines{ position{ x } }

Calling sequence

classical{ bulk_dispersion{ lines{ position{ x } } } }

Properties

• usage: required
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

𝑥-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
position{

x = 10.5
}
...

}
output_bulk_dispersions{}

}
Gamma{}

(continues on next page)

7.10. classical{ } 965

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

HH{}
}

global{
...
simulate1D{}

}

lines{ position{ y } }

Calling sequence

classical{ bulk_dispersion{ lines{ position{ y } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Dependencies

• lines{ position{ y } } is required if any global{ simulate1D{ } } or global{ simulate2D{ } } is specified in the
input file.

• lines{ position{ y } } is not allowed if global{ simulate1D{ } } is specified in the input file.

Functionality

𝑦-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
position{

x = 10.5
y = 35.0

}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
(continues on next page)

966 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

...
simulate2D{}

}

lines{ position{ z } }

Calling sequence

classical{ bulk_dispersion{ lines{ position{ z } } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm
usage: conditional - lines{ position{ z } } is required if global{ simulate1D{ } } is specified in the input file. -
lines{ position{ z } } is not allowed if any global{ simulate1D{ } } or global{ simulate2D{ } } is specified in the
input file.

Functionality

𝑧-coordinate of interest

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
position{

x = 10.5
y = 35.0
z = 12.3

}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

global{
...
simulate3D{}

}

7.10. classical{ } 967

nextnano++ Documentation, Release 1.25.13

lines{ shift_holes_to_zero }

Calling sequence

classical{ bulk_dispersion{ lines{ shift_holes_to_zero } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If enabled shifts the whole dispersion, so that the energy for the Gamma point for the highest hole band is equal to
0.0 (eV).

Example

classical{
bulk_dispersion{

KP8{}

lines{
shift_holes_to_zero = yes
name = "name"
position{...}
...

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

lines{ k_max }

Calling sequence

classical{ bulk_dispersion{ lines{ k_max } } }

Properties

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Functionality

Specifies a maximum absolute value (radius) for the k-vector in 𝑛𝑚−1

968 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
position{...}
k_max = 1.0

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

lines{ spacing }

Calling sequence

classical{ bulk_dispersion{ lines{ spacing } } }

Properties

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Functionality

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1.

Example

classical{
bulk_dispersion{

KP8{}

lines{
name = "name"
position{...}
k_max = 1.0
spacing = 0.2

}
output_bulk_dispersions{}

}
Gamma{}
HH{}

}

7.10. classical{ } 969

nextnano++ Documentation, Release 1.25.13

output_bulk_dispersions{ }

Calling sequence

classical{ bulk_dispersion{ output_bulk_dispersions{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of output_bulk_dispersions{ }, output_masses{ }, or output_inverse_masses{ } is required.

Functionality

Outputs all defined bulk k · p dispersions.

Example

classical{
bulk_dispersion{

output_bulk_dispersions{}

KP8{}
path{...}

}
Gamma{}
HH{}

}

output_masses{ }

Calling sequence

classical{ bulk_dispersion{ output_masses{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of output_bulk_dispersions{ }, output_masses{ }, or output_inverse_masses{ } is required.

Functionality

Outputs effective masses calculated from the dispersions.

Example

classical{
bulk_dispersion{

output_masses{}

KP8{}
(continues on next page)

970 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

path{...}
}
Gamma{}
HH{}

}

output_inverse_masses{ }

Calling sequence

classical{ bulk_dispersion{ output_inverse_masses{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• At least one of output_bulk_dispersions{ }, output_masses{ }, or output_inverse_masses{ } is required.

Functionality

Outputs inverse of effective masses calculated from the dispersions.

Example

classical{
bulk_dispersion{

output_inverse_masses{}

KP8{}
path{...}

}
Gamma{}
HH{}

}

output_k_vectors{ }

Calling sequence

classical{ bulk_dispersion{ output_k_vectors{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs k-vectors for which the dispersions are computed.

7.10. classical{ } 971

nextnano++ Documentation, Release 1.25.13

Example

classical{
bulk_dispersion{

output_k_vectors{}

KP8{}
path{...}

}
Gamma{}
HH{}

}

Last update: 27/05/2025

7.10.13 output_bandgap{ }
Calling sequence

classical{ output_bandgap{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output band gaps for Gamma, L, X (or Delta) bands with reference to the highest valence band edge. Additionally,
the difference between the lowest conduction band and the highest valence band edges is written out: MIN(Gamma,
L, X (or Delta)) - MAX(hh, lh, so) [eV]

Example

classical{
output_bandgap{}

Gamma{}
HH{}

}

Nested keywords

• averaged

averaged

Calling sequence

classical{ output_bandgap{ averaged } }

972 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes, then for each grid point the band gaps will be averaged between neighboring material grid points.
If set to no, then abrupt discontinuities at interfaces introducing two points, four points, and eight points for each
grid point for 1D, 2D, and 3D simulations, respectively.

Example

classical{
output_bandgap{

averaged = yes
}

Gamma{}
HH{}

}

7.10.14 output_bandedges{ }
Calling sequence

classical{ output_bandedges{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output selected band edges (extrema of selected bands of bulk materials) and Fermi levels in one file named
bandedges.dat.

Example

classical{
output_bandedges{}

Gamma{}
HH{}

}

Nested keywords

• profiles

• averaged

7.10. classical{ } 973

nextnano++ Documentation, Release 1.25.13

profiles

Calling sequence

classical{ output_bandedges{ profiles } }

Properties

• usage: optional
• type: enumerator

• values: Gamma; HH; LH; SO; X; Delta; L; electron_fermi_level; hole_fermi_level

• default: Gamma ``; ``HH ``; ``LH ``; ``SO ``; ``X ``; ``Delta ``; ``L ``;
``electron_fermi_level ``; ``hole_fermi_level

Functionality

Enumerate band edges and quasi-Fermi levels for output. If this keyword is not defined then all profiles are written
to the ouptut.

Examples

classical{
output_bandedges{

profiles = "Gamma"
}

Gamma{}
HH{}

}

classical{
output_bandedges{

profiles = "Gamma HH electron_fermi_level"
}

Gamma{}
HH{}

}

averaged

Calling sequence

classical{ output_bandedges{ averaged } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

974 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

If set to yes, then for each grid point the band gaps will be averaged between neighboring material grid points.
If set to no, then abrupt discontinuities at interfaces introducing two points, four points, and eight points for each
grid point for 1D, 2D, and 3D simulations, respectively.

Examples

classical{
output_bandedges{

averaged = yes
}

Gamma{}
HH{}

}

7.10.15 output_carrier_densities{ }
Calling sequence

classical{ output_carrier_densities{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output electron and hole densities into files density_electron.dat and density_hole.dat expressed in units dependent
on dimensionality of the simulation.

• In 1D simulation the unit is 1/cm2

• In 2D simulation the unit is 1/cm

• In 3D simulation the unit is 1

Example

classical{
output_carrier_densities{}

Gamma{}
HH{}

}

7.10.16 output_band_densities{ }
Calling sequence

classical{ output_band_densities{ } }

Properties

• usage: optional
• items: maximum 1

7.10. classical{ } 975

nextnano++ Documentation, Release 1.25.13

Functionality

The densities (outside the quantum regions) for the individual bands are output if this group is defined.

Example

classical{
output_band_densities{}

Gamma{}
HH{}

}

7.10.17 output_ionized_dopant_densities{ }
Calling sequence

classical{ output_ionized_dopant_densities{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output densities of ionized acceptors and donors to density_acceptor_ionized.dat and density_donor_ionized.dat,
respectively. The densities are expressed in 1018/cm3.

Example

classical{
output_ionized_dopant_densities{}

Gamma{}
HH{}

}

7.10.18 output_carrier_densities_matgrid{ }
Calling sequence

classical{ output_carrier_densities_matgrid{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Output electron and hole densities defined on the material grid into files density_electron.dat and density_hole.dat
expressed in units dependent on dimensionality of the simulation. These are values entering the drift-diffusion
model.

� Hint

They typically look better than output_carrier_densities{ } for data presentation.

976 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• In 1D simulation the unit is 1/cm2

• In 2D simulation the unit is 1/cm

• In 3D simulation the unit is 1

Example

classical{
output_carrier_densities_matgrid{}

Gamma{}
HH{}

}

output_carrier_densities_matgrid{ boxes }

Calling sequence

classical{ output_carrier_densities_matgrid{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

classical{
output_carrier_densities_matgrid{

boxes = yes
}

Gamma{}
HH{}

}

7.10.19 output_band_densities_matgrid{ }
Calling sequence

classical{ output_band_densities_matgrid{ } }

Properties

• usage: optional
• items: maximum 1

7.10. classical{ } 977

nextnano++ Documentation, Release 1.25.13

Functionality

The densities (outside the quantum regions) for the individual bands defined on the material grid are output if this
group is defined. These are values corresponding drift-diffusion model.

� Hint

They typically look better than output_band_densities{ } for data presentation.

Example

classical{
output_band_densities_matgrid{}

Gamma{}
HH{}

}

output_band_densities_matgrid{ boxes }

Calling sequence

classical{ output_band_densities_matgrid{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

classical{
output_band_densities_matgrid{

boxes = yes
}

Gamma{}
HH{}

}

7.10.20 output_ionized_dopant_densities_matgrid{ }
Calling sequence

classical{ output_ionized_dopant_densities_matgrid{ } }

978 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Output densities of ionized acceptors and donors defined on the material grid to density_acceptor_ionized.dat and
density_donor_ionized.dat, respectively. The densities are expressed in 1018/cm3.

Example

classical{
output_ionized_dopant_densities_matgrid{}

Gamma{}
HH{}

}

output_ionized_dopant_densities_matgrid{ boxes }

Calling sequence

classical{ output_ionized_dopant_densities_matgrid{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

classical{
output_ionized_dopant_densities_matgrid{

boxes = yes
}

Gamma{}
HH{}

}

7.10.21 output_intrinsic_density{ }
Calling sequence

classical{ output_intrinsic_density{ } }

7.10. classical{ } 979

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Output intrinsic density expressed in 1/cm3.

Example

classical{
output_intrinsic_density{}

Gamma{}
HH{}

}

Nested keywords

• output_intrinsic_density{ boxes }

output_intrinsic_density{ boxes }

Calling sequence

classical{ output_intrinsic_density{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

classical{
output_intrinsic_density{

boxes = yes
}

Gamma{}
HH{}

}

Last update: 02/04/2025

980 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

classical{
conduction bands
Gamma{

output_bandedge{
averaged = yes

}
}
L{ output_bandedge{ ... } }
X{ output_bandedge{ ... } } # or Delta{ output_bandedge{ ... } }

valence bands
HH{ output_bandedge{ ... } }
LH{ output_bandedge{ ... } }
SO{ output_bandedge{ ... } }

#Further output definitions
output_bandedges{

profiles = "Gamma HH LH"
averaged = no

}

output_bandgap{
averaged = no

}

output_carrier_densities{}

output_ionized_dopant_densities{}

output_intrinsic_density{
boxes = yes

}

energy_distribution{
min = -5.0
max = 5.0
energy_resolution = 0.1
only_density_quantum_regions = yes

}

energy_resolved_density{
min = -5.0
max = 5.0
energy_resolution = 0.1
only_density_quantum_regions = yes
output_energy_resolved_densities{}

}

output_photon_density = yes
output_power_density = yes

Carrier statistics for classical densities
carrier_statistics = fermi_dirac

bulk_dispersion{
KP6{}

(continues on next page)

7.10. classical{ } 981

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

path{
name = "from_Gamma_to_L"
position{

x = 5.5
y = 10.0
z = -1.1

}
shift_holes_to_zero = yes
point{

k = [1.0, 0.0, 0.0]
}
...

spacing = 0.5
num_points = 10

}

lines{
name = "lines"
position{

x = 5.5
y = 10.0
z = -1.1

}
shift_holes_to_zero = yes
spacing = 0.5
k_max = 1.0

}

full{
name = "3D"
position{

x = 5.5
y = 10.0
z = -1.1

}
shift_holes_to_zero = yes
kxgrid{

line{
pos = -1
spacing = 0.02
}
line{
pos = 1
spacing = 0.02
}
...

}
kygrid{

...
}
kzgrid{

...
}

}

(continues on next page)

982 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

output_bulk_dispersions{}
output_masses{}

} # end: bulk_dispersion{}
}

7.11 strain{ }
Calling sequence

strain{ }

Properties

• usage: optional
• items: maximum 1

Functionality

The group controls selection of strain models and related outputs.

. Attention

Definition of this group does not result in running any strain models. To do so, use it together with strain{ }
from within run{ }.

Examples

strain{
pseudomorphic_strain{}

}

strain{
minimized_strain{}

}

Nested keywords

7.11.1 debuglevel
Calling sequence

strain{ debuglevel }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ −1

• unit: −
• default: 𝑧 = 2

7.11. strain{ } 983

nextnano++ Documentation, Release 1.25.13

Functionality

The higher this integer number, the more information on the numerical solver is printed to the screen output

Example

strain{
debuglevel = 3
pseudomorphic_strain{}

}

7.11.2 no_strain{ }
Calling sequence

strain{ no_strain{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• Exactly one out of no_strain{ }, pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must
be defined.

• linear_solver{ } and residual_strain are not allowed if this group is defined.

Functionality

Strain is not taken into account.

Example

strain{
no_strain{}

}

7.11.3 pseudomorphic_strain{ }
Calling sequence

strain{ pseudomorphic_strain{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• linear_solver{ } is not allowed if this group is defined.

• Exactly one out of no_strain{ }, pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must
be defined.

• One of pseudomorphic_strain{ } and minimized_strain{ } must be present to allow using out-
put_distortion_tensor{ }, output_stress_tensor{ }, output_force_density{ }, output_elastic_energy_density{
}, output_lattice_constants{ }, output_elastic_constants{ }.

984 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• One of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must be present to
allow using output_hydrostatic_strain{ }, output_strain_tensor{ }, output_piezo_constants{ }, out-
put_second_order_piezo_constants{ }.

Functionality

Homogeneous strain for 1D layer structures (analytical calculation). This feature also works in 2D or 3D but the
user must be sure that the model makes sense from a physical point of view, i.e., the 2D/3D structure should consist
of different layers along the growth direction whereas the layers must be homogenous along the two perpendicular
directions.

Example

strain{
pseudomorphic_strain{}

}

7.11.4 minimized_strain{ }
Calling sequence

strain{ minimized_strain{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is required if linear_solver{ } is defined.

• Exactly one out of no_strain{ }, pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must
be defined.

• This keyword must be present to allow using output_displacement{ }.

• One of pseudomorphic_strain{ } and minimized_strain{ } must be present to allow using out-
put_distortion_tensor{ }, output_stress_tensor{ }, output_force_density{ }, output_elastic_energy_density{
}, output_lattice_constants{ }, output_elastic_constants{ }.

• One of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must be present to
allow using output_hydrostatic_strain{ }, output_strain_tensor{ }, output_piezo_constants{ }, out-
put_second_order_piezo_constants{ }.

Functionality

Minimization of the elastic energy for 2D and 3D geometries (numerical calculation). It can also be used for 1D
simulations. In this case, the results will be equivalent to the analytical model pseudomorphic_strain{ }.

Example

strain{
minimized_strain{}

}

7.11. strain{ } 985

nextnano++ Documentation, Release 1.25.13

7.11.5 growth_direction
Calling sequence

strain{ growth_direction }

Properties

• usage: conditional
• type: vector of 3 integers: (𝑧1, 𝑧2, 𝑧3)

• values: no constraints

• default: 𝑟1 = 1.0, 𝑟2 = 0.0, 𝑟3 = 0.0

• unit: −

Dependencies

• This keyword is not allowed if simulate1D{ } is defined.

Functionality

Defines a normal vector to a substrate surface, corresponding to the growth direction, for a pseudomorphic strain
model. It is defined in crystal coordinate system. It can be specified in a 2D and 3D simulations, but not in a 1D
simulation as the crystal direction along the x-axis is always chosen in this case.

Example

strain{
growth_direction = [1, 1, 0]
pseudomorphic_strain{}

}

global{
simulate2D{}
...

}

7.11.6 residual_strain
Calling sequence

strain{ residual_strain }

Properties

• usage: conditional
• type: real number

• values: −1.0 ≤ 𝑟 ≤ 1.0

• unit: −

Dependencies

• This group is not allowed if any of no_strain{ } and import_strain{ } is defined.

986 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Residuals strain in the substrate 𝜂 scales lattice parameter of the substrate (only for the purpose of strain computa-
tion) according to the formula 𝑎𝜂,𝑠 = (1+𝜂) ·𝑎0,𝑠, where 𝑎0,𝑠 is the (unstrained) lattice parameter of the substrate
and 𝑎𝜂,𝑠 the modified (strained) lattice parameter of the substrate. The latter one represents the substrate during
evaluation of the strain tensor.

Example

strain{
residual_strain = 0.2
pseudomorphic_strain{}

}

7.11.7 linear_solver{ }
Calling sequence

strain{ linear_solver{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• minimized_strain{ } must be defined.

• This group is not allowed if any of no_strain{ }, pseudomorphic_strain{ }, and import_strain{ } is defined.

Functionality

—

Example

strain{
minimized_strain{}
linear_solver{}

}

Nested keywords

• iterations

• abs_accuracy

• rel_accuracy

• use_cscg

• force_diagonal_preconditioner

7.11. strain{ } 987

nextnano++ Documentation, Release 1.25.13

iterations

Calling sequence

strain{ linear_solver{ iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 10000

• unit: −

Functionality

Number of iterations for linear equation solver in strain algorithm

Example

strain{
minimized_strain{}
linear_solver{

iterations = 50000
}

}

abs_accuracy

Calling sequence

strain{ linear_solver{ abs_accuracy } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 1𝑒− 8

• unit: GP for 1D; GPnm for 2D; GPnm2 for 3D

Functionality

—

Example

strain{
minimized_strain{}
linear_solver{

abs_accuracy = 1e-9
}

}

988 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

rel_accuracy

Calling sequence

strain{ linear_solver{ rel_accuracy } }

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 10−6

• default: 𝑟 = 1𝑒− 12

• unit: −

Functionality

—

Example

strain{
minimized_strain{}
linear_solver{

rel_accuracy = 1e-10
}

}

use_cscg

Calling sequence

strain{ linear_solver{ use_cscg } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Composite step conjugate gradient solver (try this one if standard solver fails to converge)

Example

strain{
minimized_strain{}
linear_solver{

use_cscg = yes
}

}

7.11. strain{ } 989

nextnano++ Documentation, Release 1.25.13

force_diagonal_preconditioner

Calling sequence

strain{ linear_solver{ force_diagonal_preconditioner } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

strain{
minimized_strain{}
linear_solver{

force_diagonal_preconditioner = yes
}

}

Last update: 02/04/2025

7.11.8 import_strain{ }
Calling sequence

strain{ import_strain{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• import{ } must be defined.

• linear_solver{ } and residual_strain are not allowed if this group is defined.

• Exactly one out of no_strain{ }, pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must
be defined.

• One of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } must be present to
allow using output_hydrostatic_strain{ }, output_strain_tensor{ }, output_piezo_constants{ }, out-
put_second_order_piezo_constants{ }.

Functionality

Controls importing strain tensor elements to the simulation from an external file.

990 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

strain{
import_strain{...}

}

import{...}

Nested keywords

• import_from

• coordinate_system

import_from

Calling sequence

strain{ import_strain{ import_from } }

Properties

• usage: required
• type: character string

Functionality

Reference to imported data in import{ }.

The data being imported must have exactly 6 components. The expected order of strain tensor components is:
𝜀𝑥𝑥 𝜀𝑦𝑦 𝜀𝑧𝑧 𝜀𝑥𝑦 𝜀𝑥𝑧 𝜀𝑦𝑧

Example

strain{
import_strain{

import_from = "strain_import"
}

}

import{
file{

name = "strain_import"
...

}
}

coordinate_system

Calling sequence

strain{ import_strain{ coordinate_system } }

7.11. strain{ } 991

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: crystal or simulation

• default: simulation

Functionality

The imported strain tensor is with respect to the simulation or crystal coordinate system (optional parameter).

Example

strain{
import_strain{

import_from = "strain_import"
coordinate_system = "simulation"

}
}

import{
file{

name = "strain_import"
...

}
}

7.11.9 piezo_density
Calling sequence

strain{ piezo_density }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Calculate piezoelectric charge density and take it into account while solving the Poisson equation.

If no strain is solved, this flag is ignored.

Example

strain{
piezo_density = no
pseudomorphic_strain{}

}

992 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.11.10 second_order_piezo
Calling sequence

strain{ second_order_piezo }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Include 2nd order piezoelectric coefficients in the calculation.

. Warning

Only “standard growth directions” are supported for wurtzite.

Example

strain{
second_order_piezo = yes
pseudomorphic_strain{}

}

7.11.11 pyro_density
Calling sequence

strain{ pyro_density }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: yes

Dependencies

• This keyword is allowed only if crystal_wz{ } is defined.

Functionality

Calculate pyroelectric charge density and take it into account while solving the Poisson equation.

If material system is not wurtzite, this flag is ignored. The pyroelectric charge density due to spontaneous po-
larization applies to wurtzite only. In order to obtain pyroelectric charges, it is not necessary to calculate strain.
Pyroelectric charges are only present in wurtzite materials but not in zincblende .

7.11. strain{ } 993

nextnano++ Documentation, Release 1.25.13

Example

strain{
pyro_density = no
pseudomorphic_strain{}

}

global{
crystal_wz{...}
...

}

7.11.12 output_hydrostatic_strain{ }
Calling sequence

strain{ output_hydrostatic_strain{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } is
defined.

Functionality

prints out the hydrostatic strain, i.e. the trace of the strain tensor Tr[𝜀𝑖𝑗] = 𝜀𝑥𝑥 + 𝜀𝑦𝑦 + 𝜀𝑧𝑧 [dimensionless]

Example

strain{
output_hydrostatic_strain{}
pseudomorphic_strain{}

}

Nested keywords

• boxes

boxes

Calling sequence

strain{ output_hydrostatic_strain{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

994 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

Example

strain{
output_hydrostatic_strain{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.13 output_strain_tensor{ }
Calling sequence

strain{ output_strain_tensor{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } is
defined.

Functionality

output (symmetric) strain tensor : 𝜀𝑖𝑗 = (𝑢𝑖𝑗 + 𝑢𝑗𝑖)/2 [dimensionless]

Example

strain{
output_strain_tensor{}
pseudomorphic_strain{}

}

Nested keywords

• crystal_system

• simulation_system

• boxes

crystal_system

Calling sequence

strain{ output_strain_tensor{ crystal_system } }

7.11. strain{ } 995

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

output strain tensor in crystal coordinate system

Example

strain{
output_strain_tensor{

crystal_system = yes
}
pseudomorphic_strain{}

}

simulation_system

Calling sequence

strain{ output_strain_tensor{ simulation_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

output strain tensor in simulation coordinate system (useful if simulation coordinate system differs from crystal
coordinate system)

ò Note

The ordering of the strain tensor components is: 𝜀𝑥𝑥, 𝜀𝑦𝑦, 𝜀𝑧𝑧, 𝜀𝑥𝑦, 𝜀𝑥𝑧, 𝜀𝑦𝑧

Example

strain{
output_strain_tensor{

simulation_system = no
}
pseudomorphic_strain{}

}

996 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

boxes

Calling sequence

strain{ output_strain_tensor{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

strain{
output_strain_tensor{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.14 output_distortion_tensor{ }
Calling sequence

strain{ output_distortion_tensor{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ } and minimized_strain{ } is defined.

Functionality

output distortion tensor 𝑢𝑖𝑗 (which can be nonsymmetric for certain growth directions)
𝑢𝑥𝑥 𝑢𝑦𝑦 𝑢𝑧𝑧 𝑢𝑥𝑦 𝑢𝑦𝑥 𝑢𝑥𝑧 𝑢𝑧𝑥 𝑢𝑦𝑧 𝑢𝑧𝑦 [dimensionless]

Example

strain{
output_distortion_tensor{}
pseudomorphic_strain{}

}

7.11. strain{ } 997

nextnano++ Documentation, Release 1.25.13

Nested keywords

• crystal_system

• simulation_system

• boxes

crystal_system

Calling sequence

strain{ output_distortion_tensor{ crystal_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

output distortion tensor in crystal coordinate system

Example

strain{
output_distortion_tensor{

crystal_system = yes
}
pseudomorphic_strain{}

}

simulation_system

Calling sequence

strain{ output_distortion_tensor{ simulation_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

output distortion tensor in crystal coordinate system

998 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

strain{
output_distortion_tensor{

simulation_system = no
}
pseudomorphic_strain{}

}

boxes

Calling sequence

strain{ output_distortion_tensor{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

strain{
output_distortion_tensor{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.15 output_stress_tensor{ }
Calling sequence

strain{ output_stress_tensor{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ } and minimized_strain{ } is defined.

Functionality

output (symmetric) stress tensor : 𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙 𝜀𝑘𝑙 [GPa]

7.11. strain{ } 999

nextnano++ Documentation, Release 1.25.13

Example

strain{
output_stress_tensor{}
pseudomorphic_strain{}

}

Nested keywords

• crystal_system

• simulation_system

• boxes

crystal_system

Calling sequence

strain{ output_stress_tensor{ crystal_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

output stress tensor in crystal coordinate system

Example

strain{
output_stress_tensor{

crystal_system = yes
}
pseudomorphic_strain{}

}

simulation_system

Calling sequence

strain{ output_stress_tensor{ simulation_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

1000 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

output stress tensor in simulation coordinate system (useful if simulation coordinate system differs from crystal
coordinate system)

ò Note

The ordering of the stress tensor components is: 𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑧𝑧, 𝜎𝑥𝑦, 𝜎𝑥𝑧, 𝜎𝑦𝑧

Example

strain{
output_stress_tensor{

simulation_system = no
}
pseudomorphic_strain{}

}

boxes

Calling sequence

strain{ output_stress_tensor{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

strain{
output_stress_tensor{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.16 output_displacement{ }
Calling sequence

strain{ output_displacement{ } }

Properties

• usage: conditional
• items: maximum 1

7.11. strain{ } 1001

nextnano++ Documentation, Release 1.25.13

Dependencies

• This keyword is allowed if minimized_strain{ } is defined.

Functionality

output displacement vector [nm]

Example

strain{
output_displacement{}
minimized_strain{}

}

Nested keywords

• crystal_system

• simulation_system

crystal_system

Calling sequence

strain{ output_displacement{ crystal_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

output displacement vector in crystal coordinate system

Example

strain{
output_displacement{

crystal_system = yes
}
minimized_strain{}

}

simulation_system

Calling sequence

strain{ output_displacement{ simulation_system } }

1002 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

output displacement vector in simulation coordinate system

Example

strain{
output_displacement{

simulation_system = no
}
minimized_strain{}

}

7.11.17 output_force_density{ }
Calling sequence

strain{ output_force_density{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ } and minimized_strain{ } is defined.

Functionality

output force density vector field 𝑓𝑖 [nN/nm3] (at moment output may be not fully correct; not tested sufficiently)

Example

strain{
output_force_density{}
pseudomorphic_strain{}

}

Nested keywords

• crystal_system

• simulation_system

7.11. strain{ } 1003

nextnano++ Documentation, Release 1.25.13

crystal_system

Calling sequence

strain{ output_force_density{ crystal_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

output force density vector field in crystal coordinate system

Example

strain{
output_force_density{

crystal_system = yes
}
pseudomorphic_strain{}

}

simulation_system

Calling sequence

strain{ output_force_density{ simulation_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

output force density vector field in simulation coordinate system

Example

strain{
output_force_density{

simulation_system = no
}
pseudomorphic_strain{}

}

1004 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.11.18 output_elastic_energy_density{ }
Calling sequence

strain{ output_elastic_energy_density{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ } and minimized_strain{ } is defined.

Functionality

output elastic energy density (12 𝐶𝑖𝑗𝑘𝑙 𝜀𝑖𝑗 𝜀𝑘𝑙) [eV/nm3] The integrated elastic energy is printed out in log file.

Example

strain{
output_elastic_energy_density{}
pseudomorphic_strain{}

}

Nested keywords

• boxes

boxes

Calling sequence

strain{ output_elastic_energy_density{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

strain{
output_elastic_energy_density{

boxes = yes
}
pseudomorphic_strain{}

}

7.11. strain{ } 1005

nextnano++ Documentation, Release 1.25.13

7.11.19 output_polarization_charge{ }
Calling sequence

strain{ output_polarization_charge{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs sum of piezoelectric and pyroelectric polarization charge densities (𝜌pz and 𝜌py) expressed in 1018/cm3to
a file Strain\polarization_charge_density_ptotal.dat.

𝜌pol = 𝜌pz + 𝜌py

Example

strain{
output_polarization_charge{}
pseudomorphic_strain{}

}

7.11.20 output_polarization_charge_components{ }
Calling sequence

strain{ output_polarization_charge_components{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs piezoelectric and pyroelectric charge densities (𝜌pz and 𝜌py) expressed in 1018/cm3to the files
Strain\polarization_charge_density_piezo.dat and Strain\polarization_charge_density_pyro.dat, respectively.

Pyroelectric charges due to spontaneous polarization apply to wurtzite only. It applies to wurtzite only and is
independent of strain. It is present due to spontaneous polarization.

Piezoelectric charges can be calculated for both zinc blende and wurtzite in case the strain was calculated. For
diamond-like crystal structures, that have an inversion center such a Si or Ge, piezoelectric charges do not exist.

Example

strain{
output_polarization_charge_components{}
pseudomorphic_strain{}

}

7.11.21 output_polarization_vector{ }
Calling sequence

strain{ output_polarization_vector{ } }

1006 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } is
defined.

Functionality

Outputs the sum of piezo and pyroelectric polarization vectors expressed in [C/cm2] to files
Strain\polarization_vector_total_simulation.dat and Strain\polarization_vector_total_crystal.dat, depending
on selected otpions.

Example

strain{
output_polarization_vector{}
pseudomorphic_strain{}

}

Nested keywords

• crystal_system

• simulation_system

• boxes

crystal_system

Calling sequence

strain{ output_polarization_vector{ crystal_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Outputs polarization vector in crystal coordinate system to a file Strain\polarization_vector_total_crystal.dat.

Example

strain{
output_polarization_vector{

crystal_system = yes
}

(continues on next page)

7.11. strain{ } 1007

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

pseudomorphic_strain{}
}

simulation_system

Calling sequence

strain{ output_polarization_vector{ simulation_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Outputs polarization vector in simulation coordinate system to a file Strain\polarization_vector_total_simulation.dat.

Example

strain{
output_polarization_vector{

simulation_system = no
}
pseudomorphic_strain{}

}

boxes

Calling sequence

strain{ output_polarization_vector{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

1008 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

strain{
output_polarization_vector{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.22 output_polarization_vector_components{ }
Calling sequence

strain{ output_polarization_vector_components{ } }

Properties

• usage: conditional
• items: maximum 1

Functionality

Outputs piezo and pyroelectric polarization vectors expressed in [C/cm2] separately to files
Strain\polarization_vector_piezo_simulation.dat and Strain\polarization_vector_pyro_simulation.dat or
Strain\polarization_vector_piezo_crystal.dat and Strain\polarization_vector_pyro_crystal.dat, depending on
selected otpions.

Example

strain{
output_polarization_vector_components{}
pseudomorphic_strain{}

}

Nested keywords

• crystal_system

• simulation_system

• boxes

crystal_system

Calling sequence

strain{ output_polarization_vector_components{ crystal_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.11. strain{ } 1009

nextnano++ Documentation, Release 1.25.13

Functionality

output polarization vector in crystal coordinate system to files Strain\polarization_vector_piezo_crystal.dat and
Strain\polarization_vector_pyro_crystal.dat.

Example

strain{
output_polarization_vector_components{

crystal_system = yes
}
pseudomorphic_strain{}

}

simulation_system

Calling sequence

strain{ output_polarization_vector_components{ simulation_system } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

output polarization vector in simulation coordinate system to files Strain\polarization_vector_piezo_simulation.dat
and Strain\polarization_vector_pyro_simulation.dat.

Example

strain{
output_polarization_vector_components{

simulation_system = no
}
pseudomorphic_strain{}

}

boxes

Calling sequence

strain{ output_polarization_vector_components{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

1010 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

Example

strain{
output_polarization_vector_components{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.23 output_lattice_constants{ }
Calling sequence

strain{ output_lattice_constants{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ } and minimized_strain{ } is defined.

Functionality

Output lattice constants to a file . . . \Structure\lattice_constants.dat

Example

strain{
output_lattice_constants{}
pseudomorphic_strain{}

}

Nested keywords

• boxes

boxes

Calling sequence

strain{ output_lattice_constants{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.11. strain{ } 1011

nextnano++ Documentation, Release 1.25.13

Functionality

—

Example

strain{
output_lattice_constants{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.24 output_elastic_constants{ }
Calling sequence

strain{ output_elastic_constants{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ } and minimized_strain{ } is defined.

Functionality

Output elastic constants.

Example

strain{
output_elastic_constants{}
pseudomorphic_strain{}

}

Nested keywords

• boxes

boxes

Calling sequence

strain{ output_elastic_constants{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

1012 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

Example

strain{
output_elastic_constants{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.25 output_piezo_constants{ }
Calling sequence

strain{ output_piezo_constants{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } is
defined.

Functionality

Output piezoelectric constants.

Example

strain{
output_piezo_constants{}
pseudomorphic_strain{}

}

Nested keywords

• boxes

boxes

Calling sequence

strain{ output_piezo_constants{ boxes } }

Properties

• usage: optional
• type: choice

7.11. strain{ } 1013

nextnano++ Documentation, Release 1.25.13

• values: yes or no

• default: no

Functionality

—

Example

strain{
output_piezo_constants{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.26 output_second_order_piezo_constants{ }
Calling sequence

strain{ output_second_order_piezo_constants{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is allowed if one of pseudomorphic_strain{ }, minimized_strain{ }, and import_strain{ } is
defined.

Functionality

Output 2nd order piezoelectric constants.

Example

strain{
output_second_order_piezo_constants{}
pseudomorphic_strain{}

}

Nested keywords

• boxes

boxes

Calling sequence

strain{ output_second_order_piezo_constants{ boxes } }

1014 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

strain{
output_second_order_piezo_constants{

boxes = yes
}
pseudomorphic_strain{}

}

7.11.27 output_pyro_constants{ }
Calling sequence

strain{ output_pyro_constants{ } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

• This keyword is not allowed if crystal_zb{ } is defined.

Functionality

Output pyroelectric constants, i.e. spontaneous polarization constants.

Example

strain{
output_pyro_constants{}
pseudomorphic_strain{}

}

• boxes

boxes

Calling sequence

strain{ output_pyro_constants{ boxes } }

7.11. strain{ } 1015

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

Example

strain{
output_pyro_constants{

boxes = yes
}
pseudomorphic_strain{}

}

7.12 poisson{ }
Calling sequence

poisson{ }

Properties

• usage: optional
• items: maximum 1

Dependencies

• Exactly one of import_potential{ }, electric_field{ }, between_fermi_levels{ }, charge_neutral{ }, and
zero_charge{ } must be specified.

Functionality

Presence of this group is triggering initialization of the Poisson equation. Calling it is required if Poisson equation
is to be solved during a simulation. It gathers keywords controlling initialization of the electrostatic potential,
numerical parameters of solvers, and related outputs.

Examples

poisson{
between_fermi_levels{}

}

poisson{
electric_field{...}

}

1016 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• debuglevel

• import_potential{ }

• import_potential{ import_from }

• import_potential{ component_number }

• electric_field{ }

• electric_field{ direction }

• electric_field{ strength }

• electric_field{ reference_potential }

• between_fermi_levels{ }

• charge_neutral{ }

• zero_charge{ }

• newton_solver{ }

• newton_solver{ iterations }

• newton_solver{ search_steps }

• newton_solver{ residual }

• newton_solver{ gradient_shift }

• linear_solver{ }

• linear_solver{ iterations }

• linear_solver{ abs_accuracy }

• linear_solver{ rel_accuracy }

• linear_solver{ dkr_value }

• linear_solver{ use_cscg }

• linear_solver{ force_diagonal_preconditioner }

• linear_solver{ force_iteration }

• bisection{ }

• bisection{ delta }

• bisection{ residual }

• bisection{ iterations }

• bisection{ robust }

• output_potential{ }

• output_electric_field{ }

• output_electric_displacement{ }

• output_electric_polarization{ }

• output_dielectric_tensor{ }

• output_dielectric_tensor{ boxes }

7.12. poisson{ } 1017

nextnano++ Documentation, Release 1.25.13

7.12.1 debuglevel
Calling sequence

poisson{ debuglevel }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ −1

• default: 𝑧 = 1

• unit: −

Functionality

The higher this integer number, the more information on the numerical solver is printed to the screen output. In-
creasing the respective debuglevel to 2 or more significantly increases the volume of the diagnostic output displayed
in nextnanomat (or a shell window). As result of the additional I/O load, particularly 1D simulations will slow
down correspondingly (especially for current{ } and poisson{ })

Example

poisson{
debuglevel = 2
between_fermi_levels{}

}

7.12.2 import_potential{ }
Calling sequence

poisson{ import_potential{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The global group import{ } must be present.

Functionality

Import electrostatic potential from file or analytic function and use it as initial guess for solving the Poisson equa-
tion. If no Poisson equation is solved, the imported data determines the electrostatic potential that is used through-
out the simulation, i.e. in this case an electrostatic potential can be read in that is fixed during the rest of the
simulation and is used as input to the Schrödinger equation and for the calculation of the densities. The solution
obtained from a problem solved previously using a different meshing is accepted.

Example

1018 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

poisson{
import_potential{...}

}

import{...}

7.12.3 import_potential{ import_from }
Calling sequence

poisson{ import_potential{ import_from } }

Properties

• usage: required
• type: character string

Functionality

Reference to imported data in import{ }. The data may have more than one component (e.g. vector field).

Example

poisson{
import_potential{

import_from = "qpc_landscape"
}

}

import{
file{

name = "qpc_landscape"
...

}
}

7.12.4 import_potential{ component_number }
Calling sequence

poisson{ import_potential{ component_number } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 1

• unit: −

7.12. poisson{ } 1019

nextnano++ Documentation, Release 1.25.13

Functionality

If imported data is a vector field, one may want to specify the component.

Example

poisson{
import_potential{

import_from = "qpc_landscape"
component_number = 2

}
}

import{
file{

name = "qpc_landscape"
...

}
}

7.12.5 electric_field{ }
Calling sequence

poisson{ electric_field{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• electric_field{ direction } must be defined if simulate2D{ } or simulate3D{ } is already present.

Functionality

If electric_field{} is defined, this value in units of [V] is being added to the electrostatic potential.

Examples

poisson{
electric_field{...}

}

global{
simulate1D{ }

}

poisson{
electric_field{

direction = ...
...

}
}

(continues on next page)

1020 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

global{
simulate2D{ }

}

7.12.6 electric_field{ direction }
Calling sequence

poisson{ electric_field{ direction } }

Properties

• usage: optional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• default: 𝑟1 = 1.0, 𝑟2 = 0.0, 𝑟3 = 0.0

• unit: −

Functionality

Orientation of electric field vector with respect to (𝑥, 𝑦, 𝑧) simulation coordinate system. For 1D simulations, the
direction can be omitted and in this case the default will be used.

Examples

poisson{
electric_field{

direction = [-1.0, 0.0, 0.0]
...

}
}

poisson{
electric_field{

direction = [0.0, 0.5, 0.5]
...

}
}

global{
simulate3D{ }

}

7.12.7 electric_field{ strength }
Calling sequence

poisson{ electric_field{ strength } }

7.12. poisson{ } 1021

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: no constraints

• unit: V/m

Functionality

Defines a constant electric field in the structure. If electric_field is defined, and the absolute value is larger than
zero, then it is being used for the electrostatic potential calculation.

Example

poisson{
electric_field{

direction = [-1.0, 0.0, 0.0]
strength = 0.42

}
}

7.12.8 electric_field{ reference_potential }
Calling sequence

poisson{ electric_field{ reference_potential } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: V

Functionality

ò Note

If poisson{ } group is not called at all, then electric potential 𝜑 = 0 is assumed everywhere.

Example

poisson{
electric_field{

direction = [-1.0, 0.0, 0.0]
strength = 0.42
reference_potential = -1.3

}
}

1022 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.12.9 between_fermi_levels{ }
Calling sequence

poisson{ between_fermi_levels{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

When this group is used then the average value of quasi-Fermi levels is taken as the 𝜑𝑖=0 at every non-Dirichlet
point of the simulation grid. Non-Dirichlet points are the grid points in the regions of the simulation, for which
Dirichlet boundary conditions (in this case for potential) are not imposed. The group between_fermi_levels{} is
used by default if the poisson{ } group is not specified in the input file at all.

Example

poisson{
between_fermi_levels{}

}

7.12.10 charge_neutral{ }
Calling sequence

poisson{ charge_neutral{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

The recommended keyword for specifying 𝜑𝑖=0 is charge_neutral{}. By using it, 𝜑𝑖=0 is evaluated by require-
ment of charge neutrality at every point of the simulation grid. The potential is determined by solving charge
neutrality equation with the bisection algorithm.

Example

poisson{
charge_neutral{}

}

7.12.11 zero_charge{ }
Calling sequence

poisson{ zero_charge{ } }

7.12. poisson{ } 1023

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Linear Poisson equation is solved without charges as initialization step of electrostatic potential 𝜑𝑖=0.

7.12.12 newton_solver{ }
Calling sequence

poisson{ newton_solver{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

The Newton solver is used for solving the nonlinear Poisson equation. It is solved with a Newton iteration using in-
exact line search.The Poisson equation is nonlinear because the charge carrier density 𝜌 depends on the electrostatic
potential 𝜑, i.e. 𝜌(𝜑). For each Newton step a system of linear equations,𝐴 ·𝑥 = 𝑏, is solved with a linear solver, in
order to obtain a gradient. This gradient is used for the inexact line search. Generally, low temperature simulations
make the Poisson equation extremely nonlinear at the beginning of the iteration and thus require more line search
steps than usual. Using debuglevel = 2 displays information on the line searchs steps (search_steps): In the
.log file of your simulation, you can find more information on the convergence of the Newton solver Parameters for
solver of nonlinear poisson equation are as follows:

7.12.13 newton_solver{ iterations }
Calling sequence

poisson{ newton_solver{ iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 30

• unit: −

Functionality

Number of iterations for Newton solver

1024 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

poisson{
between_fermi_levels{}
newton_solver{}

}

7.12.14 newton_solver{ search_steps }
Calling sequence

poisson{ newton_solver{ search_steps } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 50

• default: 𝑧 = 30

• unit: −

Functionality

—

Example

poisson{
between_fermi_levels{}
newton_solver{

search_steps = 40
}

}

7.12.15 newton_solver{ residual }
Calling sequence

poisson{ newton_solver{ residual } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 103 for 1D; 𝑟 = 101 for 2D; 𝑟 = 10−4 for 3D

• unit: cm−2 for 1D; cm−1 for 2D; none for 3D

Functionality

—

7.12. poisson{ } 1025

nextnano++ Documentation, Release 1.25.13

Example

poisson{
between_fermi_levels{}
newton_solver{

residual = 1e2
}

}

7.12.16 newton_solver{ gradient_shift }
Calling sequence

poisson{ newton_solver{ gradient_shift } }

Properties

• usage: optional
• type: real number

• values: −10−6 ≤ 𝑟 ≤ 10−6

• default: 𝑟 = 1𝑒− 11

• unit: −

Functionality

Slightly nudges the gradient in case it is effectively zero

Example

poisson{
between_fermi_levels{}
newton_solver{

residual = -1e-8
}

}

7.12.17 linear_solver{ }
Calling sequence

poisson{ linear_solver{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Parameters for linear equation solver in Newton algorithm.

1026 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

poisson{
between_fermi_levels{}
linear_solver{}

}

7.12.18 linear_solver{ iterations }
Calling sequence

poisson{ linear_solver{ iterations } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 1000

• unit: −

Functionality

number of iterations for linear equation solver

Example

poisson{
between_fermi_levels{}
linear_solver{

iterations = 2000
}

}

7.12.19 linear_solver{ abs_accuracy }
Calling sequence

poisson{ linear_solver{ abs_accuracy } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 101 for 1D; 𝑟 = 10−3 for 2D; 𝑟 = 10−8 for 3D

• unit: cm−2 for 1D; cm−1 for 2D; none for 3D

Functionality

—

7.12. poisson{ } 1027

nextnano++ Documentation, Release 1.25.13

Example

poisson{
between_fermi_levels{}
linear_solver{

abs_accuracy = 1e-2
}

}

7.12.20 linear_solver{ rel_accuracy }
Calling sequence

poisson{ linear_solver{ rel_accuracy } }

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 10−6

• default: 𝑟 = 1𝑒− 13

• unit: −

Functionality

—

Example

poisson{
between_fermi_levels{}
linear_solver{

rel_accuracy = 1e-15
}

}

7.12.21 linear_solver{ dkr_value }
Calling sequence

poisson{ linear_solver{ dkr_value } }

Properties

• usage: optional
• type: real number

• values: (..., 0.5]

• default: 𝑟 = 0.0

• unit: −

1028 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

A parameter to speed up calculations, affects preconditioning. Negative values are ignored but will switch to a
slightly slower but more stable preconditioner.

Example

poisson{
between_fermi_levels{}
linear_solver{

dkr_value = 0.1
}

}

7.12.22 linear_solver{ use_cscg }
Calling sequence

poisson{ linear_solver{ use_cscg } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Forces the slower but occasionally more robust CSCG (Composite Step Conjugate Gradient) linear solver to be
used rather than the cg (Conjugate Gradient) linear solver. May occasionally prevent a diagonalization failure.

Example

poisson{
between_fermi_levels{}
linear_solver{

use_cscg = yes
}

}

7.12.23 linear_solver{ force_diagonal_preconditioner }
Calling sequence

poisson{ linear_solver{ force_diagonal_preconditioner } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.12. poisson{ } 1029

nextnano++ Documentation, Release 1.25.13

Functionality

Forces the use of a slower but more robust diagonal preconditioner. Should be used only for debugging purposes,
enabling will make code much slower or prevent convergence. Try setting it to yes in case preconditioning fails or
the linear solver diverges. If set to yes, iterations may have to be further increased.

Example

poisson{
between_fermi_levels{}
linear_solver{

force_diagonal_preconditioner = yes
}

}

7.12.24 linear_solver{ force_iteration }
Calling sequence

poisson{ linear_solver{ force_iteration } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Only for debugging purposes, enabling will make code much slower or prevent convergence

Example

poisson{
between_fermi_levels{}
linear_solver{

force_iteration = yes
}

}

7.12.25 bisection{ }
Calling sequence

poisson{ bisection{ } }

Properties

• usage: optional
• items: maximum 1

1030 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Parameters for bisection search. Used for the initial solution of the Poisson equation when charge_neutral =
yes is set. Bisection is performed in order to achieve local charge neutrality at each grid point:

𝜌 = 𝑝− 𝑛+ 𝑠𝑢𝑚(𝑁𝐷,𝑖𝑜𝑛𝑖𝑧𝑒𝑑)− 𝑠𝑢𝑚(𝑁𝐴,𝑖𝑜𝑛𝑖𝑧𝑒𝑑) = 0

Thus, a true classical charge neutrality is computed for classical carrier and doping situations.

Additionally, bisection is also used to determine the electrostatic potential at which contacts become charge neutral,
which is also needed for ohmic contacts and charge-neutral contacts. The bisection for these contacts is per-
formed in any case, i.e. independently to the bisection used when charge_neutral = yes is set. The bisection
method is a well known algorithm for finding the root of a function. The delta is the so-called convergence toler-
ance parameter. Specifically in nextnano++ we use this method to find the initial solution of the Poisson equation
that generally converges very fast using the default parameters and no extra tuning is required.

Example

poisson{
between_fermi_levels{}
bisection{}

}

7.12.26 bisection{ delta }
Calling sequence

poisson{ bisection{ delta } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 10.0

• unit: eV

Functionality

Range of bisection search.

Example

poisson{
between_fermi_levels{}
bisection{

delta = 7.0
}

}

7.12.27 bisection{ residual }
Calling sequence

poisson{ bisection{ residual } }

7.12. poisson{ } 1031

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 1𝑒3

• unit: cm−3

Functionality

—

Example

poisson{
between_fermi_levels{}
bisection{

residual = 1e1
}

}

7.12.28 bisection{ iterations }
Calling sequence

poisson{ bisection{ iterations } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 100

• default: 𝑧 = 40

• unit: −

Functionality

—

Example

poisson{
between_fermi_levels{}
bisection{

iterations = 60
}

}

1032 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.12.29 bisection{ robust }
Calling sequence

poisson{ bisection{ robust } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

When robust=yes then a slower charge neutrality algorithm designed to be stable for large band gaps or low
temperatures.

ò Note

The bisection algorithm is also used for initializing quasi-Fermi levels in Ohmic and charge-neutral contacts.
In this case, the values specified in the input file may become internally modified. - iterations is always
increased to be at least 40 - residual is reduced to be at most 1e3 cm-3 - robust is always equal yes

Therefore, the contact setup ignores bisection definitions which provide lower accuracy than these default
settings.

The intrinsic density in GaN at T=300 K is of the order 1e-10 cm^-3, even smaller in AlN. Extremely low
carrier densities may be also expected at low temperatures. In such cases the residual needs to be adjusted to
obtain reasonable initialization of the contacts.

. Attention

Reducing the default value of residual may result in significantly longer initialization times, especially in 3D
simulations.

Example

poisson{
between_fermi_levels{}
bisection{

robust = yes
}

}

7.12.30 output_potential{ }
Calling sequence

poisson{ output_potential{ } }

7.12. poisson{ } 1033

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Prints out the electrostatic potential in (eV).

Example

poisson{
between_fermi_levels{}
output_potential{}

}

7.12.31 output_electric_field{ }
Calling sequence

poisson{ output_electric_field{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Prints out the electric field in kv/cm.

Example

poisson{
between_fermi_levels{}
output_electric_field{}

}

7.12.32 output_electric_displacement{ }
Calling sequence

poisson{ output_electric_displacement{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Prints out the output electric displacement

1034 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

poisson{
between_fermi_levels{}
output_electric_displacement{}

}

7.12.33 output_electric_polarization{ }
Calling sequence

poisson{ output_electric_polarization{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Prints out the output electric polarization

Example

poisson{
between_fermi_levels{}
output_electric_polarization{}

}

7.12.34 output_dielectric_tensor{ }
Calling sequence

poisson{ output_dielectric_tensor{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Prints out the output dielectric tensor in simulation coordinate system, as it is used while setting up the sparse
matrix for the Poisson solver.

Example

poisson{
between_fermi_levels{}
output_dielectric_tensor{}

}

7.12. poisson{ } 1035

nextnano++ Documentation, Release 1.25.13

7.12.35 output_dielectric_tensor{ boxes }
Calling sequence

poisson{ output_dielectric_tensor{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

Example

poisson{
between_fermi_levels{}
output_dielectric_tensor{

boxes = yes
}

}

Last update: 02/04/2025

7.13 currents{ }
Calling sequence

currents{ }

Properties

• usage: optional
• items: maximum 1

Dependencies

• insulator_bandgap is not allowed if any of import_electron_fermi_level{ } or import_hole_fermi_level{ } is
already defined.

Functionality

Presence of this group is required to run solver of the current equation. Keywords contained allow selecting mobility
and recombination models for the drift-diffusion model of currents, as well as to control some numerical aspects
of the related solver and outputs.

1036 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Examples

currents{
recombination_model{}

}

currents{
recombination_model{}
insulator_bandgap = 0.5

}

currents{
recombination_model{}
import_electron_fermi_level{}
import_hole_fermi_level{}

}

currents{
recombination_model{}
minimum_density_electrons = 1e-5
minimum_density_holes = 1e-7

}

Nested keywords

7.13.1 debuglevel
Calling sequence

currents{ debuglevel }

Properties

• usage: optional
• type: integer

• unit: −
• values: 𝑧 ≥ −1

• default: 𝑧 = 1

Functionality

The higher this integer number, the more information on the numerical solver is printed to the screen output. In-
creasing the value to 2 or more significantly increases the volume of the diagnostic output displayed in nextnanomat
(or a shell window). As result of the additional I/O load, particularly 1D simulations will slow down correspond-
ingly (especially for currents{ } and poisson{ }).

Examples

currents{
recombination_model{}
debuglevel = 3

}

7.13. currents{ } 1037

nextnano++ Documentation, Release 1.25.13

7.13.2 import_electron_fermi_level{ }
Calling sequence

currents{ import_electron_fermi_level{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The global group import{ } and the nested group import_hole_fermi_level{ } must be defined.

Functionality

The group allows importing electron quasi-Fermi level to initialize related solver.

Please note that, in case importing an already converged result from solving a (classical or quantum) current-
Poisson equation, one should import the electrostatic potential as well to obtain the best convergence.

Moreover, if the imported quasi-Fermi levels and electrostatic potential are resulting from a self-consistent simu-
lation including the Schrödinger equation, and the current simulation is also aiming at solving all three equations
self-consistently, then one should omit the running the classical mode of simulation, namely should not call any of
the groups poisson{ } and current_poisson{ }. The simulation should begin already with solving the Schrödinger
equation to get the best convergence, i.e., quantum_current_poisson{ }.

In case of changed contact bias, one should note that quasi-Fermi levels and electric potential are only imported
for areas where they are not defined by boundary conditions (see contacts{ }), i.e., they cannot be used to replace
these definitions.

. Warning

Importing Fermi levels or potential from a simulation with different contact biases results in discontinuities of
both quasi-Fermi levels and electric potential at the edge of the contacts, which may lead either to nonphysical
results without subsequent iteration or to very poor convergence in subsequent iterations.

Example

currents{
recombination_model{}
import_electron_fermi_level{...}
import_hole_fermi_level{...}

}

import{...}

Nested keywords

• import_from

• component_number

1038 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

import_from

Calling sequence

currents{ import_electron_fermi_level{ import_from } }

Properties

• usage: required
• type: character string

Functionality

A reference name to the path of the imported file defined in import{ }.

Example

currents{
recombination_model{}
import_electron_fermi_level{

import_from = "reference_name_1"
}
import_hole_fermi_level{

import_from = "reference_name_2"
}

}

import{
file{

name = "reference_name_1"
...

}
analytic_function{

name = "reference_name_2"
...

}
}

component_number

Calling sequence

currents{ import_electron_fermi_level{ component_number } }

Properties

• usage: optional
• type: integer

• unit: −
• values: 𝑧 ≥ 1

• default: 𝑧 = 1

7.13. currents{ } 1039

nextnano++ Documentation, Release 1.25.13

Functionality

A number referring to the column of numbers in the imported file to be used as the electron quasi-Fermi level.

Example

currents{
recombination_model{}
import_electron_fermi_level{

import_from = "reference_name"
component_number = 2

}
import_hole_fermi_level{

import_from = "reference_name"
component_number = 3

}
}

import{
file{

name = "reference_name"
...

}
}

7.13.3 import_hole_fermi_level{ }
Calling sequence

currents{ import_hole_fermi_level{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• The global group import{ } and the nested group import_electron_fermi_level{ } must be defined.

Functionality

The group allows importing hole quasi-Fermi level to initialize related solver.

Please note that, in case importing an already converged result from solving a (classical or quantum) current-
Poisson equation, one should import the electrostatic potential as well to obtain the best convergence.

Moreover, if the imported quasi-Fermi levels and electrostatic potential are resulting from a self-consistent simu-
lation including the Schrödinger equation, and the current simulation is also aiming at solving all three equations
self-consistently, then one should omit the running the classical mode of simulation, namely should not call any of
the groups poisson{ } and current_poisson{ }. The simulation should begin already with solving the Schrödinger
equation to get the best convergence, i.e., quantum_current_poisson{ }.

In case of changed contact bias, one should note that quasi-Fermi levels and electric potential are only imported
for areas where they are not defined by boundary conditions (see contacts{ }), i.e., they cannot be used to replace
these definitions.

1040 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

. Warning

Importing Fermi levels or potential from a simulation with different contact biases results in discontinuities of
both quasi-Fermi levels and electric potential at the edge of the contacts, which may lead either to nonphysical
results without subsequent iteration or to very poor convergence in subsequent iterations.

Example

currents{
recombination_model{}
import_electron_fermi_level{...}
import_hole_fermi_level{...}

}

import{...}

Nested keywords

• Maintained Keywords

– import_from

– component_number

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

import_from

Calling sequence

currents{ import_hole_fermi_level{ import_from } }

Properties

• usage: required
• type: character string

Functionality

A reference name to the path of the imported file defined in import{ }.

Example

currents{
recombination_model{}
import_electron_fermi_level{

import_from = "reference_name_1"
}

(continues on next page)

7.13. currents{ } 1041

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

import_hole_fermi_level{
import_from = "reference_name_2"

}
}

import{
file{

name = "reference_name_1"
...

}
analytic_function{

name = "reference_name_2"
...

}
}

component_number

Calling sequence

currents{ import_hole_fermi_level{ component_number } }

Properties

• usage: optional
• type: integer

• unit: −
• values: 𝑧 ≥ 1

• default: 𝑧 = 1

Functionality

A number referring to the column of numbers in the imported file to be used as the electron quasi-Fermi level.

Example

currents{
recombination_model{}
import_electron_fermi_level{

import_from = "reference_name"
component_number = 2

}
import_hole_fermi_level{

import_from = "reference_name"
component_number = 3

}
}

import{
file{

name = "reference_name"
...

}
}

1042 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.13.4 insulator_bandgap
Calling sequence

currents{ insulator_bandgap }

Properties

• usage: optional
• type: real number

• unit: eV
• values: [1e-6, ...)

• default: 𝑟 = 1.0

Functionality

This keyword, 𝐼gap, initializes the quasi-Fermi levels following the formula:

div exp (𝐸gap/𝐼gap)∇𝐸F = 0,

where the intrinsic density is assumed to exponentially depend on the band gap 𝐸gap with 𝐼gap as a parameter.

A large value (relative to band gap) of 𝐼gap allows the Fermi level to drop slowly through antire simulation domain.
A small value of 𝐼gap results in the quasi-Fermi levels drop rapidly in barriers and makes it flat in small band gap
regions.

Adjusting this keyword can improve convergence by changing the initial conditions for the algorithm.

Example

currents{
recombination_model{}
insulator_bandgap = 0.5

}

7.13.5 electron_mobility{ }
Calling sequence

currents{ electron_mobility{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Selects mobility models for electrons. Both low-field and high-field mobility models are possible to be selected in
this group.

Example

currents{
recombination_model{}
electron_mobility{

low_field_model = constant
}

}

7.13. currents{ } 1043

nextnano++ Documentation, Release 1.25.13

Nested keywords

• low_field_model

• high_field_model

low_field_model

Calling sequence

currents{ electron_mobility{ low_field_model } }

Properties

• usage: required
• type: choice

• values: constant or masetti or arora or minimos

Functionality

Selects low-field model for electrons.

choice model database
constant Constant model database{ . . . { mobility_constant{} } }
masetti Masetti model database{ . . . { mobility_masetti{} } }
arora Arora model database{ . . . { mobility_arora{} } }
minimos MINIMOS 6 model database{ . . . { mobility_minimos{} } }

Example

currents{
recombination_model{}
electron_mobility{

low_field_model = masetti
}

}

high_field_model

Calling sequence

currents{ electron_mobility{ high_field_model } }

Properties

• usage: optional
• type: choice

• values: none or haensch or canali or transferred or eastman or eastman4

• default: none

1044 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Selects high-field mobility model for electrons.

choice model database
none High-field models are not used —
haensch Hänsch model mobility_haensch{ }
canali Extended Canali model mobility_canali{ }
transferred Hänsch model mobility_transferred{ }
eastman Eastman-Tiwari-Shur model with standard parametrization mobility_eastman{ }
eastman4 Eastman-Tiwari-Shur model with observable parametrization mobility_eastman4{ }

. Warning

Convergence may be poor or non-existent for some choices of parameters. One should pay attention to selecting
high-field model which is suitable for the semiconductor system of choice

7.13.6 hole_mobility{ }
Calling sequence

currents{ hole_mobility{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Selects mobility models for holes. Both low-field and high-field mobility models are possible to be selected in this
group.

Example

currents{
recombination_model{}
hole_mobility{

low_field_model = constant
}

}

Nested keywords

• low_field_model

• high_field_model

7.13. currents{ } 1045

nextnano++ Documentation, Release 1.25.13

low_field_model

Calling sequence

currents{ hole_mobility{ low_field_model } }

Properties

• usage: required
• type: choice

• values: constant or masetti or arora or minimos

Functionality

Selects low-field model for holes.

choice model database
constant Constant model database{ . . . { mobility_constant{} } }
masetti Masetti model database{ . . . { mobility_masetti{} } }
arora Arora model database{ . . . { mobility_arora{} } }
minimos MINIMOS 6 model database{ . . . { mobility_minimos{} } }

Example

currents{
recombination_model{}
hole_mobility{

low_field_model = masetti
}

}

high_field_model

Calling sequence

currents{ hole_mobility{ high_field_model } }

Properties

• usage: optional
• type: choice

• values: none or haensch or canali or transferred or eastman or eastman4

• default: none

Functionality

Selects high-field mobility model for holes.

choice model database
none High-field models are not used —
haensch Hänsch model mobility_haensch{ }
canali Extended Canali model mobility_canali{ }
transferred Hänsch model mobility_transferred{ }
eastman Eastman-Tiwari-Shur model with standard parametrization mobility_eastman{ }
eastman4 Eastman-Tiwari-Shur model with observable parametrization mobility_eastman4{ }

1046 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

. Warning

Convergence may be poor or non-existent for some choices of parameters. One should pay attention to selecting
high-field model which is suitable for the semiconductor system of choice

7.13.7 recombination_model{ }
Calling sequence

currents{ recombination_model{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

This group controls which recombination processes are included in the drift-diffusion model, and if generation for
these processes is taken into account as well.

Generation process can be is enabled and disabled using enable_generation for all recombination processes at
once. Thus, enabling only generation without also enabling recombination is not possible (enable_generation
= yes has no effect then).

If radiative recombination is calculated (radiative = yes), then the photo_current is included in
the file IV_characteristics.dat. Additionally, the internal quantum efficiency is written to the file
internal_quantum_efficiency.dat.

Example

currents{
recombination_model{}

}

Nested keywords

• SRH

• Auger

• radiative

• enable_generation

SRH

Calling sequence

currents{ recombination_model{ SRH } }

Properties

• usage: optional
• type: choice

7.13. currents{ } 1047

nextnano++ Documentation, Release 1.25.13

• values: yes or no

• default: no

Functionality

If set to yes then bulk Shockley-Read-Hall recombination (Shockley-Read-Hall (SRH) recombination) is included
in the model.

Example

currents{
recombination_model{

SRH = yes
}

}

Auger

Calling sequence

currents{ recombination_model{ Auger } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then bulk Auger recombination (Auger recombination) is included in the model.

Example

currents{
recombination_model{

Auger = yes
}

}

radiative

Calling sequence

currents{ recombination_model{ radiative } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

1048 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

If set to yes then bulk radiative recombination (direct recombination) (Radiative recombination) is included in the
model.

Example

currents{
recombination_model{

radiative = yes
}

}

enable_generation

Calling sequence

currents{ recombination_model{ enable_generation } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If set to yes then bulk generation processes for SRH and Auger recombination processes, if they are included in
the model.

Example

currents{
recombination_model{

SRH = yes
Auger = yes
enable_generation = yes

}
}

7.13.8 linear_solver{ }
Calling sequence

currents{ linear_solver{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• extended_accuracy is not allowed if any of global{ simulate2D{ } } or global{ simulate3D{ } } is already
defined.

7.13. currents{ } 1049

nextnano++ Documentation, Release 1.25.13

Functionality

This group allows modifying parameters impacting algorithm of linear equation solver in current equation.

Examples

currents{
recombination_model{}
linear_solver{}

}

currents{
recombination_model{}
linear_solver{

extended_accuracy = 1
}

}

global{
simulate1D{}

}

Nested keywords

• iterations

• abs_accuracy

• rel_accuracy

• dkr_value

• use_cscg

• force_diagonal_preconditioner

• force_iteration

• extended_accuracy

iterations

Calling sequence

currents{ linear_solver{ iterations } }

Properties

• usage: optional
• type: integer

• unit: −
• values: 𝑧 ≥ 1

• default: 𝑧 = 10000

1050 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Maximum number of iterations

Example

currents{
recombination_model{}
linear_solver{

iterations = 50000
}

}

abs_accuracy

Calling sequence

currents{ linear_solver{ abs_accuracy } }

Properties

• usage: optional
• type: real number

• unit: −
• values: [0.0, ...)

• default: 𝑟 = 1𝑒− 30

Functionality

—

Example

currents{
recombination_model{}
linear_solver{

abs_accuracy = 1e-32
}

}

rel_accuracy

Calling sequence

currents{ linear_solver{ rel_accuracy } }

Properties

• usage: optional
• type: real number

• unit: −
• values: 0.0 ≤ 𝑟 ≤ 10−6

• default: 𝑟 = 1𝑒− 13

7.13. currents{ } 1051

nextnano++ Documentation, Release 1.25.13

Functionality

—

Example

currents{
recombination_model{}
linear_solver{

rel_accuracy = 1e-15
}

}

dkr_value

Calling sequence

currents{ linear_solver{ dkr_value } }

Properties

• usage: optional
• type: real number

• unit: −
• values: 0.0 ≤ 𝑟 ≤ 0.5

• default: 𝑟 = −1.0

Functionality

A parameter to speed up calculations, affects preconditioning

ò Note

Negative values are ignored but will switch to a slightly slower but more stable preconditioning.

Example

currents{
recombination_model{}
linear_solver{

dkr_value = 0.1
}

}

use_cscg

Calling sequence

currents{ linear_solver{ use_cscg } }

1052 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Forces the slower but occasionally more robust CSCG (Composite Step Conjugate Gradient) linear solver to be
used rather than the cg (Conjugate Gradient) linear solver. May occasionally prevent a diagonalization failure.

Example

currents{
recombination_model{}
linear_solver{

use_cscg = yes
}

}

force_diagonal_preconditioner

Calling sequence

currents{ linear_solver{ force_diagonal_preconditioner } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Only for debugging purposes, enabling will make code much slower or prevent convergence. Forces the use of a
slower but more robust diagonal preconditioner.

This keyword should be used only for debugging purposes. Enabling the diagonal preconditioner makes algorithm
much slower or prevent convergence. It can be enabled in case when then default preconditioning fails or the linear
solver diverges. In such circumstances, also iterations may require further increasing.

Example

currents{
recombination_model{}
linear_solver{

force_diagonal_preconditioner = yes
}

}

7.13. currents{ } 1053

nextnano++ Documentation, Release 1.25.13

force_iteration

Calling sequence

currents{ linear_solver{ force_iteration } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

The keyword should be used only for debugging purposes. It will force iteration to reach maximum set by iterations
regardless of whether the requested accuracy was reached or not.

Example

currents{
recombination_model{}
linear_solver{

force_iteration = yes
}

}

extended_accuracy

Calling sequence

currents{ linear_solver{ extended_accuracy } }

Properties

• usage: optional
• type: integer

• unit: −
• values: 𝑧 = 0 or 𝑧 = 1

• default: 𝑧 = 0

Functionality

If set to 1, then current equation is solved using slower but more accurate solver. It is only implemented for not
periodic 1D simulations.

. Warning

This feature is at the prototyping stage and may not bring expected improvements.

Example

1054 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

currents{
recombination_model{}
linear_solver{

extended_accuracy = 1
}

}

Last update: 02/04/2025

7.13.9 minimum_density_electrons
Calling sequence

currents{ minimum_density_electrons }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1020

• default: 𝑟 = 1.0

• unit: cm−3

Functionality

A keyword allowing to improve the condition number of the matrix representing the current equation.

Minimum carrier density, 𝜌min, is defined for electrons as the lower limit for the respective density distributions
entering the drift-diffusion current equations. If a density distribution computed based on quasi-Fermi levels and
densities of states for a given carrier type, 𝜌sim (𝑥), is smaller than 𝜌min within some region, then its values in the
region are replaced by the 𝜌min for the equation. In other words, electron distribution entering the current equation,
𝜌current (𝑥), is given by

𝜌current (𝑥) = max [𝜌sim (𝑥) , 𝜌min] .

This operation is not visible in the output files.

As the drift-diffusion current is proportional to the charge carrier density, this keyword also indirectly sets the lower
limit of the electron current.

Aside from the rather practical issue that real-life minority carrier densities are not in thermal equilibrium and thus
never become as small as predicted, it seems nonphysical that one carrier per kilometer can be relevant in semi-
conductors or insulators. Therefore, the minimum density parameter as specified for the current equation typically
should is not be smaller than 10−10 cm−3. This value corresponds to a conductivity 10 orders of magnitude lower
than of the best insulators.

ò Note

The 𝜌min affects only the current operators (∇ 𝜇 𝜌current ∇) and the corresponding current for each type of
carriers. Thus it has no direct influence on computed densities, Poisson equation, etc.

� Hint

7.13. currents{ } 1055

https://en.wikipedia.org/wiki/Condition_number

nextnano++ Documentation, Release 1.25.13

• The 𝜌min might have to be increased in order to obtain convergence for the drift-diffusion current equa-
tions.

• The 𝜌min should be as low as possible, depending on the problem solved.

• The 𝜌min can be chosen as large as possible but should be small enough to obtain convergence with
meaningful results.

• Typically 𝜌min = 1012 cm−3 seems to be already too high.

. Attention

Setting the minimum density far too low may result in convergence issues or even in the matrix solvers exiting
with an error message. The smallest reasonable number depends on the simulated system. Currently the
algorithm allows using the value as small as 10−100 cm−3. Any smaller values are rounded up to this number.

When restricting effective densities in the current equations from below, one should consider impact on the physics
of the modelled device, i.e., increasing minimum densities decreases resistivity of insulating regions.

Example

currents{
recombination_model{}
minimum_density_electrons = 1e10 # cm^-3

}

Unimportant currents in Insulators and Barriers The computed current of a given type of carriers often varies over
10 orders of magnitude between barriers (insulators) and conducting regions as a result of extremely small carrier
densities in the barriers. If the density in the latter regions reaches values below approximately 103 cm−3, then
the current flowing through them can be practically considered zero in comparison to the total current present
in the structure. As a result the matrix representing the current equation, entering the linear solver, is not well
conditioned and convergence of the drift-diffusion current equations may be strongly affected by round-off errors.
If, the current running through the barriers is not important from the physical point of view, such that increasing
it a number of orders of magnitude does not change the final result (e.g., I-V characteristic), then increasing the
𝜌min to overestimate the current in these regions is a very good way to restore or improve the convergence while
preserving meaningful results.

Currents within intrinsic materials If one requires to properly compute the currents within intrinsic regions, then
the optimal 𝜌min should be chosen such that 𝜌min < 𝜌sim (𝑥) in these regions. The maximum value of a properly
chosen 𝜌min strongly depends on the band gap of the considered material.

Undoped wide-band-gap and highly-doped semiconductors Minority carriers in highly-doped semiconductors or
any carriers in undoped wide-band-gap semiconductors have extremely small equilibrium densities (much less than
1.0 cm−3). Computing all currents in these doped materials or for wide-band-gap semiconductor heterostructures,
will typically require also considering currents over 15 orders of magnitude higher, which may lead to complete
breakdown of the solvers for current equation due to underflow.

7.13.10 minimum_density_holes
Calling sequence

currents{ minimum_density_holes }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1020

1056 Chapter 7. Keywords

https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Arithmetic_underflow

nextnano++ Documentation, Release 1.25.13

• default: 𝑟 = 1.0

• unit: cm−3

Functionality

A keyword allowing to improve the condition number of the matrix representing the current equation.

Minimum carrier density, 𝜌min, is defined for holes as the lower limit for the respective density distributions en-
tering the drift-diffusion current equations. If a density distribution computed based on quasi-Fermi levels and
densities of states for a given carrier type, 𝜌sim (𝑥), is smaller than 𝜌min within some region, then its values in the
region are replaced by the 𝜌min for the equation. In other words, hole distribution entering the current equation,
𝜌current (𝑥), is given by

𝜌current (𝑥) = max [𝜌sim (𝑥) , 𝜌min] .

This operation is not visible in the output files.

As the drift-diffusion current is proportional to the charge carrier density, this keyword also indirectly sets the lower
limit of the hole current.

Aside from the rather practical issue that real-life minority carrier densities are not in thermal equilibrium and thus
never become as small as predicted, it seems nonphysical that one carrier per kilometer can be relevant in semi-
conductors or insulators. Therefore, the minimum density parameter as specified for the current equation typically
should is not be smaller than 10−10 cm−3. This value corresponds to a conductivity 10 orders of magnitude lower
than of the best insulators.

ò Note

The 𝜌min affects only the current operators (∇ 𝜇 𝜌current ∇) and the corresponding current for each type of
carriers. Thus it has no direct influence on computed densities, Poisson equation, etc.

� Hint

• The 𝜌min might have to be increased in order to obtain convergence for the drift-diffusion current equa-
tions.

• The 𝜌min should be as low as possible, depending on the problem solved.

• The 𝜌min can be chosen as large as possible but should be small enough to obtain convergence with
meaningful results.

• Typically 𝜌min = 1012 cm−3 seems to be already too high.

. Attention

Setting the minimum density far too low may result in convergence issues or even in the matrix solvers exiting
with an error message. The smallest reasonable number depends on the simulated system. Currently the
algorithm allows using the value as small as 10−100 cm−3. Any smaller values are rounded up to this number.

When restricting effective densities in the current equations from below, one should consider impact on the physics
of the modelled device, i.e., increasing minimum densities decreases resistivity of insulating regions.

Example

currents{
recombination_model{}

(continues on next page)

7.13. currents{ } 1057

https://en.wikipedia.org/wiki/Condition_number

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

minimum_density_holes = 1e10 # cm^-3
}

Unimportant currents in Insulators and Barriers The computed current of a given type of carriers often varies over
10 orders of magnitude between barriers (insulators) and conducting regions as a result of extremely small carrier
densities in the barriers. If the density in the latter regions reaches values below approximately 103 cm−3, then
the current flowing through them can be practically considered zero in comparison to the total current present
in the structure. As a result the matrix representing the current equation, entering the linear solver, is not well
conditioned and convergence of the drift-diffusion current equations may be strongly affected by round-off errors.
If, the current running through the barriers is not important from the physical point of view, such that increasing
it a number of orders of magnitude does not change the final result (e.g., I-V characteristic), then increasing the
𝜌min to overestimate the current in these regions is a very good way to restore or improve the convergence while
preserving meaningful results.

Currents within intrinsic materials If one requires to properly compute the currents within intrinsic regions, then
the optimal 𝜌min should be chosen such that 𝜌min < 𝜌sim (𝑥) in these regions. The maximum value of a properly
chosen 𝜌min strongly depends on the band gap of the considered material.

Undoped wide-band-gap and highly-doped semiconductors Minority carriers in highly-doped semiconductors or
any carriers in undoped wide-band-gap semiconductors have extremely small equilibrium densities (much less than
1.0 cm−3). Computing all currents in these doped materials or for wide-band-gap semiconductor heterostructures,
will typically require also considering currents over 15 orders of magnitude higher, which may lead to complete
breakdown of the solvers for current equation due to underflow.

7.13.11 maximum_density_electrons
Calling sequence

currents{ maximum_density_electrons }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1030

• default: 𝑟 = 1𝑒30

• unit: cm−3

Functionality

A keyword allowing to improve the condition number of the matrix representing the current equation.

Maximum carrier density, 𝜌max, is defined for holes as the upper limit for the respective density distributions
entering the drift-diffusion current equations. If a density distribution computed based on quasi-Fermi levels and
densities of states for holes, 𝜌sim (𝑥), is higher than 𝜌max within some region, then its values in the region are
replaced by the 𝜌max for the equation. In other words, every carrier distribution entering the current equation,
𝜌current (𝑥), is given by

𝜌current (𝑥) = min [𝜌sim (𝑥) , 𝜌max] .

This operation is not visible in the output files.

As the drift-diffusion current is proportional to the charge carrier density, this keyword also indirectly sets the upper
limit of the current.

1058 Chapter 7. Keywords

https://en.wikipedia.org/wiki/Round-off_error
https://en.wikipedia.org/wiki/Arithmetic_underflow
https://en.wikipedia.org/wiki/Condition_number

nextnano++ Documentation, Release 1.25.13

ò Note

The 𝜌max affects only the current operators (∇ 𝜇 𝜌current ∇) and the corresponding current for each type of
carriers. Thus it has no direct influence on computed densities, Poisson equation, etc.

� Hint

• The 𝜌max might have to be reduced in order to stabilize convergence for the drift-diffusion current equa-
tions.

• The 𝜌max should be as high enough to represent current of majority carriers.

• The 𝜌max can be chosen as low as possible but should be large enough to not affect the results.

When restricting effective densities in the current equations from above, one should consider impact on the physics
of the modelled device, i.e., decreasing maximum densities may decrease conductivity of conducting regions.

Example

currents{
recombination_model{}
maximum_density_electrons = 1e10 # cm^-3

}

7.13.12 maximum_density_holes
Calling sequence

currents{ maximum_density_holes }

Properties

• usage: optional
• type: real number

• values: 10−100 ≤ 𝑟 ≤ 1030

• default: 𝑟 = 1𝑒30

• unit: cm−3

Functionality

A keyword allowing to improve the condition number of the matrix representing the current equation.

Maximum carrier density, 𝜌max, is defined for holes as the upper limit for the respective density distributions
entering the drift-diffusion current equations. If a density distribution computed based on quasi-Fermi levels and
densities of states for holes, 𝜌sim (𝑥), is higher than 𝜌max within some region, then its values in the region are
replaced by the 𝜌max for the equation. In other words, every carrier distribution entering the current equation,
𝜌current (𝑥), is given by

𝜌current (𝑥) = min [𝜌sim (𝑥) , 𝜌max] .

This operation is not visible in the output files.

As the drift-diffusion current is proportional to the charge carrier density, this keyword also indirectly sets the upper
limit of the current.

7.13. currents{ } 1059

https://en.wikipedia.org/wiki/Condition_number

nextnano++ Documentation, Release 1.25.13

ò Note

The 𝜌max affects only the current operators (∇ 𝜇 𝜌current ∇) and the corresponding current for each type of
carriers. Thus it has no direct influence on computed densities, Poisson equation, etc.

� Hint

• The 𝜌max might have to be reduced in order to stabilize convergence for the drift-diffusion current equa-
tions.

• The 𝜌max should be as high enough to represent current of majority carriers.

• The 𝜌max can be chosen as low as possible but should be large enough to not affect the results.

When restricting effective densities in the current equations from above, one should consider impact on the physics
of the modelled device, i.e., decreasing maximum densities may decrease conductivity of conducting regions.

Example

currents{
recombination_model{}
maximum_density_holes = 1e10 # cm^-3

}

7.13.13 electron_contact
Calling sequence

currents{ electron_contact }

Properties

• usage: optional
• type: character string

Functionality

Current equation for electrons around a contact having a name assigned to this keyword is solved with enhanced
accuracy.

Example

currents{
recombination_model{}
electron_contact = "contact_name"

}

contacts{
schottky{

name = "contact_name"
...

}
}

1060 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.13.14 hole_contact
Calling sequence

currents{ hole_contact }

Properties

• usage: optional
• type: character string

Functionality

Current equation for holes around a contact having a name assigned to this keyword is solved with enhanced
accuracy.

Example

currents{
recombination_model{}
hole_contact = "contact_name"

}

contacts{
schottky{

name = "contact_name"
...

}
}

7.13.15 output_fermi_levels{ }
Calling sequence

currents{ output_fermi_levels{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs quasi-Fermi levels for electrons and holes in eV.

Example

currents{
recombination_model{}
output_fermi_levels{}

}

7.13.16 output_fermi_level_difference{ }
Calling sequence

currents{ output_fermi_level_difference{ } }

7.13. currents{ } 1061

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs the difference of quasi-Fermi levels for electrons and holes ∆𝐸F = 𝐸F,n − 𝐸F,p in eV. By overlaying the
quasi-Fermi level difference over the band gaps, you may determine where and involving which bands lasing may
occur.

Example

currents{
recombination_model{}
output_fermi_level_difference{}

}

7.13.17 output_velocities{ }
Calling sequence

currents{ output_velocities{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs electron and hole drift velocities in cm/s.

Example

currents{
recombination_model{}
output_velocities{}

}

7.13.18 output_forces{ }
Calling sequence

currents{ output_forces{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs driving forces of electrons and holes eV/nm

1062 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

currents{
recombination_model{}
output_forces{}

}

7.13.19 output_currents{ }
Calling sequence

currents{ output_currents{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs the electron and hole current densities expressed in A/cm2.

The electron, hole, and total currents (integrated over the contacts surfaces) are always written into the files
IV_electrons.dat, IV_holes.dat, and IV_characteristics.dat in [A/cm^2], [A/cm], and [A] for 1D, 2D, and 3D
simulations, respectively. If radiative recombination is used, then the file IV_characteristics.dat also contains the
photo current.

In all IV_*.dat files, the first columns indicate the voltages at each contact. Typically, the first column should be
the one that is swept, as it is then easier to plot the results within nextnanomat as the first column is the x-axis in
such a plot. You can switch the columns by reordering the contacts, see contacts{ }. The consumed power is written
in IV_Power.dat in [W/cm^2], [W/cm], and [W] for 1D, 2D, and 3D simulations, respectively. The emitted power
column is added if the energy resolved density integration is enabled.

Example

currents{
recombination_model{}
output_currents{}

}

7.13.20 output_power_density{ }
Calling sequence

currents{ output_power_density{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs power density of Joule heating expressed in W/cm3.

7.13. currents{ } 1063

nextnano++ Documentation, Release 1.25.13

Example

currents{
recombination_model{}
output_power_density{}

}

7.13.21 output_mobilities{ }
Calling sequence

currents{ output_mobilities{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs the electron and hole mobilities expressed in cm2/V s

Example

currents{
recombination_model{}
output_mobilities{}

}

Nested keywords

• boxes

boxes

Calling sequence

currents{ output_mobilities{ boxes } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at interfaces (in 2D four points,
in 3D eight points)

1064 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Example

currents{
recombination_model{}
output_mobilities{

boxes = yes
}

}

7.13.22 output_recombination{ }
Calling sequence

currents{ output_recombination{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs all recombination and generation rates (if included in the model) expressed in 1018/cm3 s.

Example

currents{
recombination_model{}
output_recombination{}

}

7.13.23 output_injection{ }
Calling sequence

currents{ output_injection{ } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs all injection rates (if included in the model) expressed in 1018/cm3 s.

Example

currents{
recombination_model{}
output_injection{}

}

7.14 quantum{ }
Calling sequence

quantum{ }

7.14. quantum{ } 1065

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

A group of keywords specifying quantum models, i.e. how the Schrödinger equation should be solved.

Nested keywords

7.14.1 debuglevel
Calling sequence

quantum{ debuglevel = ... }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 1

Functionality

The higher this integer number, the more information on the numerical solver is printed to the screen output.
Increasing the respective debug level to 2 or more significantly increases the volume of the diagnostic output
displayed in nextnanomat (or a shell window). As result of the additional I/O load, particularly 1D simulations
will slow down correspondingly (especially for current{} and poisson{ }).

7.14.2 allow_overlapping_regions
Calling sequence

quantum{ allow_overlapping_regions = ... }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Overlapping quantum regions computing the same band(s) are not allowed. Note that, in case such overlap is
allowed, the quantum densities of the respective regions are added in the overlap region and a too high density will
be computed. Thus, please only allow such overlap when the quantum densities are known to be extremely small
in the overlap region.

Last update: 27/05/2025

1066 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

7.14.3 region{ }
Calling sequence

quantum{ region{ } }

Properties

• usage: optional
• items: no constraints

Functionality

It is the most important nested group in quantum{ }. It allows to define a region in the simulation domain and
assign a specific model to solve the Schrödinger equation inside the defined region.

Nested keywords

name

Calling sequence

quantum{ region{ name = "..." } }

Properties

• usage: required
• type: character string

Functionality

Provides a name for the quantum region. This name can be further used to link other models to this specific region.

no_density

Calling sequence

quantum{ region{ no_density = "..." } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

yes→ solutions of the Schrödinger equation for this region are not used for computation of charge densities. no
→ solutions of the Schrödinger equation for this region are used for computation of charge densities.

x

Calling sequence

quantum{ region{ x = [..., ...] } }

7.14. quantum{ } 1067

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• units: [𝑟1] = nm, [𝑟2] = nm

Functionality

Defines the range of quantum region along the x-axis of the simulation domain with 𝑟1 and 𝑟2 defining the beginning
and the end of the range, respectively.

y

Calling sequence

quantum{ region{ y = [..., ...] } }

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• units: [𝑟1] = nm, [𝑟2] = nm

Dependencies

— Can be used for 2D or 3D calculations only.

Functionality

Defines the range of quantum region along the y-axis of the simulation domain with 𝑟1 and 𝑟2 defining the beginning
and the end of the range, respectively.

z

Calling sequence

quantum{ region{ z = [..., ...] } }

Properties

• usage: optional
• type: vector of 2 real numbers: (𝑟1, 𝑟2)

• values: no constraints

• default: 𝑟1 = 0.0, 𝑟2 = 0.0

• units: [𝑟1] = nm, [𝑟2] = nm

1068 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Dependencies

— Can be used for 3D calculation only.

Functionality

Defines the range of quantum region along the z-axis of the simulation domain with 𝑟1 and 𝑟2 defining the beginning
and the end of the range, respectively.

spin_quantization_axis

Calling sequence

quantum{ region{ spin_quantization_axis = [..., ..., ...] } }

Properties

• usage: conditional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• —

• units: [𝑟1] = nm, [𝑟2] = nm

Dependencies

—

Functionality

Defines spin quantization axis within the simulation coordinate system.

Last update: 27/05/2025

array_x{ }, array_y{ }, array_z{ }

Calling sequence

quantum{ region{ array_x{ } } }

quantum{ region{ array_y{ } } }

quantum{ region{ array_z{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

—

Functionality

—

7.14. quantum{ } 1069

nextnano++ Documentation, Release 1.25.13

Nested keywords

• array_x{ shift }, . . .
• array_x{ min }, . . .

• array_x{ max }, . . .

array_x{ shift }, . . .

Calling sequence

quantum{ region{ array_x{ shift = ... } } }

quantum{ region{ array_y{ shift = ... } } }

quantum{ region{ array_z{ shift = ... } } }

Properties

• usage: required
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

—

array_x{ min }, . . .

Calling sequence

quantum{ region{ array_x{ min = ... } } }

quantum{ region{ array_y{ min = ... } } }

quantum{ region{ array_z{ min = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• default: 𝑧 = 0

Functionality

—

array_x{ max }, . . .

Calling sequence

quantum{ region{ array_x{ max ... } } }

quantum{ region{ array_y{ max ... } } }

quantum{ region{ array_z{ max ... } } }

1070 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 0

Functionality

—

Last update: 27/05/2025

array2_x{ }, array2_y{ }, array2_z{ }

Calling sequence

quantum{ region{ array2_x{ } } }

quantum{ region{ array2_y{ } } }

quantum{ region{ array2_z{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

—

Functionality

—

Nested keywords

• array2_x{ shift }, . . .
• array2_x{ min }, . . .

• array2_x{ max }, . . .

array2_x{ shift }, . . .

Calling sequence

quantum{ region{ array2_x{ shift = ... } } }

quantum{ region{ array2_y{ shift = ... } } }

quantum{ region{ array2_z{ shift = ... } } }

7.14. quantum{ } 1071

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

—

array2_x{ min }, . . .

Calling sequence

quantum{ region{ array2_x{ min = ... } } }

quantum{ region{ array2_y{ min = ... } } }

quantum{ region{ array2_z{ min = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≤ 0

• default: 𝑧 = 0

Functionality

—

array2_x{ max }, . . .

Calling sequence

quantum{ region{ array2_x{ max ... } } }

quantum{ region{ array2_y{ max ... } } }

quantum{ region{ array2_z{ max ... } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 0

1072 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

Last update: 27/05/2025

Gamma{}, L{}, X{}, Delta{}, HH{}, LH{}, SO{}

Calling sequence

quantum{ region{ Gamma{ } } }

quantum{ region{ L{ } } }

quantum{ region{ X{ } } }

quantum{ region{ Delta{ } } }

quantum{ region{ HH{ } } }

quantum{ region{ LH{ } } }

quantum{ region{ SO{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Gamma{}, L{}, X{}, Delta{}, HH{}, LH{}, and SO{} trigger solving single-band effective mass Schrödinger
equation for the Gamma conduction band, the L conduction band, the X conduction band, the Delta conduction
band, the heavy hole valence band, the light hole valence band, and the split-off hole valence band, respectively.

Nested keywords

• force_complex_solver
• force_pauli_solver
• accuracy
• iterations
• num_ev
• lapack{ }
• arpack{ }
• preconditioner
• order_polynomial
• order_chebyshev
• order_legendre
• cutoff
• abs_cutoff
• k_integration{ }
• k_integration{ relative_size }
• k_integration{

max_symmetry }
• k_integration{ num_points }
• k_integration{

num_subpoints }
• k_integration{

force_k0_subspace }
• dispersion{ }
• dispersion{ path{ } }
• dispersion{ path{ name } }
• dispersion{ path{ point{ } } }
• dispersion{ path{ point{ k } }

}
• dispersion{ path{ spacing } }
• dispersion{ path{ num_points

} }
• dispersion{ lines{ } }
• dispersion{ lines{ name } }
• dispersion{ lines{ k_max } }
• dispersion{ lines{ spacing } }
• dispersion{ full{ } }
• dispersion{ full{ name } }
• dispersion{ full{ kxgrid{ }, . . .

} }
• dispersion{ full{ kxgrid{ line{

} }, . . . } }
• dispersion{ full{ kxgrid{ line{

pos } }, . . . } }
• dispersion{ full{ kxgrid{ line{

spacing } }, . . . } }
• dispersion{ superlattice{ } }
• dispersion{ superlattice{

name } }
• dispersion{ superlattice{

num_points } }
• dispersion{ superlattice{

num_points_x, . . . } }
• dispersion{

output_dispersions{ } }
• dispersion{

output_dispersions{
max_num } }

• dispersion{ output_masses{ }
}

• dispersion{ output_masses{
max_num } }

7.14. quantum{ } 1073

nextnano++ Documentation, Release 1.25.13

force_complex_solver

Calling sequence

quantum{ region{ Gamma{ force_complex_solver = ... } } }

quantum{ region{ L{ force_complex_solver = ... } } }

quantum{ region{ X{ force_complex_solver = ... } } }

quantum{ region{ Delta{ force_complex_solver = ... } } }

quantum{ region{ HH{ force_complex_solver = ... } } }

quantum{ region{ LH{ force_complex_solver = ... } } }

quantum{ region{ SO{ force_complex_solver = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes, then resulting wave functions are expressed as complex functions, even though imaginary part is
equal to zero.

ò Note

Complex envelopes are needed for optics{ } group.

force_pauli_solver

Calling sequence

quantum{ region{ Gamma{ force_pauli_solver = ... } } }

quantum{ region{ L{ force_pauli_solver = ... } } }

quantum{ region{ X{ force_pauli_solver = ... } } }

quantum{ region{ Delta{ force_pauli_solver = ... } } }

quantum{ region{ HH{ force_pauli_solver = ... } } }

quantum{ region{ LH{ force_pauli_solver = ... } } }

quantum{ region{ SO{ force_pauli_solver = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

1074 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

When se to yes, the a Pauli equation is solved even in the absence of magnetic field.

accuracy

Calling sequence

quantum{ region{ Gamma{ accuracy = ... } } }

quantum{ region{ L{ accuracy = ... } } }

quantum{ region{ X{ accuracy = ... } } }

quantum{ region{ Delta{ accuracy = ... } } }

quantum{ region{ HH{ accuracy = ... } } }

quantum{ region{ LH{ accuracy = ... } } }

quantum{ region{ SO{ accuracy = ... } } }

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 10−6

• default: 𝑟 = 10−10 for ARPACK; 𝑟 = 10−7 for ARPACK_INV and DAVIDSON

• unit: −

Functionality

Sets accuracy of finding eigenvalues by APRACK, ARPACK_INV, and DAVIDSON routines.

iterations

Calling sequence

quantum{ region{ Gamma{ iterations = ... } } }

quantum{ region{ L{ iterations = ... } } }

quantum{ region{ X{ iterations = ... } } }

quantum{ region{ Delta{ iterations = ... } } }

quantum{ region{ HH{ iterations = ... } } }

quantum{ region{ LH{ iterations = ... } } }

quantum{ region{ SO{ iterations = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 100000

7.14. quantum{ } 1075

nextnano++ Documentation, Release 1.25.13

Functionality

Number of iterations for eigenvalue solvers.

num_ev

Calling sequence

quantum{ region{ Gamma{ num_ev = ... } } }

quantum{ region{ L{ num_ev = ... } } }

quantum{ region{ X{ num_ev = ... } } }

quantum{ region{ Delta{ num_ev = ... } } }

quantum{ region{ HH{ num_ev = ... } } }

quantum{ region{ LH{ num_ev = ... } } }

quantum{ region{ SO{ num_ev = ... } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 1

Functionality

Sets the number of eigenvalues to be calculated.

lapack{ }

Calling sequence

quantum{ region{ Gamma{ lapack{ } } } }

quantum{ region{ L{ lapack{ } } } }

quantum{ region{ X{ lapack{ } } } }

quantum{ region{ Delta{ lapack{ } } } }

quantum{ region{ HH{ lapack{ } } } }

quantum{ region{ LH{ lapack{ } } } }

quantum{ region{ SO{ lapack{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Triggers use of LAPACK eigensolver to solve dense matrix problem. It should be used for 1D and small 2D systems.
For 1D simulations without periodic boundary conditions a tridiagonal LAPACK solver is used for the single-band
Hamiltonian as default.

1076 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

arpack{ }

Calling sequence

quantum{ region{ Gamma{ arpack{ } } } }

quantum{ region{ L{ arpack{ } } } }

quantum{ region{ X{ arpack{ } } } }

quantum{ region{ Delta{ arpack{ } } } }

quantum{ region{ HH{ arpack{ } } } }

quantum{ region{ LH{ arpack{ } } } }

quantum{ region{ SO{ arpack{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

ARPACK eigensolver is used to solve eigenvalue problem using sparse matrix routines. It ARPACK should be
faster for large matrices (N > 1000) where only a few eigenvalues are sought (~5-30). Memory usage of arpack
(and also arpack_inv) only depends on the number of eigenvectors requested, and is not influenced by the type of
preconditioner used.Essentially, for each requested eigenvector (i.e. wave function), additional temporary space
corresponding to 2.5 eigenvectors is needed during runtime. Among the preconditioners, Chebyshev precondition-
ing and Legendre preconditioning are comparably fast, but require both the specification of a cutoff energy under
(above) which all eigenvalues of interest are assumed to be located. If this assumption is violated, only spurious
parts of the energy spectrum will be computed. On the other hand, setting the cutoff energy too generous will slow
down convergence. Since the energy spectrum often shifts during the Quantum-Poisson iteration, a more generous
initial cutoff energy is also needed for the first Quantum-Poisson iteration step. If this initial cutoff energy is not
provided, much slower but more predictable polynomial preconditioning will be used for the first Quantum-Poisson
iteration step instead of the specified Chebyshev / legendre preconditioner. Alternatively, this slower polynomial
preconditioning can also be used for the entire Quantum-Poisson iteration. In this case, no cutoff energies need to
be specified at all. Generally, it is advisable to use polynomial preconditioning when simulating a new structure
until the distribution of the eigenvalues, the location of the Fermi level(s), and the required numbers of eigenvalues
are better known. Performance of all preconditioners can be further tuned by changing the order of the respective
polynomial used, with optimal values typically lying between 10 and 30. ARPACK will terminate once the de-
sired accuracy has been reached or the specified number of iterations has been exceeded. In the latter case, not all
requested eigenvectors may have been calculated, or convergence may be incomplete.

. Warning

Too low cutoff energy, not enough number of states selected to compute, and residuals set too low for large
systems are common reasons of failure of ARPACK eigensolver. The method may occur unstable for 8-band
model in general.

ò Note

The default behavior of ARPACK eigensolver is the following: When the Schrödinger equation is solved for the
first time, the polynomial preconditioner is used, because there is no suitable cutoff energy known. In all later
Quantum-Poisson iterations the Chebyshev preconditioner will be used (up to two times faster) with a cutoff
energy slightly above the highest eigenvalue, which was calculated in the last iteration.

7.14. quantum{ } 1077

nextnano++ Documentation, Release 1.25.13

preconditioner

Calling sequence

quantum{ region{ Gamma{ preconditioner = ... } } }

quantum{ region{ L{ preconditioner = ... } } }

quantum{ region{ X{ preconditioner = ... } } }

quantum{ region{ Delta{ preconditioner = ... } } }

quantum{ region{ HH{ preconditioner = ... } } }

quantum{ region{ LH{ preconditioner = ... } } }

quantum{ region{ SO{ preconditioner = ... } } }

Properties

• usage: optional
• type: choice

• values: polynomial or chebyshev or legendre

• default: chebyshev

Functionality

The Polynomial preconditioner is the slowest but does not require to specify cutoff energy whereas Chebyshev or
Legendre preconditioners requires you to specify cutoff energy.

order_polynomial

Calling sequence

quantum{ region{ Gamma{ order_polynomial = ... } } }

quantum{ region{ L{ order_polynomial = ... } } }

quantum{ region{ X{ order_polynomial = ... } } }

quantum{ region{ Delta{ order_polynomial = ... } } }

quantum{ region{ HH{ order_polynomial = ... } } }

quantum{ region{ LH{ order_polynomial = ... } } }

quantum{ region{ SO{ order_polynomial = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 20

Functionality

Order of the polynomial used for polynomial preconditioning.

1078 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

order_chebyshev

Calling sequence

quantum{ region{ Gamma{ order_chebyshev = ... } } }

quantum{ region{ L{ order_chebyshev = ... } } }

quantum{ region{ X{ order_chebyshev = ... } } }

quantum{ region{ Delta{ order_chebyshev = ... } } }

quantum{ region{ HH{ order_chebyshev = ... } } }

quantum{ region{ LH{ order_chebyshev = ... } } }

quantum{ region{ SO{ order_chebyshev = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 20

Functionality

Order of the polynomial used for Chebyshev preconditioning.

order_legendre

Calling sequence

quantum{ region{ Gamma{ order_legendre = ... } } }

quantum{ region{ L{ order_legendre = ... } } }

quantum{ region{ X{ order_legendre = ... } } }

quantum{ region{ Delta{ order_legendre = ... } } }

quantum{ region{ HH{ order_legendre = ... } } }

quantum{ region{ LH{ order_legendre = ... } } }

quantum{ region{ SO{ order_legendre = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 20

Functionality

Order of the polynomial used for Legendre preconditioning.

7.14. quantum{ } 1079

nextnano++ Documentation, Release 1.25.13

cutoff

Calling sequence

quantum{ region{ Gamma{ cutoff = ... } } }

quantum{ region{ L{ cutoff = ... } } }

quantum{ region{ X{ cutoff = ... } } }

quantum{ region{ Delta{ cutoff = ... } } }

quantum{ region{ HH{ cutoff = ... } } }

quantum{ region{ LH{ cutoff = ... } } }

quantum{ region{ SO{ cutoff = ... } } }

Properties

• usage: optional
• type: real number

• values: [1e-3, ...)

• default: 𝑟 = 0.3

• unit: eV

Functionality

—

abs_cutoff

Calling sequence

quantum{ region{ Gamma{ abs_cutoff = ... } } }

quantum{ region{ L{ abs_cutoff = ... } } }

quantum{ region{ X{ abs_cutoff = ... } } }

quantum{ region{ Delta{ abs_cutoff = ... } } }

quantum{ region{ HH{ abs_cutoff = ... } } }

quantum{ region{ LH{ abs_cutoff = ... } } }

quantum{ region{ SO{ abs_cutoff = ... } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: eV

Functionality

—

1080 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

k_integration{ }

Calling sequence

quantum{ region{ Gamma{ k_integration{ } } } } quantum{ region{ L{ k_integration{ } }
} } quantum{ region{ X{ k_integration{ } } } } quantum{ region{ Delta{ k_integration{ }
} } } quantum{ region{ HH{ k_integration{ } } } } quantum{ region{ LH{ k_integration{ }
} } } quantum{ region{ SO{ k_integration{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Provides options for integration over k|| space for density calculations (for 1D and 2D only).

k_integration{ relative_size }

Calling sequence

quantum{ region{ Gamma{ k_integration{ relative_size = ... } } } } quantum{ region{
L{ k_integration{ relative_size = ... } } } } quantum{ region{ X{ k_integration{
relative_size = ... } } } } quantum{ region{ Delta{ k_integration{ relative_size
= ... } } } } quantum{ region{ HH{ k_integration{ relative_size = ... } } } }
quantum{ region{ LH{ k_integration{ relative_size = ... } } } } quantum{ region{ SO{
k_integration{ relative_size = ... } } } }

Properties

• usage: optional
• type: real number

• values: 10−3 ≤ 𝑟 ≤ 10.0

• default: 𝑧 = 1

• unit: eV

Functionality

—

k_integration{ max_symmetry }

Calling sequence

quantum{ region{ Gamma{ k_integration{ max_symmetry = ... } } } } quantum{ region{
L{ k_integration{ max_symmetry = ... } } } } quantum{ region{ X{ k_integration{
max_symmetry = ... } } } } quantum{ region{ Delta{ k_integration{ max_symmetry = ... }
} } } quantum{ region{ HH{ k_integration{ max_symmetry = ... } } } } quantum{ region{
LH{ k_integration{ max_symmetry = ... } } } } quantum{ region{ SO{ k_integration{
max_symmetry = ... } } } }

7.14. quantum{ } 1081

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: no or C2 or full

• default: full

Functionality

—

k_integration{ num_points }

Calling sequence

quantum{ region{ Gamma{ k_integration{ num_points = ... } } } } quantum{ region{ L{
k_integration{ num_points = ... } } } } quantum{ region{ X{ k_integration{ num_points
= ... } } } } quantum{ region{ Delta{ k_integration{ num_points = ... } } } }
quantum{ region{ HH{ k_integration{ num_points = ... } } } } quantum{ region{ LH{
k_integration{ num_points = ... } } } } quantum{ region{ SO{ k_integration{ num_points
= ... } } } }

Properties

• usage: optional
• type: integer

• values: 2 ≤ 𝑧 ≤ 100

• default: 𝑧 = 10

Functionality

—

k_integration{ num_subpoints }

Calling sequence

quantum{ region{ Gamma{ k_integration{ num_subpoints = ... } } } } quantum{ region{
L{ k_integration{ num_subpoints = ... } } } } quantum{ region{ X{ k_integration{
num_subpoints = ... } } } } quantum{ region{ Delta{ k_integration{ num_subpoints
= ... } } } } quantum{ region{ HH{ k_integration{ num_subpoints = ... } } } }
quantum{ region{ LH{ k_integration{ num_subpoints = ... } } } } quantum{ region{ SO{
k_integration{ num_subpoints = ... } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 1000

• default: 𝑧 = 4

1082 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

k_integration{ force_k0_subspace }

Calling sequence

quantum{ region{ Gamma{ k_integration{ force_k0_subspace = ... } } } } quantum{
region{ L{ k_integration{ force_k0_subspace = ... } } } } quantum{ region{ X{
k_integration{ force_k0_subspace = ... } } } } quantum{ region{ Delta{ k_integration{
force_k0_subspace = ... } } } } quantum{ region{ HH{ k_integration{ force_k0_subspace
= ... } } } } quantum{ region{ LH{ k_integration{ force_k0_subspace = ... } } } }
quantum{ region{ SO{ k_integration{ force_k0_subspace = ... } } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

When ste to yes then wave functions computed at the Γ point are used for computation of carrier densities for
every other wave vector within each band.

dispersion{ }

Calling sequence

quantum{ region{ Gamma{ dispersion{ } } } }

quantum{ region{ L{ dispersion{ } } } }

quantum{ region{ X{ dispersion{ } } } }

quantum{ region{ Delta{ dispersion{ } } } }

quantum{ region{ HH{ dispersion{ } } } }

quantum{ region{ LH{ dispersion{ } } } }

quantum{ region{ SO{ dispersion{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

These groups provide keywords to define a path for computation of k|| and ksuperlattice (if applicable) dispersions.
The energy dispersion E(k) along the specified paths and for the specified k space resolutions are completely
independent from the k space resolution that was used within the self-consistent cycle where the k.p density has
been calculated. The latter is specified in k_integration{ }.

7.14. quantum{ } 1083

nextnano++ Documentation, Release 1.25.13

dispersion{ path{ } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ path{ } } } } }

quantum{ region{ L{ dispersion{ path{ } } } } }

quantum{ region{ X{ dispersion{ path{ } } } } }

quantum{ region{ Delta{ dispersion{ path{ } } } } }

quantum{ region{ HH{ dispersion{ path{ } } } } }

quantum{ region{ LH{ dispersion{ path{ } } } } }

quantum{ region{ SO{ dispersion{ path{ } } } } }

Properties

• usage: optional
• items: no constraints

Functionality

Calculates dispersion along custom path in k-space. Multiple instances are allowed.

dispersion{ path{ name } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ path{ name = ... } } } } }

quantum{ region{ L{ dispersion{ path{ name = ... } } } } }

quantum{ region{ X{ dispersion{ path{ name = ... } } } } }

quantum{ region{ Delta{ dispersion{ path{ name = ... } } } } }

quantum{ region{ HH{ dispersion{ path{ name = ... } } } } }

quantum{ region{ LH{ dispersion{ path{ name = ... } } } } }

quantum{ region{ SO{ dispersion{ path{ name = ... } } } } }

Properties

• usage: required
• type: character string

Functionality

Is a name of the dispersions which also defines the names of the output files.

dispersion{ path{ point{ } } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ path{ point{ } } } } } }

quantum{ region{ L{ dispersion{ path{ point{ } } } } } }

quantum{ region{ X{ dispersion{ path{ point{ } } } } } }

quantum{ region{ Delta{ dispersion{ path{ point{ } } } } } }

quantum{ region{ HH{ dispersion{ path{ point{ } } } } } }

quantum{ region{ LH{ dispersion{ path{ point{ } } } } } }

quantum{ region{ SO{ dispersion{ path{ point{ } } } } } }

1084 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• items: minimum 2

Functionality

Specifies points in the path through k-space. At least two k points have to be defined. Line between two such points
is called segment.

dispersion{ path{ point{ k } } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

quantum{ region{ L{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

quantum{ region{ X{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

quantum{ region{ Delta{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

quantum{ region{ HH{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

quantum{ region{ LH{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

quantum{ region{ SO{ dispersion{ path{ point{ k = [..., ..., ...] } } } } } }

Properties

• usage: required
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• unit: nm−1

Functionality

Is a k-point represented by vector [𝑘𝑥, 𝑘𝑦, 𝑘𝑧].

For 1D simulation the k|| space is a 𝑘𝑦 − 𝑘𝑧 plane so 𝑘𝑦 , 𝑘𝑧 can be freely choosed. 𝑘𝑥 can only be different from
zero, if a periodic boundary condition along the x-direction is defined and the quantum region extends over the
whole x-domain.

for 2D simulation the k|| space is a 𝑘𝑧 axis so 𝑘𝑧 can be freely choosed. 𝑘𝑥 can only be different from zero if
a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole
x-domain. 𝑘𝑦 can only be different from zero if a periodic boundary condition along the y-direction is defined and
the quantum region extends over the whole y-domain.

for 3D simulation the k|| space is empty. 𝑘𝑥 can only be different from zero if a periodic boundary condition
along the x-direction is defined and the quantum region extends over the whole x-domain. 𝑘𝑦 can only be different
from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over
the whole y-domain. 𝑘𝑧 can only be different from zero if a periodic boundary condition along the z-direction is
defined and the quantum region extends over the whole z-domain.

dispersion{ path{ spacing } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ path{ spacing = ... } } } } }

quantum{ region{ L{ dispersion{ path{ spacing = ... } } } } }

7.14. quantum{ } 1085

nextnano++ Documentation, Release 1.25.13

quantum{ region{ X{ dispersion{ path{ spacing = ... } } } } }

quantum{ region{ Delta{ dispersion{ path{ spacing = ... } } } } }

quantum{ region{ HH{ dispersion{ path{ spacing = ... } } } } }

quantum{ region{ LH{ dispersion{ path{ spacing = ... } } } } }

quantum{ region{ SO{ dispersion{ path{ spacing = ... } } } } }

Properties

• usage: conditional
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Functionality

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1. Excludes num_points.

dispersion{ path{ num_points } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ path{ num_points = ... } } } } }

quantum{ region{ L{ dispersion{ path{ num_points = ... } } } } }

quantum{ region{ X{ dispersion{ path{ num_points = ... } } } } }

quantum{ region{ Delta{ dispersion{ path{ num_points = ... } } } } }

quantum{ region{ HH{ dispersion{ path{ num_points = ... } } } } }

quantum{ region{ LH{ dispersion{ path{ num_points = ... } } } } }

quantum{ region{ SO{ dispersion{ path{ num_points = ... } } } } }

Properties

• usage: conditional
• type: integer

• values: 𝑧 ≥ 2

Functionality

Specifies number of points (intermediate + two corner points) for each single path segment. Excludes spacing.

dispersion{ lines{ } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ lines{ } } } } }

quantum{ region{ L{ dispersion{ lines{ } } } } }

quantum{ region{ X{ dispersion{ lines{ } } } } }

quantum{ region{ Delta{ dispersion{ lines{ } } } } }

quantum{ region{ HH{ dispersion{ lines{ } } } } }

quantum{ region{ LH{ dispersion{ lines{ } } } } }

quantum{ region{ SO{ dispersion{ lines{ } } } } }

1086 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their
equivalents (in total maximally 13).

dispersion{ lines{ name } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ lines{ name = ... } } } } }

quantum{ region{ L{ dispersion{ lines{ name = ... } } } } }

quantum{ region{ X{ dispersion{ lines{ name = ... } } } } }

quantum{ region{ Delta{ dispersion{ lines{ name = ... } } } } }

quantum{ region{ HH{ dispersion{ lines{ name = ... } } } } }

quantum{ region{ LH{ dispersion{ lines{ name = ... } } } } }

quantum{ region{ SO{ dispersion{ lines{ name = ... } } } } }

Properties

• usage: required
• type: character string

Functionality

Is a name of the dispersions which also defines the names of the output files.

dispersion{ lines{ k_max } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ lines{ k_max = ... } } } } }

quantum{ region{ L{ dispersion{ lines{ k_max = ... } } } } }

quantum{ region{ X{ dispersion{ lines{ k_max = ... } } } } }

quantum{ region{ Delta{ dispersion{ lines{ k_max = ... } } } } }

quantum{ region{ HH{ dispersion{ lines{ k_max = ... } } } } }

quantum{ region{ LH{ dispersion{ lines{ k_max = ... } } } } }

quantum{ region{ SO{ dispersion{ lines{ k_max = ... } } } } }

Properties

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: nm−1

7.14. quantum{ } 1087

nextnano++ Documentation, Release 1.25.13

Functionality

Specifies a maximum absolute value (radius) for the k-vector in 𝑛𝑚−1.

dispersion{ lines{ spacing } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ lines{ spacing = ... } } } } }

quantum{ region{ L{ dispersion{ lines{ spacing = ... } } } } }

quantum{ region{ X{ dispersion{ lines{ spacing = ... } } } } }

quantum{ region{ Delta{ dispersion{ lines{ spacing = ... } } } } }

quantum{ region{ HH{ dispersion{ lines{ spacing = ... } } } } }

quantum{ region{ LH{ dispersion{ lines{ spacing = ... } } } } }

quantum{ region{ SO{ dispersion{ lines{ spacing = ... } } } } }

Properties

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Functionality

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1.

dispersion{ full{ } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ full{ } } } } }

quantum{ region{ L{ dispersion{ full{ } } } } }

quantum{ region{ X{ dispersion{ full{ } } } } }

quantum{ region{ Delta{ dispersion{ full{ } } } } }

quantum{ region{ HH{ dispersion{ full{ } } } } }

quantum{ region{ LH{ dispersion{ full{ } } } } }

quantum{ region{ SO{ dispersion{ full{ } } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates dispersion in 1D/2D/3D k-space depending on simulation dimensionality and pereodic boundary con-
ditions.

1088 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

dispersion{ full{ name } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ full{ name = ... } } } } }

quantum{ region{ L{ dispersion{ full{ name = ... } } } } }

quantum{ region{ X{ dispersion{ full{ name = ... } } } } }

quantum{ region{ Delta{ dispersion{ full{ name = ... } } } } }

quantum{ region{ HH{ dispersion{ full{ name = ... } } } } }

quantum{ region{ LH{ dispersion{ full{ name = ... } } } } }

quantum{ region{ SO{ dispersion{ full{ name = ... } } } } }

Properties

• usage: required
• type: character string

Functionality

Is a name of the dispersion which also defines the name of the output file.

dispersion{ full{ kxgrid{ }, . . . } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ } } } } } }

quantum{ region{ L{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ L{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ L{ dispersion{ full{ kzgrid{ } } } } } }

quantum{ region{ X{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ X{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ X{ dispersion{ full{ kzgrid{ } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kzgrid{ } } } } } }

quantum{ region{ HH{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ HH{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ HH{ dispersion{ full{ kzgrid{ } } } } } }

quantum{ region{ LH{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ LH{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ LH{ dispersion{ full{ kzgrid{ } } } } } }

quantum{ region{ SO{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ SO{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ SO{ dispersion{ full{ kzgrid{ } } } } } }

Properties

• usage: optional
• items: maximum 1

7.14. quantum{ } 1089

nextnano++ Documentation, Release 1.25.13

Functionality

Specifies a grid{...} in k-space for a 1D/2D/3D plot of the energy dispersion E(kx, ky, kz). Allowed only, if
simulation is periodic along respective direction and current quantum region extends over the entire domain.

dispersion{ full{ kxgrid{ line{ } }, . . . } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ line{ } } } } } } }

quantum{ region{ L{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ L{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ L{ dispersion{ full{ kzgrid{ line{ } } } } } } }

quantum{ region{ X{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ X{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ X{ dispersion{ full{ kzgrid{ line{ } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kzgrid{ line{ } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kzgrid{ line{ } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kzgrid{ line{ } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kzgrid{ line{ } } } } } } }

Properties

• usage: required
• items: minimum 2

Functionality

—

dispersion{ full{ kxgrid{ line{ pos } }, . . . } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

quantum{ region{ L{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

quantum{ region{ L{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ L{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

quantum{ region{ X{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

1090 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

quantum{ region{ X{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ X{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kxgrid{ line{ pos = ... } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kygrid{ line{ pos = ... } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kzgrid{ line{ pos = ... } } } } } } }

Properties

• usage: required
• type: real number

• values: no constraints

• unit: nm−1

Functionality

—

dispersion{ full{ kxgrid{ line{ spacing } }, . . . } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ Gamma{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ L{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ L{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ L{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ X{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ X{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ X{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ Delta{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ HH{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ LH{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kxgrid{ line{ spacing = ... } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kygrid{ line{ spacing = ... } } } } } } }

quantum{ region{ SO{ dispersion{ full{ kzgrid{ line{ spacing = ... } } } } } } }

7.14. quantum{ } 1091

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: nm−1

Functionality

—

dispersion{ superlattice{ } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ superlattice{ } } } } }

quantum{ region{ L{ dispersion{ superlattice{ } } } } }

quantum{ region{ X{ dispersion{ superlattice{ } } } } }

quantum{ region{ Delta{ dispersion{ superlattice{ } } } } }

quantum{ region{ HH{ dispersion{ superlattice{ } } } } }

quantum{ region{ LH{ dispersion{ superlattice{ } } } } }

quantum{ region{ SO{ dispersion{ superlattice{ } } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Is a convenience group to calculate superlattice dispersion 𝐸(𝑘𝑆𝐿) along periodic directions. The intervals are set
automatically to [−𝜋/𝐿𝑖, 𝜋/𝐿𝑖], where𝐿𝑖 is the simulation domain range along periodic directions with 𝑖 = 𝑥, 𝑦, 𝑧.

dispersion{ superlattice{ name } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ superlattice{ name = ... } } } } }

quantum{ region{ L{ dispersion{ superlattice{ name = ... } } } } }

quantum{ region{ X{ dispersion{ superlattice{ name = ... } } } } }

quantum{ region{ Delta{ dispersion{ superlattice{ name = ... } } } } }

quantum{ region{ HH{ dispersion{ superlattice{ name = ... } } } } }

quantum{ region{ LH{ dispersion{ superlattice{ name = ... } } } } }

quantum{ region{ SO{ dispersion{ superlattice{ name = ... } } } } }

Properties

• usage: required
• type: character string

1092 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Is a name of the dispersion which also defines the name of the output file.

dispersion{ superlattice{ num_points } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ superlattice{ num_points = ... } } } } }

quantum{ region{ L{ dispersion{ superlattice{ num_points = ... } } } } }

quantum{ region{ X{ dispersion{ superlattice{ num_points = ... } } } } }

quantum{ region{ Delta{ dispersion{ superlattice{ num_points = ... } } } } }

quantum{ region{ HH{ dispersion{ superlattice{ num_points = ... } } } } }

quantum{ region{ LH{ dispersion{ superlattice{ num_points = ... } } } } }

quantum{ region{ SO{ dispersion{ superlattice{ num_points = ... } } } } }

Properties

• usage: conditional
• type: integer

• values: 𝑧 ≥ 2

Functionality

Is a convenience keyword to specifies number of points along all appropriate directions in k space.

dispersion{ superlattice{ num_points_x, . . . } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ Gamma{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ Gamma{ dispersion{ superlattice{ num_points_z = ... } } } } }

quantum{ region{ L{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ L{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ L{ dispersion{ superlattice{ num_points_z = ... } } } } }

quantum{ region{ X{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ X{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ X{ dispersion{ superlattice{ num_points_z = ... } } } } }

quantum{ region{ Delta{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ Delta{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ Delta{ dispersion{ superlattice{ num_points_z = ... } } } } }

quantum{ region{ HH{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ HH{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ HH{ dispersion{ superlattice{ num_points_z = ... } } } } }

quantum{ region{ LH{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ LH{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ LH{ dispersion{ superlattice{ num_points_z = ... } } } } }

quantum{ region{ SO{ dispersion{ superlattice{ num_points_x = ... } } } } }

quantum{ region{ SO{ dispersion{ superlattice{ num_points_y = ... } } } } }

quantum{ region{ SO{ dispersion{ superlattice{ num_points_z = ... } } } } }

7.14. quantum{ } 1093

nextnano++ Documentation, Release 1.25.13

Properties

• usage: conditional
• type: integer

• values: 𝑧 ≥ 2

Functionality

Specifies number of points along x direction in k space where dispersion is calculated. The simulation must be
periodic along the x, y, or z directions in the position space.

dispersion{ output_dispersions{ } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ output_dispersions{ } } } } }

quantum{ region{ L{ dispersion{ output_dispersions{ } } } } }

quantum{ region{ X{ dispersion{ output_dispersions{ } } } } }

quantum{ region{ Delta{ dispersion{ output_dispersions{ } } } } }

quantum{ region{ HH{ dispersion{ output_dispersions{ } } } } }

quantum{ region{ LH{ dispersion{ output_dispersions{ } } } } }

quantum{ region{ SO{ dispersion{ output_dispersions{ } } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs all defined dispersions.

dispersion{ output_dispersions{ max_num } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ output_dispersions{ max_num = ... } } } } }

quantum{ region{ L{ dispersion{ output_dispersions{ max_num = ... } } } } }

quantum{ region{ X{ dispersion{ output_dispersions{ max_num = ... } } } } }

quantum{ region{ Delta{ dispersion{ output_dispersions{ max_num = ... } } } } }

quantum{ region{ HH{ dispersion{ output_dispersions{ max_num = ... } } } } }

quantum{ region{ LH{ dispersion{ output_dispersions{ max_num = ... } } } } }

quantum{ region{ SO{ dispersion{ output_dispersions{ max_num = ... } } } } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 9999

• default: not defined

1094 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

It is a maximum number of bands to print out.

dispersion{ output_masses{ } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ output_masses{ } } } } }

quantum{ region{ L{ dispersion{ output_masses{ } } } } }

quantum{ region{ X{ dispersion{ output_masses{ } } } } }

quantum{ region{ Delta{ dispersion{ output_masses{ } } } } }

quantum{ region{ HH{ dispersion{ output_masses{ } } } } }

quantum{ region{ LH{ dispersion{ output_masses{ } } } } }

quantum{ region{ SO{ dispersion{ output_masses{ } } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs effective masses𝑚* calculated from the dispersions, expressed in masses of a free electron𝑚0, following
the formula:

1

𝑚* =
𝑚0

ℏ2
· 𝜕

2

𝜕𝑘2
𝐸 (𝑘) ,

where 𝑘 is a “distance” along the path onto which the related band structure is computed.

dispersion{ output_masses{ max_num } }

Calling sequence

quantum{ region{ Gamma{ dispersion{ output_masses{ max_num = ... } } } } }

quantum{ region{ L{ dispersion{ output_masses{ max_num = ... } } } } }

quantum{ region{ X{ dispersion{ output_masses{ max_num = ... } } } } }

quantum{ region{ Delta{ dispersion{ output_masses{ max_num = ... } } } } }

quantum{ region{ HH{ dispersion{ output_masses{ max_num = ... } } } } }

quantum{ region{ LH{ dispersion{ output_masses{ max_num = ... } } } } }

quantum{ region{ SO{ dispersion{ output_masses{ max_num = ... } } } } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 9999

• default: not defined

7.14. quantum{ } 1095

nextnano++ Documentation, Release 1.25.13

Functionality

It is a maximum number of bands to print out.

Last update: 27/05/2025

kp_6band{ }

Calling sequence

quantum{ region{ kp_6band{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Solves 6-band k · p Schrödinger equation for the ** heavy, light and split-off hole** valence band. The options
are the same as Gamma{} with some additional options, which are

Nested keywords

• accuracy
• iterations
• num_ev
• lapack{ }
• arpack{ }
• preconditioner
• order_polynomial
• order_chebyshev
• order_legendre
• cutoff
• abs_cutoff
• forward_differences
• kp_parameters{ }
• kp_parameters{

use_Luttinger_parameters }
• kp_parameters{

approximate_kappa } }
• k_integration{ }
• k_integration{ relative_size }
• k_integration{

max_symmetry }
• k_integration{ num_points }

• k_integration{
num_subpoints }

• k_integration{
force_k0_subspace }

• dispersion{ }
• dispersion{ lines{ } }
• dispersion{ lines{ name } }
• dispersion{ lines{ k_max } }
• dispersion{ lines{ spacing } }
• dispersion{ path{ } }
• dispersion{ path{ name } }
• dispersion{ path{ point{ } } }
• dispersion{ path{ point{ k } }

}
• dispersion{ path{ spacing } }
• dispersion{ path{ num_points

} }
• dispersion{ full{ } }
• dispersion{ full{ name } }
• dispersion{ full{ kxgrid{ }, . . .

} }
• dispersion{ full{ kxgrid{ line{

} }, . . . } }
• dispersion{ full{ kxgrid{ line{

pos } }, . . . } }
• dispersion{ full{ kxgrid{ line{

spacing } }, . . . } }
• dispersion{ superlattice{ } }
• dispersion{ superlattice{

name } }
• dispersion{ superlattice{

num_points } }
• dispersion{ superlattice{

num_points_x, . . . } }
• dispersion{

output_dispersions{ } }
• dispersion{

output_dispersions{
max_num } }

• dispersion{ output_masses{ }
}

• dispersion{ output_masses{
max_num } }

accuracy

Calling sequence

quantum{ region{ kp_6band{ accuracy = ... } } }

1096 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: 0.0 ≤ 𝑟 ≤ 10−6

• default: 𝑟 = 10−10 for ARPACK; 𝑟 = 10−7 for ARPACK_INV and DAVIDSON

• unit: −

Functionality

Sets accuracy of finding eigenvalues by APRACK, ARPACK_INV, and DAVIDSON routines.

iterations

Calling sequence

quantum{ region{ kp_6band{ iterations = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 100000

Functionality

Number of iterations for eigenvalue solvers.

num_ev

Calling sequence

quantum{ region{ kp_6band{ num_ev = ... } } }

Properties

• usage: required
• type: integer

• values: 𝑧 ≥ 1

Functionality

Sets the number of eigenvalues to be calculated.

lapack{ }

Calling sequence

quantum{ region{ kp_6band{ lapack{ } } } }

7.14. quantum{ } 1097

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

LAPACK eigensolver: solves dense matrix problem (for 1D and small 2D systems only)

arpack{ }

Calling sequence

quantum{ region{ kp_6band{ arpack{ } } } }

Properties

—

Functionality

ARPACK eigensolver (default) ARPACK should be faster for large matrices (N > 1000) where only a few eigen-
values are sought (~5-30).

preconditioner

Calling sequence

quantum{ region{ kp_6band{ preconditioner = ... } } }

Properties

• usage: optional
• type: choice

• values: polynomial or chebyshev or legendre

• default: chebyshev

Functionality

The Polynomial preconditioner is the slowest but does not require to specify cutoff energy whereas Chebyshev or
Legendre preconditioners requires you to specify cutoff energy.

order_polynomial

Calling sequence

quantum{ region{ kp_6band{ order_polynomial = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 0

• default: 𝑧 = 20

1098 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Order of the polynomial used for polynomial preconditioning.

order_chebyshev

Calling sequence

quantum{ region{ kp_6band{ order_chebyshev = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 20

Functionality

Order of the polynomial used for Chebyshev preconditioning.

order_legendre

Calling sequence

quantum{ region{ kp_6band{ order_legendre = ... } } }

Properties

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• default: 𝑧 = 20

Functionality

Order of the polynomial used for Legendre preconditioning.

cutoff

Calling sequence

quantum{ region{ kp_6band{ cutoff = ... } } }

7.14. quantum{ } 1099

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: [1e-3, ...)

• default: 𝑟 = 0.3

• unit: eV

Functionality

—

abs_cutoff

Calling sequence

quantum{ region{ kp_6band{ abs_cutoff = ... } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: eV

Functionality

—

forward_differences

Calling sequence

quantum{ region{ kp_6band{ forward_differences = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then forward and backward differences are used for the first derivative discretization of the Kane
parameter 𝑃 in the the 8-band k.p Hamiltonian. By default, set to no, centered differences are used. This parameter
might affect spurious solutions of the wave functions. See eq. (1.50) and eq. (1.51) of PhD thesis T. Andlauer for
more details.

1100 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

kp_parameters{ }

Calling sequence

quantum{ region{ kp_6band{ kp_parameters{ } } } }

Properties

—

Functionality

advanced manipulation of k · p parameters from the database.

. Attention

The groups use_Luttinger_parameters and approximate_kappa are available only for simulations with
zincblende crystal symmetry.

kp_parameters{ use_Luttinger_parameters }

Calling sequence

quantum{ region{ kp_6band{ kp_parameters{ use_Luttinger_parameters } } } }

Properties

—

Functionality

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger
parameters (𝛾1, 𝛾2, 𝛾3) instead.

value
yes or no

default
no

kp_parameters{ approximate_kappa } }

Calling sequence

quantum{ region{ kp_6band{ kp_parameters{ approximate_kappa } } } }

Properties

—

Functionality

By default the 𝜅 for zincblende crystal structure is taken from the database or input file. If this is enabled then
the solver is forced to approximate kappa through others 6-band k · p parameters, even though kappa is given in
database or input file.

value
yes or no

7.14. quantum{ } 1101

nextnano++ Documentation, Release 1.25.13

default
no

k_integration{ }

Calling sequence

quantum{ region{ kp_6band{ k_integration{ } } } }

Properties

—

Functionality

Provides options for integration over k|| space for k · p density calculations (for 1D and 2D only). By default the
quantum mechanical charge density is calculated (no_density = no). Therefore, k_integration{} is required.
If you do not need a quantum mechanical density, e.g. because you are not interested in a self-consistent simulation,
the calculation is much faster if you use (no_density = yes). Then you can omit k_integration{} and only
the eigenstates for k|| = (𝑘𝑦, 𝑘𝑧) = (0, 0) = 0 are calculated.

k_integration{ relative_size }

Calling sequence

quantum{ region{ kp_6band{ k_integration{ relative_size } } } }

Properties

—

Functionality

Range of k|| integration relative to size of Brillouin zone. Often a value between 0.1-0.2 is sufficient.

value
float between 0.0 and 1.0

default
1.0

k_integration{ max_symmetry }

Calling sequence

quantum{ region{ kp_6band{ k_integration{ max_symmetry } } } }

Properties

—

1102 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

If max_symmetry = no then the solver does not use symmetry of Brillouin zone to reduce number of k|| points.

If max_symmetry = C2 then the solver uses up to 𝐶2 symmetry of Brillouin zone to reduce number of k|| points.

If max_symmetry = full then the solver uses full symmetry of Brillouin zone to reduce number of k|| points.
For example for a cubic k space the 1/8th of the zone.

value
1 or no 2 or C2 3 or full

default
full

k_integration{ num_points }

Calling sequence

quantum{ region{ kp_6band{ k_integration{ num_points } } } }

Properties

—

Functionality

number of k|| points, where Schrödinger equation has to be solved (in one direction). In 1D, the number of
Schrödinger equations that have to be solved depends quadratically on num_points. In 2D, the number of
Schrödinger equations that have to be solved depends linearly on num_points.

value
integer > 1

default
10

k_integration{ num_subpoints }

Calling sequence

quantum{ region{ kp_6band{ k_integration{ num_subpoints } } } }

Properties

—

Functionality

number of points between two k|| points, where wave functions and eigenvalues will be interpolated.

value
integer >= 1

default
5

7.14. quantum{ } 1103

nextnano++ Documentation, Release 1.25.13

k_integration{ force_k0_subspace }

Calling sequence

quantum{ region{ kp_6band{ k_integration{ force_k0_subspace } } } }

Properties

—

Functionality

If set to yes, 𝑘‖ integration in quantum{ } is modified in that only states for point 𝑘 = 0 are computed exactly,
whereas all other k points are computed in the subspace of the 𝑘 = 0 wave functions. As a result of this approxi-
mation, computational speed is much improved (you may even be able to also enlarge the number of eigenvalues).
In case you are planning to use this approximation for final results, please make sure to check whether the resulting
loss of accuracy in density is acceptable.

value
yes or no

default
no

dispersion{ }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ } } } }

Properties

—

Functionality

These groups provide keywords to define a path for computation of k|| and ksuperlattice (if applicable) dispersions.
The energy dispersion E(k) along the specified paths and for the specified k space resolutions are completely
independent from the k space resolution that was used within the self-consistent cycle where the k.p density has
been calculated. The latter is specified in k_integration{ }.

dispersion{ lines{ } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ lines{ } } } } }

Properties

—

Functionality

Calculates dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their
equivalents (in total maximally 13).

1104 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

dispersion{ lines{ name } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ lines{ name } } } } }

Properties

—

Functionality

value
string

Is a name of the dispersions which also defines the names of the output files.

dispersion{ lines{ k_max } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ lines{ k_max } } } } }

Properties

—

Functionality

value
float

Specifies a maximum absolute value (radius) for the k-vector in 𝑛𝑚−1.

dispersion{ lines{ spacing } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ lines{ spacing } } } } }

Properties

—

Functionality

value
float

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1.

dispersion{ path{ } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ path{ } } } } }

7.14. quantum{ } 1105

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

Calculates dispersion along custom path in k-space. Multiple instances are allowed.

dispersion{ path{ name } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ path{ name } } } } }

Properties

—

Functionality

Is a name of the dispersions which also defines the names of the output files.

value
string

dispersion{ path{ point{ } } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ path{ point{ } } } } } }

Properties

—

Functionality

Specifies points in the path through k-space. At least two k points have to be defined. Line between two such points
is called segment.

dispersion{ path{ point{ k } } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ path{ point{ k } } } } } }

Properties

—

1106 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

value
3D float vector

Is a k-point represented by vector [𝑘𝑥, 𝑘𝑦, 𝑘𝑧]. The units are 𝑛𝑚−1.

For 1D simulation the k|| space is a 𝑘𝑦 − 𝑘𝑧 plane so 𝑘𝑦 , 𝑘𝑧 can be freely choosed. 𝑘𝑥 can only be different from
zero, if a periodic boundary condition along the x-direction is defined and the quantum region extends over the
whole x-domain.

for 2D simulation the k|| space is a 𝑘𝑧 axis so 𝑘𝑧 can be freely choosed. 𝑘𝑥 can only be different from zero if
a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole
x-domain. 𝑘𝑦 can only be different from zero if a periodic boundary condition along the y-direction is defined and
the quantum region extends over the whole y-domain.

for 3D simulation the k|| space is empty. 𝑘𝑥 can only be different from zero if a periodic boundary condition
along the x-direction is defined and the quantum region extends over the whole x-domain. 𝑘𝑦 can only be different
from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over
the whole y-domain. 𝑘𝑧 can only be different from zero if a periodic boundary condition along the z-direction is
defined and the quantum region extends over the whole z-domain.

dispersion{ path{ spacing } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ path{ spacing } } } } }

Properties

—

Functionality

value
float

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1. Excludes num_points.

dispersion{ path{ num_points } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ path{ num_points } } } } }

Properties

—

Functionality

value
integer > 1

Specifies number of points (intermediate + two corner points) for each single path segment. Excludes spacing.

7.14. quantum{ } 1107

nextnano++ Documentation, Release 1.25.13

dispersion{ full{ } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ full{ } } } } }

Properties

—

Functionality

Calculates dispersion in 1D/2D/3D k-space depending on simulation dimensionality and pereodic boundary con-
ditions.

dispersion{ full{ name } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ full{ name } } } } }

Properties

—

Functionality

value
string

Is a name of the dispersion which also defines the name of the output file.

dispersion{ full{ kxgrid{ }, . . . } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ } } } } } }

Properties

—

Functionality

Specifies a grid{...} in k-space for a 1D/2D/3D plot of the energy dispersion E(kx, ky, kz). Allowed only, if
simulation is periodic along x-direction and current quantum region extends over the whole x-domain. The options
are same as grid{ }

dispersion{ full{ kxgrid{ line{ } }, . . . } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ line{ } } } } } } }

1108 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

—

dispersion{ full{ kxgrid{ line{ pos } }, . . . } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ line{ pos } } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ line{ pos } } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ line{ pos } } } } } } }

Properties

—

Functionality

—

dispersion{ full{ kxgrid{ line{ spacing } }, . . . } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ full{ kxgrid{ line{ spacing } } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kygrid{ line{ spacing } } } } } } }

quantum{ region{ kp_6band{ dispersion{ full{ kzgrid{ line{ spacing } } } } } } }

Properties

—

Functionality

—

dispersion{ superlattice{ } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ superlattice{ } } } } }

Properties

—

Functionality

Is a convenience group to calculate superlattice dispersion 𝐸(𝑘𝑆𝐿) along periodic directions. The intervals are set
automatically to [−𝜋/𝐿𝑖, 𝜋/𝐿𝑖], where𝐿𝑖 is the simulation domain range along periodic directions with 𝑖 = 𝑥, 𝑦, 𝑧.

7.14. quantum{ } 1109

nextnano++ Documentation, Release 1.25.13

dispersion{ superlattice{ name } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ superlattice{ name } } } } }

Properties

—

Functionality

value
string

Is a name of the dispersion which also defines the name of the output file.

dispersion{ superlattice{ num_points } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points } } } } }

Properties

—

Functionality

Is a convenience keyword to specifies number of points along all appropriate directions in k space.

value
any integer > 1

dispersion{ superlattice{ num_points_x, . . . } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points_x } } } } }

quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points_y } } } } }

quantum{ region{ kp_6band{ dispersion{ superlattice{ num_points_z } } } } }

Properties

—

Functionality

value
any integer > 1

Specifies number of points along x direction in k space where dispersion is calculated. The simulation must be
periodic along the x direction in direct space. Specifies number of points along y direction in k space where
dispersion is calculated. The simulation must be periodic along the y direction in direct space. Specifies number
of points along z direction in k space where dispersion is calculated. The simulation must be periodic along the z
direction in direct space.

1110 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

dispersion{ output_dispersions{ } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ output_dispersions{ } } } } }

Properties

—

Functionality

Outputs all defined dispersions.

dispersion{ output_dispersions{ max_num } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ output_dispersions{ max_num } } } } }

Properties

—

Functionality

Is a number of bands to print out

value
any integer between 1 and 9999

dispersion{ output_masses{ } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ output_masses{ } } } } }

Properties

—

Functionality

Outputs effective masses𝑚* calculated from the dispersions, expressed in masses of a free electron𝑚0, following
the formula:

1

𝑚* =
𝑚0

ℏ2
· 𝜕

2

𝜕𝑘2
𝐸 (𝑘) ,

where 𝑘 is a “distance” along the path onto which the related band structure is computed.

dispersion{ output_masses{ max_num } }

Calling sequence

quantum{ region{ kp_6band{ dispersion{ output_masses{ max_num } } } } }

7.14. quantum{ } 1111

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

Outputs effective masses calculated from the dispersions.

value
any integer between 1 and 9999

Last update: 27/05/2025

kp_8band{ }

Calling sequence

quantum{ region{ kp_8band{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Triggers solver of 8-band k · p Schrödinger equation for the Gamma conduction band and the heavy, light and
split-off hole valence bands.

Nested keywords

• accuracy
• iterations
• num_electrons
• num_holes
• shift
• abs_shift
• shift_window
• lapack{ }
• arpack_inv{ }
• davidson{ }
• forward_differences
• electron_far_band
• correct_electron_gfactor
• rescale_kp_everywhere
• avoid_spurious
• kp_parameters{ }
• kp_parameters{

use_Luttinger_parameters }
• kp_parameters{

from_6band_parameters }
• kp_parameters{

approximate_kappa }
• kp_parameters{ evaluate_S }
• kp_parameters{ rescale_S_to

}
• k_integration{ }

• k_integration{ relative_size }
• k_integration{

max_symmetry }
• k_integration{ num_points }
• k_integration{

num_subpoints }
• k_integration{

force_k0_subspace }
• interface{ }
• interface{ position }
• interface{ array_x{ } }
• interface{ array_x{ shift } }
• interface{ array_x{ min } }
• interface{ array_x{ max } }
• interface{ kp_parameters{ } }
• interface{ kp_parameters{

D_s, D_x, D_z } }
• interface{ kp_parameters{

alpha, beta } }
• interface{ kp_parameters{

reverse } }
• dispersion{ }
• dispersion{ full{ } }
• dispersion{ full{ name } }
• dispersion{ full{ kxgrid{ }, . . .

} }

• dispersion{ full{ kxgrid{ line{
} }, . . . } }

• dispersion{ full{ kxgrid{ line{
pos } }, . . . } }

• dispersion{ full{ kxgrid{ line{
spacing } }, . . . } }

• dispersion{ path{ } }
• dispersion{ path{ name } }
• dispersion{ path{ point{ } } }
• dispersion{ path{ point{ k } }

}
• dispersion{ path{ spacing } }
• dispersion{ path{ num_points

} }
• dispersion{ lines{ } }
• dispersion{ lines{ name } }
• dispersion{ lines{ k_max } }
• dispersion{ lines{ spacing } }
• dispersion{ superlattice{ } }
• dispersion{ superlattice{

name } }
• dispersion{ superlattice{

num_points } }
• dispersion{ superlattice{

num_points_x, . . . } }
• dispersion{

1112 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_dispersions{ } }
• dispersion{

output_dispersions{
max_num } }

• dispersion{ output_masses{ }
}

• dispersion{ output_masses{
max_num } }

• classify_none{ }
• classify_by_energy{ }
• classify_by_energy{ method }
• classify_by_energy{

shift_electrons }
• classify_by_energy{

shift_holes }
• classify_by_energy{ cutoff }
• classify_by_all_energies{ }

• classify_by_all_energies{
method }

• classify_by_all_energies{
shift_electrons }

• classify_by_all_energies{
shift_holes }

• classify_by_all_energies{
permissive }

• classify_by_all_energies{
cutoff }

• classify_by_spinor{ }
• classify_by_spinor{

threshold_electron }
• classify_by_spinor{

threshold_hole }
• classify_by_spinor{ cutoff }
• classify_by_all_spinors{ }

• classify_by_all_spinors{
threshold_electron }

• classify_by_all_spinors{
threshold_hole }

• classify_by_all_spinors{
permissive }

• classify_by_all_spinors{
cutoff }

• linear_solver{ }
• linear_solver{ iterations }
• linear_solver{ abs_accuracy

}
• linear_solver{ rel_accuracy }
• linear_solver{ use_cscg }
• linear_solver{

force_diagonal_preconditioner
}

accuracy

Calling sequence

quantum{ region{ kp_8band{ accuracy } } }

Properties

—

Functionality

value
any float > 0

default
1e-7

accuracy of eigenvalue

iterations

Calling sequence

quantum{ region{ kp_8band{ iterations } } }

Properties

—

Functionality

value
any integer > 1

default
500

number of iterations for eigenvalue solver

7.14. quantum{ } 1113

nextnano++ Documentation, Release 1.25.13

num_electrons

Calling sequence

quantum{ region{ kp_8band{ num_electrons } } }

Properties

—

Functionality

value
integer >= 0

default
0

number of electron eigenvalues

num_holes

Calling sequence

quantum{ region{ kp_8band{ num_holes } } }

Properties

—

Functionality

value
integer >= 0

default
0

number of hole eigenvalues

shift

Calling sequence

quantum{ region{ kp_8band{ shift } } }

Properties

—

Functionality

value
float >=0

default
0.1 # (eV)

energy shift relative to band edges in arpack_inv.

1114 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

abs_shift

Calling sequence

quantum{ region{ kp_8band{ abs_shift } } }

Properties

—

Functionality

value
float >=0

default
0.0 # (eV)

energy shift on an absolute energy scale in arpack_inv.

shift_window

Calling sequence

quantum{ region{ kp_8band{ shift_window } } }

Properties

—

Functionality

value
integer

default
0

When LAPACK is used, shifts the window of computed states by the specified number of states up (for positive
integers) or down (for negative integers). Adjust when the computed states are not centered around the band gap.

lapack{ }

Calling sequence

quantum{ region{ kp_8band{ lapack{ } } } }

Properties

—

Functionality

Triggers use of LAPACK solver which is for dense matrix problems (for 1D and small 2D systems only)

7.14. quantum{ } 1115

nextnano++ Documentation, Release 1.25.13

arpack_inv{ }

Calling sequence

quantum{ region{ kp_8band{ arpack_inv{ } } } }

Properties

—

Functionality

Triggers use of ARPACK shift invert eigensolver. It should be faster for large matrices (N > 1000) where only a
few eigenvalues are sought (~5-30).

davidson{ }

Calling sequence

quantum{ region{ kp_8band{ davidson{ } } } }

Properties

—

Functionality

Triggers Davidson solver for 8-band k · p. It offers both better speed as well as increased stability compared to
ARPACK inverse in 2D and 3D.

. Warning

The implementation of teh Davidson solver is still under development, therefore, should be considered as an
experimental feature.

For example, it has the tendency to fail in the presence of degenerate eigenvalues (e.g. Pauli or k.p quantum
mechanics without magnetic field). In this case, breaking the degeneracies by slightly changing the geometry
of the system or adding a weak magnetic field can be tried. Alternatively, switching back to ARPAPCK inverse
or, in 1D or smaller 2D systems, to LAPACK may be considered.

forward_differences

Calling sequence

quantum{ region{ kp_8band{ forward_differences = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

1116 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

If set to yes then forward and backward differences are used for the first derivative discretization of the Kane
parameter 𝑃 in the the 8-band k.p Hamiltonian. By default, set to no, centered differences are used. This parameter
might affect spurious solutions of the wave functions. See eq. (1.50) and eq. (1.51) of PhD thesis T. Andlauer for
more details.

electron_far_band

Calling sequence

quantum{ region{ kp_8band{ electron_far_band = ... } } }

Properties

• usage: conditional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: −

Dependencies

—

Functionality

Far-band contribution to electrons 𝑆 = 1.0 + 𝑟. The default results in rescaling such that 𝑆 = 1.0.

ò Note

It can be useful to set this value to r = -1.0 which then corresponds to setting 𝑆 = 0.0.

correct_electron_gfactor

Calling sequence

quantum{ region{ kp_8band{ correct_electron_gfactor = ... } } }

Properties

• usage: conditional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = −1.0

Dependencies

—

7.14. quantum{ } 1117

nextnano++ Documentation, Release 1.25.13

Functionality

When 𝑟 < 0 then the g-factor is set to 2.
When 𝑟 = 0 then the g-factor is computed.
When 𝑟 > 0 then the g-factor is computed assuming energy gap equal 𝑟.
See more details in Zeeman Term.

rescale_kp_everywhere

Calling sequence

quantum{ region{ kp_8band{ rescale_kp_everywhere } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: yes

Dependencies

—

Functionality

If set to yes then 𝑁,𝑀 , and 𝑃 parameters are rescaled. See more details in Zeeman Term.

avoid_spurious

Calling sequence

quantum{ region{ kp_8band{ avoid_spurious } } }

Properties

• usage: conditional
• type: choice

• values: yes or no

• default: no

Dependencies

—

Functionality

If set to yes then algorithm avoiding spurious solutions is used.

1118 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

kp_parameters{ }

Calling sequence

quantum{ region{ kp_8band{ kp_parameters{ } } } }

Properties

—

Functionality

Provides options for advanced manipulation of k.p parameters from database.

. Attention

The groups use_Luttinger_parameters and approximate_kappa are available only for simulations with
zincblende crystal symmetry.

kp_parameters{ use_Luttinger_parameters }

Calling sequence

quantum{ region{ kp_8band{ kp_parameters{ use_Luttinger_parameters } } } }

Properties

—

Functionality

By default the solver uses the DKK (Dresselhaus-Kip-Kittel) parameters (L, M, N). If enabled then it uses Luttinger
parameters (𝛾1, 𝛾2, 𝛾3) instead.

value
yes or no

default
no

kp_parameters{ from_6band_parameters }

Calling sequence

quantum{ region{ kp_8band{ kp_parameters{ from_6band_parameters } } } }

Properties

—

Functionality

By default the 8-band k ·p parameters are taken from database or input file. If enabled then it evaluates the 8-band
k · p parameters from 6-band k · p parameters, Kane parameter

𝐸𝑃 and temperature dependent band gap 𝐸𝑔 . :value: yes or no :default: no

7.14. quantum{ } 1119

nextnano++ Documentation, Release 1.25.13

kp_parameters{ approximate_kappa }

Calling sequence

quantum{ region{ kp_8band{ kp_parameters{ approximate_kappa } } } }

Properties

—

Functionality

By default the 𝜅 for zinc blende crystal structure is taken from the database or input file. If this is enabled then
the solver is forced to approximate kappa through others 8-band k · p parameters, even though kappa is given in
database or input file.

value
yes or no

default
no

kp_parameters{ evaluate_S }

Calling sequence

quantum{ region{ kp_8band{ kp_parameters{ evaluate_S } } } }

Properties

—

Functionality

By default 𝑆 (𝑆1, 𝑆2 for wurtzite) k·p parameter(s) is (are) taken from database or input file. If enabled it evaluates
𝑆 (𝑆1, 𝑆2 for wurtzite)k·p parameter(s) from effective mass𝑚𝑒 (𝑚𝑒,𝑝𝑎𝑟,𝑚𝑒,𝑝𝑒𝑟𝑝 for wurtzite), Kane parameter(s),
spin-orbit coupling(s) and temperature dependent band gap.

value
yes or no

default
no

kp_parameters{ rescale_S_to }

Calling sequence

quantum{ region{ kp_8band{ kp_parameters{ rescale_S_to } } } }

Properties

—

Functionality

set 𝑆 for zinc blende crystal structure to specified value and rescale 𝐸𝑃 , 𝐿′, 𝑁+ in order to preserve electron’s
effective mass.

set 𝑆1, 𝑆2 for wurtzite crystal structure to specified values respectively and rescale 𝐸𝑃1, 𝐸𝑃2, 𝐿′
1, 𝐿′

2,𝑁+
1 ,𝑁+

2 in
order to preserve electron’s effective masses.

1120 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

value
float for zinc blende crystal structure

2D float vector for wurtzite crystal structure

k_integration{ }

Calling sequence

quantum{ region{ kp_8band{ k_integration{ } } } }

Properties

—

Functionality

Provides options for integration over k|| space for k · p density calculations (for 1D and 2D only).

k_integration{ relative_size }

Calling sequence

quantum{ region{ kp_8band{ k_integration{ relative_size } } } }

Properties

—

Functionality

—

k_integration{ max_symmetry }

Calling sequence

quantum{ region{ kp_8band{ k_integration{ max_symmetry } } } }

Properties

—

Functionality

—

k_integration{ num_points }

Calling sequence

quantum{ region{ kp_8band{ k_integration{ num_points } } } }

7.14. quantum{ } 1121

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

—

k_integration{ num_subpoints }

Calling sequence

quantum{ region{ kp_8band{ k_integration{ num_subpoints } } } }

Properties

—

Functionality

—

k_integration{ force_k0_subspace }

Calling sequence

quantum{ region{ kp_8band{ k_integration{ force_k0_subspace } } } }

Properties

—

Functionality

—

interface{ }

Calling sequence

quantum{ region{ kp_8band{ interface{ } } } }

Properties

—

Functionality

ò Note

Better description will be available soon.

Optional group to add interface effects to the Hamiltonian [LivnehPRB2012], [LivnehPRB2014]. It can be used
multiple times.

1122 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

interface{ position }

Calling sequence

quantum{ region{ kp_8band{ interface{ position } } } }

Properties

—

Functionality

A real number defining position of the interface.

interface{ array_x{ } }

Calling sequence

quantum{ region{ kp_8band{ interface{ array_x{ } } } } }

Properties

—

Functionality

The group that copies the interface object along the simulation axis.

interface{ array_x{ shift } }

Calling sequence

quantum{ region{ kp_8band{ interface{ array_x{ shift } } } } }

Properties

—

Functionality

value
a real number

interface{ array_x{ min } }

Calling sequence

quantum{ region{ kp_8band{ interface{ array_x{ min } } } } }

Properties

—

7.14. quantum{ } 1123

nextnano++ Documentation, Release 1.25.13

Functionality

value
{..., -3, -2, -1 , 0}

default
0

interface{ array_x{ max } }

Calling sequence

quantum{ region{ kp_8band{ interface{ array_x{ max } } } } }

Properties

—

Functionality

value
{0, 1, 2, 3, ...}

interface{ kp_parameters{ } }

Calling sequence

quantum{ region{ kp_8band{ interface{ kp_parameters{ } } } } }

Properties

—

Functionality

The group storing all parameters for the interface Hamiltonian.

interface{ kp_parameters{ D_s, D_x, D_z } }

Calling sequence

quantum{ region{ kp_8band{ interface{ kp_parameters{ D_s } } } } }

quantum{ region{ kp_8band{ interface{ kp_parameters{ D_x } } } } }

quantum{ region{ kp_8band{ interface{ kp_parameters{ D_z } } } } }

Properties

—

Functionality

a real number

1124 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

interface{ kp_parameters{ alpha, beta } }

Calling sequence

quantum{ region{ kp_8band{ interface{ kp_parameters{ alpha } } } } }

quantum{ region{ kp_8band{ interface{ kp_parameters{ beta } } } } }

Properties

—

Functionality

a real number

interface{ kp_parameters{ reverse } }

Calling sequence

quantum{ region{ kp_8band{ interface{ kp_parameters{ reverse } } } } }

Properties

—

Functionality

— choice (yes/no)

dispersion{ }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ } } } }

Properties

—

Functionality

These groups provide keywords to define a path for computation of k|| and ksuperlattice (if applicable) dispersions.
The energy dispersion E(k) along the specified paths and for the specified k space resolutions are completely
independent from the k space resolution that was used within the self-consistent cycle where the k.p density has
been calculated. The latter is specified in k_integration{ }.

dispersion{ full{ } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ full{ } } } } }

Properties

—

7.14. quantum{ } 1125

nextnano++ Documentation, Release 1.25.13

Functionality

Calculates dispersion in 1D/2D/3D k-space depending on simulation dimensionality and pereodic boundary con-
ditions.

dispersion{ full{ name } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ full{ name } } } } }

Properties

—

Functionality

value
string

Is a name of the dispersion which also defines the name of the output file.

dispersion{ full{ kxgrid{ }, . . . } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ full{ kxgrid{ } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kygrid{ } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kzgrid{ } } } } } }

Properties

—

Functionality

Specifies a grid{...} in k-space for a 1D/2D/3D plot of the energy dispersion E(kx, ky, kz). Allowed only, if
simulation is periodic along x-direction and current quantum region extends over the whole x-domain. The options
are same as grid{ }

dispersion{ full{ kxgrid{ line{ } }, . . . } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ full{ kxgrid{ line{ } } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kygrid{ line{ } } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kzgrid{ line{ } } } } } } }

Properties

—

1126 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

dispersion{ full{ kxgrid{ line{ pos } }, . . . } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ full{ kxgrid{ line{ pos } } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kygrid{ line{ pos } } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kzgrid{ line{ pos } } } } } } }

Properties

—

Functionality

—

dispersion{ full{ kxgrid{ line{ spacing } }, . . . } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ full{ kxgrid{ line{ spacing } } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kygrid{ line{ spacing } } } } } } }

quantum{ region{ kp_8band{ dispersion{ full{ kzgrid{ line{ spacing } } } } } } }

Properties

—

Functionality

—

dispersion{ path{ } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ path{ } } } } }

Properties

—

Functionality

Calculates dispersion along custom path in k-space. Multiple instances are allowed.

7.14. quantum{ } 1127

nextnano++ Documentation, Release 1.25.13

dispersion{ path{ name } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ path{ name } } } } }

Properties

—

Functionality

Is a name of the dispersions which also defines the names of the output files.

value
string

dispersion{ path{ point{ } } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ path{ point{ } } } } } }

Properties

—

Functionality

Specifies points in the path through k-space. At least two k points have to be defined. Line between two such points
is called segment.

dispersion{ path{ point{ k } } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ path{ point{ k } } } } } }

Properties

—

Functionality

value
3D float vector

Is a k-point represented by vector [𝑘𝑥, 𝑘𝑦, 𝑘𝑧]. The units are 𝑛𝑚−1.

For 1D simulation the k|| space is a 𝑘𝑦 − 𝑘𝑧 plane so 𝑘𝑦 , 𝑘𝑧 can be freely choosed. 𝑘𝑥 can only be different from
zero, if a periodic boundary condition along the x-direction is defined and the quantum region extends over the
whole x-domain.

for 2D simulation the k|| space is a 𝑘𝑧 axis so 𝑘𝑧 can be freely choosed. 𝑘𝑥 can only be different from zero if
a periodic boundary condition along the x-direction is defined and the quantum region extends over the whole
x-domain. 𝑘𝑦 can only be different from zero if a periodic boundary condition along the y-direction is defined and
the quantum region extends over the whole y-domain.

for 3D simulation the k|| space is empty. 𝑘𝑥 can only be different from zero if a periodic boundary condition
along the x-direction is defined and the quantum region extends over the whole x-domain. 𝑘𝑦 can only be different

1128 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

from zero if a periodic boundary condition along the y-direction is defined and the quantum region extends over
the whole y-domain. 𝑘𝑧 can only be different from zero if a periodic boundary condition along the z-direction is
defined and the quantum region extends over the whole z-domain.

dispersion{ path{ spacing } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ path{ spacing } } } } }

Properties

—

Functionality

value
float

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1. Excludes num_points.

dispersion{ path{ num_points } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ path{ num_points } } } } }

Properties

—

Functionality

value
integer > 1

Specifies number of points (intermediate + two corner points) for each single path segment. Excludes spacing.

dispersion{ lines{ } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ lines{ } } } } }

Properties

—

Functionality

Calculates dispersions along some predefined paths of high symmetry in k-space, e.g. [100], [110], [111] and their
equivalents (in total maximally 13).

7.14. quantum{ } 1129

nextnano++ Documentation, Release 1.25.13

dispersion{ lines{ name } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ lines{ name } } } } }

Properties

—

Functionality

value
string

Is a name of the dispersions which also defines the names of the output files.

dispersion{ lines{ k_max } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ lines{ k_max } } } } }

Properties

—

Functionality

value
float

Specifies a maximum absolute value (radius) for the k-vector in 𝑛𝑚−1.

dispersion{ lines{ spacing } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ lines{ spacing } } } } }

Properties

—

Functionality

value
float

Specifies approximate spacing for intermediate points in the path segments in 𝑛𝑚−1.

dispersion{ superlattice{ } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ superlattice{ } } } } }

1130 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

Is a convenience group to calculate superlattice dispersion 𝐸(𝑘𝑆𝐿) along periodic directions. The intervals are set
automatically to [−𝜋/𝐿𝑖, 𝜋/𝐿𝑖], where𝐿𝑖 is the simulation domain range along periodic directions with 𝑖 = 𝑥, 𝑦, 𝑧.

dispersion{ superlattice{ name } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ superlattice{ name } } } } }

Properties

—

Functionality

value
string

Is a name of the dispersion which also defines the name of the output file.

dispersion{ superlattice{ num_points } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ superlattice{ num_points } } } } }

Properties

—

Functionality

Is a convenience keyword to specifies number of points along all appropriate directions in k space.

value
any integer > 1

dispersion{ superlattice{ num_points_x, . . . } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ superlattice{ num_points_x } } } } }

quantum{ region{ kp_8band{ dispersion{ superlattice{ num_points_y } } } } }

quantum{ region{ kp_8band{ dispersion{ superlattice{ num_points_z } } } } }

Properties

—

7.14. quantum{ } 1131

nextnano++ Documentation, Release 1.25.13

Functionality

value
any integer > 1

Specifies number of points along x direction in k space where dispersion is calculated. The simulation must be
periodic along the x direction in direct space. Specifies number of points along y direction in k space where
dispersion is calculated. The simulation must be periodic along the y direction in direct space. Specifies number
of points along z direction in k space where dispersion is calculated. The simulation must be periodic along the z
direction in direct space.

dispersion{ output_dispersions{ } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ output_dispersions{ } } } } }

Properties

—

Functionality

Outputs all defined dispersions.

dispersion{ output_dispersions{ max_num } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ output_dispersions{ max_num } } } } }

Properties

—

Functionality

Is a number of bands to print out

value
any integer between 1 and 9999

dispersion{ output_masses{ } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ output_masses{ } } } } }

Properties

—

1132 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Outputs effective masses𝑚* calculated from the dispersions, expressed in masses of a free electron𝑚0, following
the formula:

1

𝑚* =
𝑚0

ℏ2
· 𝜕

2

𝜕𝑘2
𝐸 (𝑘) ,

where 𝑘 is a “distance” along the path onto which the related band structure is computed.

dispersion{ output_masses{ max_num } }

Calling sequence

quantum{ region{ kp_8band{ dispersion{ output_masses{ max_num } } } } }

Properties

—

Functionality

Outputs effective masses calculated from the dispersions.

value
any integer between 1 and 9999

classify_none{ }

Calling sequence

quantum{ region{ kp_8band{ classify_none{ } } } }

Properties

—

Functionality

—

classify_by_energy{ }

Calling sequence

quantum{ region{ kp_8band{ classify_by_energy{ } } } }

Properties

—

Functionality

—

7.14. quantum{ } 1133

nextnano++ Documentation, Release 1.25.13

classify_by_energy{ method }

Calling sequence

quantum{ region{ kp_8band{ classify_by_energy{ method } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

Functionality

—

classify_by_energy{ shift_electrons }

Calling sequence

quantum{ region{ kp_8band{ classify_by_energy{ shift_electrons } } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV

Functionality

—

classify_by_energy{ shift_holes }

Calling sequence

quantum{ region{ kp_8band{ classify_by_energy{ shift_holes } } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV

Functionality

—

1134 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

classify_by_energy{ cutoff }

Calling sequence

quantum{ region{ kp_8band{ classify_by_energy{ cutoff } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 4

Functionality

—

classify_by_all_energies{ }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_energies{ } } } }

Properties

—

Functionality

—

classify_by_all_energies{ method }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_energies{ method } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

Functionality

—

classify_by_all_energies{ shift_electrons }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_energies{ shift_electrons } } } }

7.14. quantum{ } 1135

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV

Functionality

—

classify_by_all_energies{ shift_holes }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_energies{ shift_holes } } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV

Functionality

—

classify_by_all_energies{ permissive }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_energies{ permissive } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

Functionality

—

classify_by_all_energies{ cutoff }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_energies{ cutoff } } } }

1136 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 4

Functionality

—

classify_by_spinor{ }

Calling sequence

quantum{ region{ kp_8band{ classify_by_spinor{ } } } }

Properties

—

Functionality

—

classify_by_spinor{ threshold_electron }

Calling sequence

quantum{ region{ kp_8band{ classify_by_spinor{ threshold_electron } } } }

Properties

• usage: optional
• type: real number

• values: 10−2 ≤ 𝑟 ≤ 0.99

• unit: −

Functionality

—

classify_by_spinor{ threshold_hole }

Calling sequence

quantum{ region{ kp_8band{ classify_by_spinor{ threshold_hole } } } }

Properties

• usage: optional
• type: real number

• values: 10−2 ≤ 𝑟 ≤ 0.99

• unit: −

7.14. quantum{ } 1137

nextnano++ Documentation, Release 1.25.13

Functionality

—

classify_by_spinor{ cutoff }

Calling sequence

quantum{ region{ kp_8band{ classify_by_spinor{ cutoff } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 4

Functionality

—

classify_by_all_spinors{ }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_spinors{ } } } }

Properties

—

Functionality

—

classify_by_all_spinors{ threshold_electron }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_spinors{ threshold_electron } } } }

Properties

• usage: optional
• type: real number

• values: 10−2 ≤ 𝑟 ≤ 0.99

• unit: −

Functionality

—

1138 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

classify_by_all_spinors{ threshold_hole }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_spinors{ threshold_hole } } } }

Properties

• usage: optional
• type: real number

• values: 10−2 ≤ 𝑟 ≤ 0.99

• unit: −

Functionality

—

classify_by_all_spinors{ permissive }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_spinors{ permissive } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

Functionality

—

classify_by_all_spinors{ cutoff }

Calling sequence

quantum{ region{ kp_8band{ classify_by_all_spinors{ cutoff } } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 4

Functionality

—

linear_solver{ }

Calling sequence

quantum{ region{ kp_8band{ linear_solver{ } } } }

7.14. quantum{ } 1139

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

Provides parameters for linear equation solver in arpack_inv shift invert preconditioner

linear_solver{ iterations }

Calling sequence

quantum{ region{ kp_8band{ linear_solver{ iterations } } } }

Properties

—

Functionality

value
integer > 1

default
10000

number of iterations in arpack_inv. Occasionally, using even larger values than 10000 may be necessary to avoid
diagonalization failure.

linear_solver{ abs_accuracy }

Calling sequence

quantum{ region{ kp_8band{ linear_solver{ abs_accuracy } } } }

Properties

—

Functionality

value
float between 0.0 and 0.01

default
1e-8

absolute accuracy in arpack_inv.

linear_solver{ rel_accuracy }

Calling sequence

quantum{ region{ kp_8band{ linear_solver{ rel_accuracy } } } }

1140 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

—

Functionality

value
float between 0.0 and 0.01

default
1e-8

relative accuracy in arpack_inv.

linear_solver{ use_cscg }

Calling sequence

quantum{ region{ kp_8band{ linear_solver{ use_cscg } } } }

Properties

—

Functionality

value
yes or no

default
no

When arpack_inv is used, forces the slower but occasionally more robust CSCG (Composite Step Conjugate
Gradient) linear solver to be used rather than the cg (Conjugate Gradient) linear solver. May occasionally prevent
a diagonalization failure.

linear_solver{ force_diagonal_preconditioner }

Calling sequence

quantum{ region{ kp_8band{ linear_solver{ force_diagonal_preconditioner } } } }

Properties

—

Functionality

value
yes or no

default
no

When arpack_inv is used, forces the use of a slower but more robust diagonal preconditioner. As result, total
runtime and stability of the arpack_inv solver may actually become much better and diagonalization failures may
be avoided.

Last update: 27/05/2025

7.14. quantum{ } 1141

nextnano++ Documentation, Release 1.25.13

boundary{ }

Calling sequence

quantum{ region{ boundary{ } } }

Properties

• usage: conditional
• items: maximum 1

Dependencies

—

Functionality

Specifies the boundary condition for Schrödinger equation along various axis dimensions. In general, Dirich-
let boundary conditions correspond to 𝑓 = constant and Neumann boundary conditions correspond to
𝑑𝑓/𝑑𝑥 = constant. Quantum densities may exhibit pathological density values on the boundary (e.g. 0
in the case of Dirichlet boundary conditions). Using classical_boundary_x, classical_boundary_y,
classical_boundary_z, the computation of a classical density can be enforced on the respective boundary points
for the respective band(s). The calculation within the quantum model itself and respective results such as wave func-
tions are not affected by this setting. Using num_classical_x, num_classical_y, num_classical_z you can
explicitly specify the number of points to be cut at each side.

Nested keywords

• x, y, z
• classical_boundary_x, . . .

• num_classical_x, . . .

x, y, z

Calling sequence

quantum{ region{ boundary{ x = ... } } }

quantum{ region{ boundary{ y = ... } } }

quantum{ region{ boundary{ z = ... } } }

Properties

• usage: optional
• type: choice

• values: dirichlet or neumann or shifted_neumann

• default: neumann

Functionality

Specifies boundary conditions at the borders of respective quantum{ region{} } in the x direction of the sim-
ulation. The dirichlet results in Dirichlet boundary conditions. The neumann results in Neumann boundary
conditions. The shifted_neumann results in Neumann boundary conditions where the flux disappears half a grid
spacing outside the boundary.

1142 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

ò Note

Periodic boundary conditions along the appropriate direction(s) are taken automatically if global { ...
periodic{ x/y/z = yes} } is specified and if the quantum region extends over the whole simulation region
along the appropriate direction. In this case, the dirichlet or neumann specifications under quantum{ ...
{region{ ... boundary{...} } } are ignored along the appropriate direction(s).

classical_boundary_x, . . .

Calling sequence

quantum{ region{ boundary{ classical_boundary_x = ... } } }

quantum{ region{ boundary{ classical_boundary_y = ... } } }

quantum{ region{ boundary{ classical_boundary_z = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

—

num_classical_x, . . .

Calling sequence

quantum{ region{ boundary{ num_classical_x = [..., ...] } } }

quantum{ region{ boundary{ num_classical_y = [..., ...] } } }

quantum{ region{ boundary{ num_classical_z = [..., ...] } } }

Properties

• usage: conditional
• type: vector of 2 integers: (𝑧1, 𝑧2)

• values: 𝑧𝑖 ≥ 0

• default: (1, 1)

Functionality

—

Last update: 27/05/2025

7.14. quantum{ } 1143

nextnano++ Documentation, Release 1.25.13

overlap_integrals{ }

Calling sequence

quantum{ region{ overlap_integrals{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Provides the option to calculate overlap integrals between wave functions of two different bands.

Nested keywords

• KP6_Gamma{ }
• HH_Gamma{ }
• LH_Gamma{ }
• SO_Gamma{ }
• HH_Delta{ }

• LH_Delta{ }
• SO_Delta{ }
• HH_X{ }
• LH_X{ }
• SO_X{ }

• HH_L{ }
• LH_L{ }
• SO_L{ }
• output_matrix_elements
• output_transition_energies

KP6_Gamma{ }

Calling sequence

quantum{ region{ overlap_integrals{ KP6_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality∑︀
𝑘⟨𝑘𝑝6𝑘,𝑖|Γ𝑗⟩ , with k = 1 .. 6 indexing the component of the six-component k ·p wave function and 𝑖, 𝑗 indexing

the wave function numbers. kp_6band{ } and Gamma{ } calculation must be present.

HH_Gamma{ }

Calling sequence

quantum{ region{ overlap_integrals{ HH_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the heavy hole valence band and the gamma conduction band ⟨𝐻𝐻𝑖|Γ𝑗⟩

1144 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

LH_Gamma{ }

Calling sequence

quantum{ region{ overlap_integrals{ LH_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the light hole valence band and the gamma conduction band ⟨𝐿𝐻𝑖|Γ𝑗⟩

SO_Gamma{ }

Calling sequence

quantum{ region{ overlap_integrals{ SO_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the split-off hole valence band and the gamma conduction band ⟨𝑆𝑂𝑖|Γ𝑗⟩

HH_Delta{ }

Calling sequence

quantum{ region{ overlap_integrals{ HH_Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the heavy hole valence band and the Delta conduction band ⟨𝐿𝐻𝑖|∆𝑗⟩

LH_Delta{ }

Calling sequence

quantum{ region{ overlap_integrals{ LH_Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

7.14. quantum{ } 1145

nextnano++ Documentation, Release 1.25.13

Functionality

Matrix element of the transition between the light hole valence band and the Delta conduction band ⟨𝐿𝐻𝑖|∆𝑗⟩

SO_Delta{ }

Calling sequence

quantum{ region{ overlap_integrals{ SO_Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the split-off hole valence band and the Delta conduction band ⟨𝑆𝑂𝑖|∆𝑗⟩

HH_X{ }

Calling sequence

quantum{ region{ overlap_integrals{ HH_X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the heavy hole valence band and the X conduction band ⟨𝐻𝐻𝑖|𝑋𝑗⟩

LH_X{ }

Calling sequence

quantum{ region{ overlap_integrals{ LH_X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the light hole valence band and the X conduction band ⟨𝐿𝐻𝑖|𝑋𝑗⟩

SO_X{ }

Calling sequence

quantum{ region{ overlap_integrals{ SO_X{ } } } }

1146 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the split-off valence band and the X conduction band ⟨𝑆𝑂𝑖|𝑋𝑗⟩

HH_L{ }

Calling sequence

quantum{ region{ overlap_integrals{ HH_L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the heavy hole valence band and the L conduction band ⟨𝐻𝐻𝑖|𝐿𝑗⟩

LH_L{ }

Calling sequence

quantum{ region{ overlap_integrals{ LH_L{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the light hole valence band and the L conduction band ⟨𝐿𝐻𝑖|𝐿𝑗⟩

SO_L{ }

Calling sequence

quantum{ region{ overlap_integrals{ SO_L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Matrix element of the transition between the split-off valence band and the L conduction band ⟨𝑆𝑂𝑖|𝐿𝑗⟩

7.14. quantum{ } 1147

nextnano++ Documentation, Release 1.25.13

output_matrix_elements

Calling sequence

quantum{ region{ overlap_integrals{ output_matrix_elements = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If output_matrix_elements = yes then matrix elements are saved in output file.

output_transition_energies

Calling sequence

quantum{ region{ overlap_integrals{ output_transition_energies = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If output_transition_energies = yes then transition energies are saved in output file.

Last update: 27/05/2025

momentum_matrix_elements{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculate polarization dependent momentum matrix elements 𝜖 · ⟨𝜓𝑖|p̂|𝜓𝑗⟩ for wave functions within one band.
The light polarization direction 𝜖 is automatically normalized in the program.

For further reading: J. H. Davies, The Physics of Low-Dimensional Semiconductors. An Introduction, 2006, Chap-
ters 10 and 8.

1148 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• name
• direction
• Gamma{ }
• X{ }
• Delta{ }

• L{ }
• HH{ }
• LH{ }
• SO{ }
• KP6{ }

• KP8{ }
• output_matrix_elements
• output_transition_energies
• output_oscillator_strengths

name

Calling sequence

quantum{ region{ momentum_matrix_elements{ name = ... } } }

Properties

• usage: optional
• type: character string

Functionality

defines suffix for related output files

direction

Calling sequence

quantum{ region{ momentum_matrix_elements{ direction = [..., ..., ...] } } }

Properties

• usage: optional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• default: 𝑟1 = 1.0, 𝑟2 = 0.0, 𝑟3 = 0.0

• unit: −

Functionality

It defines the polarization direction 𝜖. From it a vector of unit length is calculated, which enters the calculation. In
1D simulation it can be omitted and [1,0,0] is then assumed.

output_matrix_elements

Calling sequence

quantum{ region{ momentum_matrix_elements{ output_matrix_elements = ... } } }

7.14. quantum{ } 1149

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If output_matrix_elements = yes then matrix elements are saved in output file.

output_transition_energies

Calling sequence

quantum{ region{ momentum_matrix_elements{ output_transition_energies = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If output_transition_energies = yes then transition energies are saved in output file.

output_oscillator_strengths

Calling sequence

quantum{ region{ momentum_matrix_elements{ output_oscillator_strengths = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If output_oscillator_strengths = yes then oscillator strengths are saved in output file. Currently, only a
simple formula is used, i.e. the free electron mass is used and not the real effective mass one.

Gamma{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ Gamma{ } } } }

1150 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨Γ𝑖|𝜖 · p̂|Γ𝑗⟩.

X{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝑋𝑖|𝜖 · p̂|𝑋𝑗⟩.

Delta{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨∆𝑖|𝜖 · p̂|∆𝑗⟩.

L{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝐿𝑖|𝜖 · p̂|𝐿𝑗⟩.

7.14. quantum{ } 1151

nextnano++ Documentation, Release 1.25.13

HH{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ HH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝐻𝐻𝑖|𝜖 · p̂|𝐻𝐻𝑗⟩.

LH{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ LH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝐿𝐻𝑖|𝜖 · p̂|𝐿𝐻𝑗⟩.

SO{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ SO{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝑆𝑂𝑖|𝜖 · p̂|𝑆𝑂𝑗⟩.

KP6{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ KP6{ } } } }

Properties

• usage: optional
• items: maximum 1

1152 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Calculates the matrix element
∑︀
𝑘⟨𝑘𝑝6𝑘,𝑖|𝜖 · p̂|𝑘𝑝6𝑘,𝑗⟩, 𝑘 = 1,. . . ,6.

KP8{ }

Calling sequence

quantum{ region{ momentum_matrix_elements{ KP8{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element
∑︀
𝑘⟨𝑘𝑝8𝑘,𝑖|𝜖 · p̂|𝑘𝑝8𝑘,𝑗⟩, 𝑘 = 1,. . . ,8.

Last update: 27/05/2025

dipole_moment_matrix_elements{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Triggers calculation of polarization-dependent dipole moment matrix elements 𝜖 · ⟨𝜓𝑖|d̂|𝜓𝑗⟩ = 𝜖 · ⟨𝜓𝑖|𝑒r̂|𝜓𝑗⟩ for
wave functions within selected band models. The light polarization direction 𝜖 is automatically normalized in the
program. For further reading: J. H. Davies, The Physics of Low-Dimensional Semiconductors. An Introduction,
2006, Chapters 10 and 8.

Nested keywords

• name
• direction
• Gamma{ }
• X{ }
• Delta{ }

• L{ }
• HH{ }
• LH{ }
• SO{ }
• KP6{ }

• KP8{ }
• output_matrix_elements
• output_transition_energies
• output_oscillator_strengths

name

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ name = ... } } }

7.14. quantum{ } 1153

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: character string

Functionality

defines suffix for related output files

direction

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ direction = [..., ..., ...] } } }

Properties

• usage: optional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• default: 𝑟1 = 1.0, 𝑟2 = 0.0, 𝑟3 = 0.0

• unit: −

Functionality

It defines the polarization direction 𝜖. From it a vector of unit length is calculated, which enters the calculation. In
1D simulation it can be omitted and [1,0,0] is then assumed.

output_matrix_elements

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ output_matrix_elements = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

If output_matrix_elements = yes then matrix elements are saved in output file.

output_transition_energies

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ output_transition_energies = ... } } }

1154 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If output_transition_energies = yes then transition energies are saved in output file.

output_oscillator_strengths

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ output_oscillator_strengths = ... } }
}

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If output_oscillator_strengths = yes then oscillator strengths are saved in output file.

Currently, only a simple formula is used, i.e. the free electron mass is used and not the real effective mass one.

Gamma{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨Γ𝑖|𝜖 · d̂|Γ𝑗⟩.

X{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ X{ } } } }

7.14. quantum{ } 1155

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝑋𝑖|𝜖 · d̂|𝑋𝑗⟩.

Delta{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨∆𝑖|𝜖 · d̂|∆𝑗⟩.

L{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝐿𝑖|𝜖 · d̂|𝐿𝑗⟩.

HH{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ HH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝐻𝐻𝑖|𝜖 · d̂|𝐻𝐻𝑗⟩.

1156 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

LH{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ LH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝐿𝐻𝑖|𝜖 · d̂|𝐿𝐻𝑗⟩.

SO{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ SO{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element ⟨𝑆𝑂𝑖|𝜖 · d̂|𝑆𝑂𝑗⟩.

KP6{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ KP6{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculates the matrix element
∑︀
𝑘⟨𝑘𝑝6𝑘,𝑖|𝜖 · d̂|𝑘𝑝6𝑘,𝑗⟩, 𝑘 = 1,. . . ,6.

KP8{ }

Calling sequence

quantum{ region{ dipole_moment_matrix_elements{ KP8{ } } } }

Properties

• usage: optional
• items: maximum 1

7.14. quantum{ } 1157

nextnano++ Documentation, Release 1.25.13

Functionality

Calculates the matrix element
∑︀
𝑘⟨𝑘𝑝8𝑘,𝑖|𝜖 · d̂|𝑘𝑝8𝑘,𝑗⟩, 𝑘 = 1,. . . ,8.

Last update: 27/05/2025

transition_energies{ }

Calling sequence

quantum{ region{ transition_energies{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculate transition energies (energy difference) between two states in certain bands. Use this if you want to
calculate transition energies but but do not want to calculate the matrix elements. Note that the matrix elements
defined above also include specifiers for transition energies: output_transition_energies = yes`.

Nested keywords

• KP8{ }
• KP6{ }
• HH{ }
• LH{ }
• SO{ }
• Gamma{ }
• L{ }
• X{ }

• Delta{ }
• KP6_Gamma{ }
• HH_Gamma{ }
• HH_L{ }
• HH_X{ }
• HH_Delta{ }
• LH_Gamma{ }
• LH_L{ }

• LH_X{ }
• LH_Delta{ }
• SO_Gamma{ }
• SO_L{ }
• SO_X{ }
• SO_Delta{ }

KP6_Gamma{ }

Calling sequence

quantum{ region{ transition_energies{ KP6_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

HH_Gamma{ }

Calling sequence

quantum{ region{ transition_energies{ HH_Gamma{ } } } }

1158 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

—

LH_Gamma{ }

Calling sequence

quantum{ region{ transition_energies{ LH_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

SO_Gamma{ }

Calling sequence

quantum{ region{ transition_energies{ SO_Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

Delta{ }

Calling sequence

quantum{ region{ transition_energies{ Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

7.14. quantum{ } 1159

nextnano++ Documentation, Release 1.25.13

HH_Delta{ }

Calling sequence

quantum{ region{ transition_energies{ HH_Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

LH_Delta{ }

Calling sequence

quantum{ region{ transition_energies{ LH_Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

SO_Delta{ }

Calling sequence

quantum{ region{ transition_energies{ SO_Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

Gamma{ }

Calling sequence

quantum{ region{ transition_energies{ Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

1160 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

—

X{ }

Calling sequence

quantum{ region{ transition_energies{ X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

HH_X{ }

Calling sequence

quantum{ region{ transition_energies{ HH_X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

LH_X{ }

Calling sequence

quantum{ region{ transition_energies{ LH_X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

SO_X{ }

Calling sequence

quantum{ region{ transition_energies{ SO_X{ } } } }

7.14. quantum{ } 1161

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

—

L{ }

Calling sequence

quantum{ region{ transition_energies{ L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

HH_L{ }

Calling sequence

quantum{ region{ transition_energies{ HH_L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

LH_L{ }

Calling sequence

quantum{ region{ transition_energies{ LH_L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

1162 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

SO_L{ }

Calling sequence

quantum{ region{ transition_energies{ SO_L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

HH{ }

Calling sequence

quantum{ region{ transition_energies{ HH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

LH{ }

Calling sequence

quantum{ region{ transition_energies{ LH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

SO{ }

Calling sequence

quantum{ region{ transition_energies{ SO{ } } } }

Properties

• usage: optional
• items: maximum 1

7.14. quantum{ } 1163

nextnano++ Documentation, Release 1.25.13

Functionality

—

KP6{ }

Calling sequence

quantum{ region{ transition_energies{ KP6{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

KP8{ }

Calling sequence

quantum{ region{ transition_energies{ KP8{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

Last update: 27/05/2025

quantum{ region{ quantize_x{ }, . . . } }

Calling sequence

quantum{ region{ quantize_x{ } }

quantum{ region{ quantize_y{ } }

quantum{ region{ quantize_z{ } }

Properties

• usage: optional
• items: maximum 1

1164 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

In 2D or 3D simulation, the Schrödinger equation is solved within the 1D slices parallel to the x direction when
quantize_x{} is called. This results in the reduction of the calculation time. For example, if a 2D simulating has
100 grid points in x-direction and 50 grid points in y-direction, the normal calculation solves the eigenvalue problem
of a (100x50) x (100x50) matrix. When quantize_x{} is specified, on the other hand, nextnano++ solves the 1D
Schrödinger equation along the x-direction at each grid point in y-direction. Therefore, 50 eigenvalue problems of
100x100 matrices are solved. Thus, the runtime of the eigenvalue solver can be roughly estimated (number of y-
grids):math:^{-1}, but we should note that the runtime also depends on the number of eigenvalues to be calculated.

Only one quantization direction (x, y, z) can be specified at a time when quantum decomposition is used. Typically,
the quantization direction is the growth direction.

Note that a similar number of states should be requested as for a corresponding 1D simulation (i.e. much less than
normally needed in 2D or 3D), and that lateral (i.e. orthogonal to the quantization direction) grid spacing can be
much larger than for “normal” quantum simulation, as the density from quantum decomposition is NOT affected
by wide lateral grid spacing.

Currently, only one-band model (Gamma, X, Delta, LH, HH, etc.) without k-integration and without magnetic field
is supported. Outputs based on wave functions (e.g., all outputs generated by run{ quantum_optics{ } }, any type
of matrix elements, lifetimes, excitons) are not evaluated, since proper wave functions are not computed within this
approximate method.

quantize_y{ } and quantize_z{} are analogous to quantize_x{}, triggering solving 1D Schrödinger equa-
tions along y- and z- directions, respectively.

Last update: 27/05/2025

lifetimes{ }

Calling sequence

quantum{ region{ lifetimes{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Calculate the lifetimes of the state due to LO phonon scattering. For more information check R. Ferreira, G.
Bastard, PRB 40, 1074 (1989) and Section 2.1.3 of the PhD thesis of G. Scarpa, Technische Universität München.

Nested keywords

• phonon_energy
• Gamma{ }
• X{ }
• Delta{ }

• L{ }
• HH{ }
• LH{ }
• SO{ }

phonon_energy

Calling sequence

quantum{ region{ lifetimes{ phonon_energy = ... } } }

7.14. quantum{ } 1165

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: [1e-9, ...)

• default: 𝑟 = 1𝑒− 2

• unit: eV

Functionality

LO phonon energy

Gamma{ }

Calling sequence

quantum{ region{ lifetimes{ Gamma{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

One-band model for computing the lifetimes.

X{ }

Calling sequence

quantum{ region{ lifetimes{ X{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

One-band model for computing the lifetimes.

Delta{ }

Calling sequence

quantum{ region{ lifetimes{ Delta{ } } } }

Properties

• usage: optional
• items: maximum 1

1166 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

One-band model for computing the lifetimes.

L{ }

Calling sequence

quantum{ region{ lifetimes{ L{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

One-band model for computing the lifetimes.

HH{ }

Calling sequence

quantum{ region{ lifetimes{ HH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

One-band model for computing the lifetimes.

LH{ }

Calling sequence

quantum{ region{ lifetimes{ LH{ } } } }

Properties

• usage: optional
• items: maximum 1

Functionality

One-band model for computing the lifetimes.

SO{ }

Calling sequence

quantum{ region{ lifetimes{ SO{ } } } }

7.14. quantum{ } 1167

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• items: maximum 1

Functionality

One-band model for computing the lifetimes.

Last update: 27/05/2025

excitons{ }

Calling sequence

quantum{ region{ excitons{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

An optional group triggering computation of binding energies of excitons.

ò Note

This feature is under development.

. Attention

This model can be used only for 1D simulations.

Nested keywords

• electron_mass
• hole_mass
• density_averaged_masses

• dielectric_const
• energy_cutoff
• accuracy

electron_mass

Calling sequence

quantum{ region{ excitons{ electron_mass = ... } } }

1168 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: 10−3 ≤ 𝑟 ≤ 10.0

• default: volume average of values from the material database

• unit: −

Functionality

Effective mass of electron involved in the exciton.

hole_mass

Calling sequence

quantum{ region{ excitons{ hole_mass = ... } } }

Properties

• usage: optional
• type: real number

• values: 10−3 ≤ 𝑟 ≤ 10.0

• default: volume average of values from the material database

• unit: −

Functionality

Effective mass of hole involved in the exciton.

density_averaged_masses

Calling sequence

quantum{ region{ excitons{ density_averaged_masses = ... } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Effective masses of hole and electron are averaged with weights taken from probability densities of related states

dielectric_const

Calling sequence

quantum{ region{ excitons{ dielectric_const = ... } } }

7.14. quantum{ } 1169

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: real number

• values: 1.0 ≤ 𝑟 ≤ 103

• default: volume average of values from the material database

• unit: −

Functionality

Effective dielectric constant assumed for electron-hole Coulomb interaction; If no explicit value of the dielectric
constant is set, then the material values of the static dielectric constant (as given by the database and used in Poisson
equation) are volume-averaged over the quantum region

energy_cutoff

Calling sequence

quantum{ region{ excitons{ energy_cutoff = ... } } }

Properties

• usage: required
• type: real number

• values: [1e-3, ...)

• unit: eV

Functionality

Maximum energy difference of electron and hole states involved in forming exciton

accuracy

Calling sequence

quantum{ region{ excitons{ accuracy = ... } } }

Properties

• usage: optional
• type: real number

• values: 10−10 ≤ 𝑟 ≤ 0.1

• default: 𝑟 = 1𝑒− 4

• unit: −

Functionality

Accuracy used in minimisation procedure to compute the exciton binding energy

Last update: 27/05/2025

1170 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_wavefunctions{ }

Calling sequence

quantum{ region{ output_wavefunctions{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Provides options for output of wave function data

Nested keywords

• max_num
• all_k_points
• amplitudes
• probabilities

• in_one_file
• scale
• structured
• energy_shift

• in-
clude_energies_in_shifted_files

max_num

Calling sequence

quantum{ region{ output_wavefunctions{ max_num = ... } } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 9999

• default: not defined

Functionality

—

all_k_points

Calling sequence

quantum{ region{ output_wavefunctions{ all_k_points = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

7.14. quantum{ } 1171

nextnano++ Documentation, Release 1.25.13

Functionality

Prints out the wave functions for all 𝑘|| points (1D: 𝑘|| = (𝑘𝑦, 𝑘𝑧), 2D: 𝑘|| = 𝑘𝑧) that are used in the
k_integration{} or dispersion{}. Enabling this option can produce a large number of output files.

amplitudes

Calling sequence

quantum{ region{ output_wavefunctions{ amplitudes = "..." } } }

Properties

• usage: optional
• type: enumerator

• values: yes; no; S_X_Y_Z; CB_HH_LH_SO

• default: no

Functionality

Prints out the wave functions 𝜓 in units of 1D: nm−1/2, 2D: nm−1, 3D: nm−3/2.

options
“ yes “ : for k.p it is equivalent to S_X_Y_Z

“ no “ : no output is done for amplitudes.

“ S_X_Y_Z “ : prints out the wave functions (psi) with respect to the basis (k.p only)
|𝑆+⟩|𝑆−⟩|𝑋+⟩|𝑌+⟩|𝑍+⟩|𝑋−⟩|𝑌−⟩|𝑍−⟩. |𝑋+⟩|𝑌+⟩|𝑍+⟩ correspond to the x,
y, z of the simulation coordinate system (and not crystal coordinate system) and + and
- correspond to the spin projection along the z axis of the crystal system.

“ CB_HH_LH_SO “ : prints out the wave functions (psi) with respect to the basis
(k.p only) |𝑐𝑏+⟩|𝑐𝑏−⟩|ℎℎ+⟩|𝑙ℎ+⟩|𝑙ℎ−⟩|ℎℎ−⟩|𝑠𝑜+⟩|𝑠𝑜−⟩. This basis is the same as
used in L. C. Lew Yan Voon, M. Willatzen, The k.p method`(2009) (Table 3.4); G.
Bastard, `Wave Mechanics Applied to Semiconductor Heterostructures (1988) and B.
A. Foreman, PRB 48, 4964 (1993).

If multiple choices are required type them together inside a string like

amplitudes = "S_X_Y_Z CB_HH_LH_SO"

probabilities

Calling sequence

quantum{ region{ output_wavefunctions{ probabilities = "..." } } }

Properties

• usage: optional
• type: enumerator

• values: yes; no; S_X_Y_Z; CB_HH_LH_SO

• default: yes

1172 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Prints out the wave functions |𝜓|2 in units of 1D: nm−1, 2D: nm−2, 3D: nm−3.

yes : for k.p it is the sum of the squares of all components of a spinor
no : no output
S_X_Y_Z : same as for the amplitudes (k.p only)
CB_HH_LH_SO : same as for the amplitudes (k.p only)

Multiple choices are possible.

probabilities = "yes CB_HH_LH_SO"

in_one_file

Calling sequence

quantum{ region{ output_wavefunctions{ in_one_file = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Prints out the amplitudes into one file and the probabilities into one file. If no is chosen, for each eigenvalue a
separate file is written out.

scale

Calling sequence

quantum{ region{ output_wavefunctions{ scale = ... } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 1.0

• unit: −

Functionality

Scale factor for output of amplitudes and probabilities

7.14. quantum{ } 1173

nextnano++ Documentation, Release 1.25.13

structured

Calling sequence

quantum{ region{ output_wavefunctions{ structured = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

The whole output for quantum{ } is written in subdirectory Quantum/. If enabled, additional subdirectories are
created in subdirectory Quantum/ to organize the structure of the output files in a meaningful way. It is recom-
mended to set this parameter to yes if a lot of output files are created, e.g. in case all_k_points = yes, and
both amplitudes and probabilities are printed out.

energy_shift

Calling sequence

quantum{ region{ output_wavefunctions{ energy_shift = "..." } } }

Properties

• usage: optional
• type: choice

• values: shifted or not_shifted or both

• default: both

Functionality

shifted : prints out the amplitudes and the probabilities shifted by the energy.
not_shifted : prints out the amplitudes and the probabilities as they are (an integral over volume is equal to 1).
both : prints out the amplitudes and the probabilities with and without energy shift.

include_energies_in_shifted_files

Calling sequence

quantum{ region{ output_wavefunctions{ include_energies_in_shifted_files = "..." } } }

Properties

—

• usage: optional
• type: choice

• values: yes or no

• default: yes

1174 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Selects if the energy levels are added in output of shifted amplitudes and probabilities or not. If no is selected a
separate file with energy levels is written out.

ò Note

The energy spectrum (i.e. the eigenvalues) are always written into the files energy_spectrum_*.dat. The
projections of the eigenfunctions on the basis states of the bulk Hamiltonian are written into the files
spinor_composition_*.dat.

Last update: 27/05/2025

output_subband_densities{ }

Calling sequence

quantum{ region{ output_subband_densities{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Provides options for output of subband densities.

Nested keywords

• max_num • in_one_file

max_num

Calling sequence

quantum{ region{ output_subband_densities{ max_num = ... } } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 9999

• default: not defined

Functionality

number of subband densities to be printed out. If max_num is not present, the subband density is written out for
each eigenvalue.

7.14. quantum{ } 1175

nextnano++ Documentation, Release 1.25.13

in_one_file

Calling sequence

quantum{ region{ output_subband_densities{ in_one_file = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

Prints out the subband densities into one file. If no is chosen, for each subband density a separate file is written
out. This feature only makes sense for 1D simulations.

Last update: 27/05/2025

quantum{ region{ output_quantum_densities{ } } }

Calling sequence

quantum{ region{ output_quantum_densities{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

If set, the quantum density belonging to each quantum solver (i.e. for each valley) will be output. Essentially, it
contained the values of output_subband_densities{} summed over the subbands.

Last update: 27/05/2025

quantum{ region{ output_occupations_on_grid{ } } }

Calling sequence

quantum{ region{ output_occupations_on_grid{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

—

1176 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Nested keywords

• max_num • in_one_file

max_num

Calling sequence

quantum{ region{ output_occupations_on_grid{ max_num = ... } } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 9999

• default: not defined

Functionality

—

in_one_file

Calling sequence

quantum{ region{ output_occupations_on_grid{ in_one_file = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

—

Last update: 27/05/2025

quantum{ region{ output_energies_on_grid{ } } }

Calling sequence

quantum{ region{ output_energies_on_grid{ } } }

Properties

• usage: optional
• items: maximum 1

7.14. quantum{ } 1177

nextnano++ Documentation, Release 1.25.13

Functionality

Generates and outputs subband occupations extended over the grid.

Nested keywords

• max_num
• all_k_points

• structured
• in_one_file

max_num

Calling sequence

quantum{ region{ output_energies_on_grid{ max_num = ... } } }

Properties

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 9999

• default: not defined

Functionality

—

all_k_points

Calling sequence

quantum{ region{ output_energies_on_grid{ all_k_points = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

Prints out the wave functions for all 𝑘|| points (1D: 𝑘|| = (𝑘𝑦, 𝑘𝑧), 2D: 𝑘|| = 𝑘𝑧) that are used in the
k_integration{} or dispersion{}. Enabling this option can produce a large number of output files.

structured

Calling sequence

quantum{ region{ output_energies_on_grid{ structured = "..." } } }

1178 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

The whole output for quantum{ } is written in subdirectory Quantum/. If enabled, additional subdirectories are
created in subdirectory Quantum/ to organize the structure of the output files in a meaningful way.

in_one_file

Calling sequence

quantum{ region{ output_energies_on_grid{ in_one_file = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

Functionality

—

Last update: 27/05/2025

output_rotated_inverse_mass_tensor{ }

Calling sequence

quantum{ region{ output_rotated_inverse_mass_tensor{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs components of tensor of the inverse mass in simulation coordinate system

Nested keywords

• boxes • structured

7.14. quantum{ } 1179

nextnano++ Documentation, Release 1.25.13

boxes

Calling sequence

quantum{ region{ output_rotated_inverse_mass_tensor{ boxes = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

For each grid point, in 1D two points are printed out to mimic abrupt discontinuities at material interfaces (in 2D
four points, in 3D eight points)

structured

Calling sequence

quantum{ region{ output_rotated_inverse_mass_tensor{ structured = "..." } } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

By default, whole output is written in subdirectory Quantum/. If yes is chosen then additional subdirectories are
created in subdirectory Quantum/ to organize the structure of the output files in a meaningful way.

Last update: 27/05/2025

Last update: 27/05/2025

7.14.4 exchange_correlation{ }
Calling sequence

quantum{ exchange_correlation{ } }

Properties

• usage: optional
• items: maximum 1

1180 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Exchange-correlation potential is added to the Hamiltonian within selected approximation.

ò Note

It is advised to use this keyword together with any of self-consistent run modes quantum_density{ }, quan-
tum_poisson{ }, or quantum_current_poisson{ }. Using it with quantum{ } only will result in lack of self-
consistency between the exchange-correlation potential and the final carrier densities.

. Attention

The feature is currently available only for 1-band models. It is ignored for multi-band k · p models.

Nested keywords

• type
• initial_spin_pol

• output_spin_polarization{ }
• output_exchange_correlation{ }

type

Calling sequence

quantum{ exchange_correlation{ type = ... } }

Properties

• usage: required
• type: choice

• values: lda or lsda

Functionality

lda→ Includes exchange-correlation effects in the LDA approximation (Local Density Approximation)
lsda→ Includes exchange-correlation effects in the LSDA approximation (Local Spin Density Approximation)

initial_spin_pol

Calling sequence

quantum{ exchange_correlation{ initial_spin_pol = ... } }

Properties

• usage: optional
• type: real number

• values: −1.0 ≤ 𝑟 ≤ 1.0

• default: 𝑟 = 0.0

• unit: −

7.14. quantum{ } 1181

nextnano++ Documentation, Release 1.25.13

Functionality

Breaks spin symmetry if magnetic field is not present.

output_spin_polarization{ }

Calling sequence

quantum{ exchange_correlation{ output_spin_polarization{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs spin polarization (dimensionless).

output_exchange_correlation{ }

Calling sequence

quantum{ exchange_correlation{ output_exchange_correlation{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Outputs exchange correlation potentials expressed in (eV).

Last update: 27/05/2025

7.14.5 cbr{ }
Calling sequence

quantum{ cbr{ } }

Properties

• usage: optional
• items: maximum 1

Dependencies

• if global{ simulate1D{} } is called then quantum{ cbr{ lead } } cannot be used

• quantum{ cbr{ min_energy } } and quantum{ cbr{ rel_min_energy} } cannot be used simulta-
neously

• quantum{ cbr{ max_energy } } and quantum{ cbr{ rel_max_energy } } cannot be used simul-
taneously

1182 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Specifications that define CBR (Contact Block Reduction method) calculation, i.e. ballistic current calculations.
This method is based on the following publications: [BirnerCBR2009], [MamaluyCBR2003]

CBR current calculation at a glance:

• full 1D, 2D and 3D calculation of quantum mechanical ballistic transmission probabilities for open systems
with scattering boundary conditions

• Contact Block Reduction method:
– only incomplete set of quantum states needed (~ 100)

– reduction of matrix sizes from 𝑂(𝑁3) to 𝑂(𝑁2)

• ballistic current according to Landauer–Büttiker formalism

The CBR method is an efficient method that uses a limited set of eigenstates of the decoupled device and a few
propagating lead modes to calculate the retarded Green’s function of the device coupled to external contacts. From
this Green’s function, the density and the current is obtained in the ballistic limit using Landauer’s formula with
fixed Fermi levels for the leads. It is important to note that the efficiency of the calculation and also the convergence
of the results are strongly dependent on the cutoff energies for the eigenstates and modes. Thus it is important to
check during the calculation if the specified number of states and modes is sufficient for the applied voltages. To
summarize, the code may do its job very efficiently but is far away from being a black box tool.

cbr{
name = "qr" # quantum region to which cbr method will be
lead{

name = "lead_1" # name of the lead
x = 12.0 # position of the lead in 1D simulation
kinetic_coupling = 1.5
rel_kinetic_coupling = 0.2

}

min_energy = 2.5 # lower boundary (absolute)
max_energy = 2.6 # upper boundary (absolute)

rel_min_energy = -0.01 # lower boundary (relative)
rel_max_energy = 0.3 # upper boundary (relative)

energy_resolution = 1e-6 # energy grid resolution
transmission_threshold = 0.01

ildos = yes # outputs integrated LDOS
ldos = yes # outputs LDOS

output_ldos_single_file = yes
}

Figure 7.14.5.1 shows the calculated transmission from lead 1 to lead 3 as a function of energy 𝑇13(𝐸). Full
line: All eigenfunctions of the decoupled device are taken into account. Dashed line: Only the lowest 7% of the
eigenfunctions are included. Here, Neumann boundary conditions are used for the propagation direction. The
vertical line indicates the cutoff energy, i.e. the highest eigenvalue that is taken into account.

Special boundary conditions are applied for the Schrödinger equation while using the CBR method:

• Neumann boundary conditions along the propagation direction.

• Dirichlet boundary conditions perpendicular to the propagation direction.

ò Note

7.14. quantum{ } 1183

nextnano++ Documentation, Release 1.25.13

Figure 7.14.5.1: The transmission calculated with the CBR method using all eigenstates and only 7% of the eigen-
states. In the latter case, the transmission is still very accurate for the lower energies.

The quantum region must be a surface in a 3D simulation, a line in a 2D simulation, and a point in a 1D
simulation.

Nested keywords

• name
• lead{ }
• lead{ name }
• lead{ x }
• lead{ kinetic_coupling }
• lead{ rel_kinetic_coupling }

• min_energy
• max_energy
• rel_min_energy
• rel_max_energy
• energy_resolution
• transmission_threshold

• ildos
• ldos
• output_ldos_single_file
• two_particle_options

name

Calling sequence

quantum{ cbr{ name = ... } }

Properties

• usage: required
• type: character string

Functionality

refers to quantum region to which CBR method will be applied (𝑑-dimensional)

1184 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

lead{ }

Calling sequence

quantum{ cbr{ lead{ } } }

Properties

• usage: required
• items: minimum 2

Functionality

Defining a lead. The lead region has dimension 𝑑− 1.

lead{ name }

Calling sequence

quantum{ cbr{ lead{ name = ... } } }

Properties

• usage: required
• type: character string

Functionality

Provides the name of the quantum region of the lead. It must be corresponding to a defined quantum{ region{}
} unless the global simulation is held in 1D.

lead{ x }

Calling sequence

quantum{ cbr{ lead{ x = ... } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 0.0

• unit: nm

Functionality

—

ò Note

Only needed for 1D.

7.14. quantum{ } 1185

nextnano++ Documentation, Release 1.25.13

lead{ kinetic_coupling }

Calling sequence

quantum{ cbr{ lead{ kinetic_coupling = ... } } }

Properties

• usage: conditional
• type: real number

• values: (0.0, ...)

• unit: eV

Dependencies

rel_kinetic_coupling is not defined

Functionality

—

lead{ rel_kinetic_coupling }

Calling sequence

quantum{ cbr{ lead{ rel_kinetic_coupling = ... } } }

Properties

• usage: conditional
• type: real number

• values: (0.0, ...)

• default: 𝑟 = 1.0

• unit: −

Dependencies

kinetic_coupling is not defined

Functionality

—

min_energy

Calling sequence

quantum{ cbr{ min_energy = ... } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = −1𝑒100

• unit: eV

1186 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Dependencies

rel_min_energy is not defined

Functionality

Lower boundary for transmission energy interval on an absolute energy scale

max_energy

Calling sequence

quantum{ cbr{ max_energy = ... } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 1𝑒100

• unit: eV

Dependencies

rel_max_energy is not defined

Functionality

Upper boundary for transmission energy interval on an absolute energy scale

rel_min_energy

Calling sequence

quantum{ cbr{ rel_min_energy = ... } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = −1𝑒100

• unit: −

Dependencies

min_energy is not defined

Functionality

Lower boundary for transmission energy interval relative to the lowest eigenvalue

7.14. quantum{ } 1187

nextnano++ Documentation, Release 1.25.13

rel_max_energy

Calling sequence

quantum{ cbr{ rel_max_energy = ... } }

Properties

• usage: optional
• type: real number

• values: no constraints

• default: 𝑟 = 1𝑒100

• unit: −

Dependencies

max_energy is not defined

Functionality

Upper boundary for transmission energy interval relative to the highest eigenvalue

energy_resolution

Calling sequence

quantum{ cbr{ energy_resolution = ... } }

Properties

• usage: optional
• type: real number

• values: (0.0, ...)

• default: 𝑟 = 1𝑒− 4

• unit: eV

Functionality

This value determines the resolution of the transmission curve 𝑇 (𝐸).

transmission_threshold

Calling sequence

quantum{ cbr{ transmission_threshold = ... } }

Properties

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 0.0

• unit: −

1188 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

This value determines the resolution of the transmission curve 𝑇 (𝐸).

ildos

Calling sequence

quantum{ cbr{ ildos = ... } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then outputs integrated local density of states.

ldos

Calling sequence

quantum{ cbr{ ldos = ... } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: no

Functionality

If set to yes then outputs local density of states.

output_ldos_single_file

Calling sequence

quantum{ cbr{ output_ldos_single_file = ... } }

Properties

• usage: optional
• type: choice

• values: yes or no

• default: yes

7.14. quantum{ } 1189

nextnano++ Documentation, Release 1.25.13

Functionality

Outputs all LDOS data into a single large file.

. Warning

Enabling ILDOS or LDOS can massively increase runtime and RAM usage in 2D and 3D simulations. More-
over, enabling LDOS also will rewrite huge amounts of data to disk in 2D and 3D simulations.

If your system environment cannot handle a huge number of files (e.g. you are using a slow hard disk instead
of a SSD), outputting all LDOS data into a single large file (as set per default) is strongly recommended.

Please note that writing all LDOS data in one file is not possible in 3D simulations or when output{
only_sections = yes } is set (the respective flag is ignored then). See output{ } for reference.

two_particle_options

Calling sequence

quantum{ cbr{ two_particle_options = [..., ..., ..., ..., ..., ..., ..., ..., ...,
..., ...] } }

Properties

• usage: optional
• type: vector of 11 real numbers: (𝑟1, 𝑟2, . . . , 𝑟11)

• —

Functionality

Contains 11 values for two-particle model [number of states, relative permittivity, x1, y1, z1,
x2, y2, z2, splitting, tunneling] with units [–, –, nm, nm, nm, nm, nm, nm, eV, eV]. Constraint: num-
ber of states = 2

Last update: 27/05/2025

Example

quantum{
debuglevel = 1
allow_overlapping_regions = no

#----------------
Quantum regions
#----------------
region{

name = "qr1"

quantize_x{}
quantize_y{}
quantize_z{}

no_density = yes
(continues on next page)

1190 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

x = [10.0, 20.0]
y = [10.0, 20.0]
z = [10.0, 20.0]

Boundary conditions
#--------------------
boundary{

x = dirichlet
y = dirichlet
z = neumann
classical_boundary_x = no
classical_boundary_y = no
classical_boundary_z = no
num_classical_x = [1,1]
num_classical_y = [1,1]
num_classical_z = [1,1]

}

Output definitions
#-------------------
output_wavefunctions{

max_num = 10
all_k_points = yes/no
structured = no
amplitudes = "S_X_Y_Z CB_HH_LH_SO"
probabilities = "yes CB_HH_LH_SO"
scale = 0.7
in_one_file = yes
energy_shift = both
include_energies_in_shifted_files = yes

}
output_subband_densities{

max_num = 10
in_one_file = yes

}
output_sparse_matrix{

type = all
structured = no

}
output_rotated_inverse_mass_tensor{

boxes = yes
structured = no

}

Quantum models and solver definitions
#--------------------------------------
Gamma{

num_ev = 10
Eigensolvers (choose one)
lapack{}
arpack{}
accuracy = 1e-6
iterations = 200
preconditioner = chebyshev
cutoff = 0.3
abs_cutoff = 2.5

(continues on next page)

7.14. quantum{ } 1191

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

order_chebyshev = 20

Dispersion
#-----------
dispersion{

path{
name = "100"
point{

k = [1.0, 0.0, 0.0]
k = [1.0, 1.0, 0.0]

}
spacing = 0.5
num_points = 10

}
lines{

name = "lines"
spacing = 0.5
k_max = 1.0

}
full{

name = "3D"
kxgrid{

line{
pos = -1
spacing = 0.02

}
}
kygrid{

line{
pos = -1
spacing = 0.02

}
}
kzgrid{

line{
pos = -1
spacing = 0.02

}
}

}
superlattice{

name = "superlattice"
num_points_x = 10
num_points_y = 15
num_points_z = 20
num_points = 20

}
}

}

L{
... (same as Gamma)

}

X{
... (same as Gamma)

(continues on next page)

1192 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

}

Delta{
... (same as Gamma)

}

HH{
... (same as Gamma)

}

LH{
... (same as Gamma)

}

SO{
... (same as Gamma)

}

kp_6band{
... (same as Gamma)

kp_parameters{
use_Luttinger_parameters = no
approximate_kappa = no

}

lapack{}
#arpack{}

k_integration{
relative_size = 0.2
num_points = 5
num_subpoints = 2
max_symmetry = no
force_k0_subspace = yes

}
}

kp_8band{
num_electrons = 6
num_holes = 12
accuracy = 1e-8
iterations = 200

kp_parameters{
use_Luttinger_parameters = no
from_6band_parameters = no
approximate_kappa = no
evaluate_S = no
rescale_S_to = 1.0

}

k_integration{
... (same as kp_6band)

}

(continues on next page)

7.14. quantum{ } 1193

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

lapack{}
#arpack_inv{}
shift_window = 0
shift = 0.2
abs_shift = 2.5

linear_solver{
iterations = 500
abs_accuracy = 1e-9
rel_accuracy = 1e-9
use_cscg = no
force_diagonal_preconditioner = no

}

#advanced settings for 8-band k.p quantum density
shift_min_CB = 0.0
shift_max_VB = 0.0
tunneling = yes

classify_kspace = 0
threshold_classification = 0.5

}

#Matrix elements definitions
#---------------------------
overlap_integrals{

KP6_Gamma{}
HH_Gamma{} # < HH_i | Gamma_j >
LH_Gamma{} # < LH_i | Gamma_j >
SO_Gamma{} # < SO_i | Gamma_j >
HH_Delta{} # < HH_i | Delta_j >
LH_Delta{} # < LH_i | Delta_j >
SO_Delta{} # < SO_i | Delta_j >
HH_X{} # < HH_i | X_j >
LH_X{} # < LH_i | X_j >
SO_X{} # < SO_i | X_j >
HH_L{} # < HH_i | L_j >
LH_L{} # < LH_i | L_j >
SO_L{} # < SO_i | L_j >

output_matrix_elements = yes
output_transition_energies = yes/no #

}

momentum_matrix_elements{
direction = [1,1,0]
Gamma{}
Delta{}
X{}
L{}
HH{}
LH{}
SO{}
KP6{}
KP8{}

(continues on next page)

1194 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

output_matrix_elements = yes/no output_transition_
→˓energies = yes/no

output_oscillator_strengths = yes/no
}

dipole_moment_matrix_elements{
direction = [1,1,0]
Gamma{}
Delta{}
X{}
L{}
HH{}
LH{}
SO{}
KP6{}
KP8{}

output_matrix_elements = yes
output_transition_energies = yes
output_oscillator_strengths = yes

}

transition_energies{
Gamma{}
KP6_Gamma{}
HH_Gamma{}
LH_Gamma{}
SO_Gamma{}
Delta{}
HH_Delta{}
LH_Delta{}
SO_Delta{}
X{}
HH_X{}
LH_X{}
SO_X{}
L{}
HH_L{}
LH_L{}
SO_L{}
HH{}
LH{}
SO{}
KP6{}
KP8{}

}

lifetimes{
phonon_energy = 0.036
Gamma{}
HH{}
LH{}

}

} # end: region{}

(continues on next page)

7.14. quantum{ } 1195

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

#Many body effects
#-----------------
exchange_correlation{

type = lda
initial_spin_pol = 1.0
output_spin_polarization{}
output_exchange_correlation{}

}

}

Last update: 2025/05/27

7.15 optics{ }
• usage: optional
• items: maximum 1

This group defines models to calculate optical spectra.

The following keywords are available within this group.

7.15.1 optics{ debuglevel }
• usage: optional
• type: integer

• values: −1 ≤ 𝑧 ≤ 4

• unit: −
• default: 𝑧 = 0

Parameter controlling diagnostic output in the *.log file. The larger the value is, the more details are included.

7.15.2 optics{ global_illumination{ } }
• usage: optional
• items: maximum 1

This group is defining a spectrum of radiation illuminating modelled device.

ò Note

Lorentzian, Gaussian and Planck illumination spectra are fully additive, i.e. several of each can be added as
needed in order to synthesize more complex illumination spectra.

� Hint

Spectral data can be defined in the database (see also Optical groups in database{ } for list of predefined
illumination spectra), in the database section of the input file, or imported from external files.

1196 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

s Important

The following general conditions must be satisfied when defining optics{ global_illumination{ } }

• Maximum one of the following can be defined: database_spectrum{ }, import_spectrum{ }, con-
stant_spectrum{ } within this group.

• Exactly one of the following must be defined: direction_x, direction_y, direction_z within this group.

• If global{ simulate1D{ } } is specified in the input file, then direction_y and direction_z are not allowed.

• If global{ simulate2D{ } } is specified in the input file, then direction_z is not allowed.

• Maintained Keywords

– direction_x

– direction_y

– direction_z

– database_spectrum{ }

– database_spectrum{ name }

– database_spectrum{ concentration }

– import_spectrum{ }

– import_spectrum{ import_from }

– import_spectrum{ cutoff }

– import_spectrum{ energy_spectrum }

– import_spectrum{ absolute_intensities }

– import_spectrum{ concentration }

– constant_spectrum{ }

– constant_spectrum{ irradiance }

– planck_spectrum{ }

– planck_spectrum{ irradiance }

– planck_spectrum{ temperature }

– lorentzian_spectrum{ }

– lorentzian_spectrum{ irradiance }

– lorentzian_spectrum{ wavelength }

– lorentzian_spectrum{ energy }

– lorentzian_spectrum{ width }

– lorentzian_spectrum{ gamma }

– gaussian_spectrum{ }

– gaussian_spectrum{ irradiance }

– gaussian_spectrum{ wavelength }

– gaussian_spectrum{ energy }

7.15. optics{ } 1197

nextnano++ Documentation, Release 1.25.13

– gaussian_spectrum{ width }

– gaussian_spectrum{ gamma }

• Examples

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

direction_x

• usage: optional
• type: integer

• values: 𝑧 = −1 or 𝑧 = +1

• unit: −
Sets ascending +1 or descending −1 direction of illuminating radiation along the 𝑥-axis of simulation.

direction_y

• usage: optional
• type: integer

• values: 𝑧 = −1 or 𝑧 = +1

• unit: −
Sets ascending +1 or descending −1 direction of illuminating radiation along the 𝑦-axis of simulation.

direction_z

• usage: optional
• type: integer

• values: 𝑧 = −1 or 𝑧 = +1

• unit: −
Sets ascending +1 or descending −1 direction of illuminating radiation along the 𝑧-axis of simulation.

database_spectrum{ }

• usage: optional
• items: maximum 1

Importing one of several spectra (solar spectra, CIE illuminants, coefficient, reflectivity, . . .), which can be found
in the database file Optical groups in database{ }. Relative intensities (e.g. CIE illuminants) are normalized to 1.0
W/m

2

1198 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

database_spectrum{ name }

• usage: required
• type: character string

Name of the illumination spectrum contained in the database to be used.

database_spectrum{ concentration }

• usage: optional
• type: real number

• values: [0.0, ...)

• default: 𝑟 = 1.0

• unit: −
Scaling factor multiplying the values of the spectrum.

import_spectrum{ }

• usage: optional
• items: maximum 1

Importing spectrum from a file

s Important

The following general conditions must be satisfied when defining import_spectrum{ }

• The import{ } must be specified in the input file.

import_spectrum{ import_from }

• usage: required
• type: character string

Reference name used in the import{ } group to label the imported spectrum.

import_spectrum{ cutoff }

• usage: required
• type: choice

• values: yes or no

If set to yes, then the values of the spectrum which are outside the definition interval are set to zero. Otherwise,
the spectrum is extrapolated as a constant with the value on the boundary of the imported data.

7.15. optics{ } 1199

nextnano++ Documentation, Release 1.25.13

import_spectrum{ energy_spectrum }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the imported spectrum is assumed to be given as a function of energy. Otherwise, the spectrum
is assumed to be given as a function of wavelength.

import_spectrum{ absolute_intensities }

• usage: required
• type: choice

• values: yes or no

• default: yes
If set to yes, then the values are directly imported without normalization. Otherwise, the values of the imported
spectrum are normalized to the total intensity of the spectrum.

import_spectrum{ concentration }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: −
• default: 𝑟 = 1.0

Scaling factor multiplying the values of the spectrum.

constant_spectrum{ }

• usage: optional
• items: maximum 1

Define illumination source with a constant radiation spectrum of the form

𝐼(𝐸) =
𝐼0

𝐸max − 𝐸min

1200 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

constant_spectrum{ irradiance }

• usage: required
• type: real number

• values: [0.0, ...)

• unit: W/m2

Total intensity :math:` I_0 = int I(E)dE` of the spectrum, integrated from 𝐸min to 𝐸max.

planck_spectrum{ }

• usage: optional
• items: no constraints

Define illumination source with a black-body radiation spectrum

𝐼(𝐸, 𝑇) =
𝐼0
𝜎𝑇 4

2𝜋𝐸3

𝑐2ℎ3
1

exp
{︁(︁

𝐸
𝑘𝐵𝑇

)︁}︁
− 1

,

where 𝜎 is the Stefan–Boltzmann constant.

planck_spectrum{ irradiance }

• usage: required
• type: real number

• values: [0.0, ...)

• unit: W/m2

Total intensity :math:` I_0 = int I(E)dE` of the spectrum

planck_spectrum{ temperature }

• usage: required
• type: real number

• values: [1e-6, ...)

• unit: K
Temperature 𝑇 entering the spectrum model

lorentzian_spectrum{ }

• usage: optional
• items: no constraints

Define illumination source with a Lorentzian radiation spectrum

𝐼(𝐸) =
𝐼0
𝜋

Γ/2

(𝐸 − 𝐸0) + (Γ/2)2

7.15. optics{ } 1201

nextnano++ Documentation, Release 1.25.13

s Important

The following general conditions must be satisfied when defining lorentzian_spectrum{ }

• Exactly one, lorentzian_spectrum{ wavelength } or lorentzian_spectrum{ energy } is specified within this
group.

• Exactly one, lorentzian_spectrum{ width } or lorentzian_spectrum{ gamma } is specified within this
group.

lorentzian_spectrum{ irradiance }

• usage: required
• type: real number

• values: [0.0, ...)

• unit: W/m2

Total intensity :math:` I_0 = int I(E)dE` of the spectrum

lorentzian_spectrum{ wavelength }

• usage: optional
• type: real number

• values: [10.0, ...)

• unit: nm
Central wavelength 𝜆0 of the spectrum

lorentzian_spectrum{ energy }

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
Central energy 𝐸0 of the spectrum

lorentzian_spectrum{ width }

• usage: optional
• type: real number

• values: [1e-3, ...)

• unit: nm
Define the width of the spectrum in nm

1202 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

lorentzian_spectrum{ gamma }

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
Define the width of the spectrum in eV

gaussian_spectrum{ }

Define illumination source with a Gaussian spectrum

• usage: optional
• items: no constraints

𝐼(𝐸) =
𝐼0√
2𝜋𝜎

exp

{︂[︂
− (𝐸 − 𝐸0)

2

2𝜎2

]︂}︂

s Important

The following general conditions must be satisfied when defining gaussian_spectrum{ }

• Exactly one, gaussian_spectrum{ wavelength } or gaussian_spectrum{ energy } is specified within this
group.

• Exactly one, gaussian_spectrum{ width } or gaussian_spectrum{ gamma } is specified within this group.

gaussian_spectrum{ irradiance }

• usage: required
• type: real number

• values: [0.0, ...)

• unit: W/m2

Total intensity :math:` I_0 = int I(E)dE` of the spectrum

gaussian_spectrum{ wavelength }

• usage: optional
• type: real number

• values: [10.0, ...)

• unit: nm
Central wavelength 𝜆0 of the spectrum

7.15. optics{ } 1203

nextnano++ Documentation, Release 1.25.13

gaussian_spectrum{ energy }

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
Central energy 𝐸0 of the spectrum

gaussian_spectrum{ width }

• usage: optional
• type: real number

• values: [1e-3, ...)

• unit: nm
Define the width of the spectrum in nm

gaussian_spectrum{ gamma }

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
Define the width of the spectrum in eV

Examples

constant_spectrum{
irradiance = 10000.0 # in [W/m^2], integrated as min_energy...max_energy

}

planck_spectrum{
irradiance = 10000.0 # in [W/m^2], for complete(!) Planck spectrum; real value >

→˓= 0.0
temperature = 5000.0 # real value >= 1e-6

}

global_illumination{
direction_x = 1

database_spectrum{
name = "Solar-ASTM-G173-global"

name = "CIE-D75"
concentration = 300 # e.g. 300 suns

}
}

1204 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

global_illumination{
direction_x = 1

import_spectrum{
import_from = "filename"
cutoff = yes # yes/no: If yes, set values outside definition interval to␣

→˓zero.
(default=?)

absolute_intensities = yes # yes/no (default: yes)
If no, spectrum does not contain absolute␣

→˓values,
normalize intensity to 1 [W/cm^2 nm^-1] before␣

→˓concentration
concentration = 300 # e.g. 300 suns

}
}

lorentzian_spectrum{
irradiance = 10000.0 # in [W/m^2], for complete(!) Lorentzian spectrum; real␣

→˓value >= 0.0

Specify either wavelength and width, or ...
wavelength = 500.0 # real value >= 10.0 in |unit:nm|
width = 100.0 # real value >= 1e-3 in |unit:nm|

... specify energy and gamma.
energy = 2.5 # real value >= 1e-6 in |unit:eV|
gamma = 1.0 # real value >= 1e-6 in |unit:eV|

}

gaussian_spectrum{
irradiance = 1000.0 # in [W/m^2], for complete(!) Gaussian spectrum; real value >

→˓= 0.0

Specify either wavelength and width, or ...
wavelength = 500.0 # real value >= 10.0 in |unit:nm|
width = 100.0 # real value >= 1e-3 in |unit:nm|

... specify energy and gamma.
energy = 2.5 # real value >= 1e-6 in |unit:eV|
gamma = 1.0 # real value >= 1e-6 in |unit:eV|

}

7.15.3 optics{ global_reflectivity{ } }
• usage: optional
• items: maximum 1

This group defines the reflectance spectrum 𝑅(𝜆) of the modelled device for the light entering the system.

s Important

The following general conditions must be satisfied when defining optics{ global_reflectivity{ } }

• Exactly one of the following must be defined: database_spectrum{ }, import_spectrum{ }, con-
stant_spectrum{ } within this group.

7.15. optics{ } 1205

nextnano++ Documentation, Release 1.25.13

• Maintained Keywords

– database_spectrum{ }

– database_spectrum{ name }

– import_spectrum{ }

– import_spectrum{ import_from }

– import_spectrum{ cutoff }

– import_spectrum{ energy_spectrum }

– constant_spectrum{ }

– constant_spectrum{ reflectivity }

• Examples

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

database_spectrum{ }

• usage: optional
• items: maximum 1

Importing the spectrum from the database or external files.

database_spectrum{ name }

• usage: required
• type: character string

Name of the spectrum contained in the database.

import_spectrum{ }

• usage: optional
• items: maximum 1

Importing spectrum from a file

s Important

The following general conditions must be satisfied when defining import_spectrum{ }

• The global group import{ } is specified in the input file.

1206 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

import_spectrum{ import_from }

• usage: required
• type: character string

Path to a spectrum for importing

import_spectrum{ cutoff }

• usage: required
• type: choice

• values: yes or no

If set to yes, then the values of the spectrum which are outside the definition interval are set to zero. Otherwise,
the spectrum is extrapolated as a constant with the value on the boundary of the imported data.

import_spectrum{ energy_spectrum }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the imported spectrum is assumed to be given as a function of energy. Otherwise, the spectrum
is assumed to be given as a function of wavelength.

constant_spectrum{ }

• usage: optional
• items: maximum 1

Specify a constant reflectance spectrum 𝑅(𝜆) = const

constant_spectrum{ reflectivity }

• usage: required
• type: real number

• values: (0.0, 1.0]

• unit: −
• default: 𝑟 = 1.0

The constant value of the reflectivity

7.15. optics{ } 1207

nextnano++ Documentation, Release 1.25.13

Examples

global_reflectivity{
database_spectrum{

name = "Al0.80Ga0.20As"
}

import_spectrum{
import_from = "filename"
cutoff = yes # yes/no: If yes, set values outside definition interval to zero.

(default=?)
}

constant_spectrum{
reflectivity = 0.5 # real value >= 0.0 and <= 1.0 (dimensionless)

}

7.15.4 optics{ global_absorption_coeff{ } }
• usage: optional
• items: maximum 1

This group is used to specify the global absorption spectrum for the entire device.

s Important

The following general conditions must be satisfied when defining optics{ global_absorption_coeff{ } }

• Exactly one of the following must be defined: database_spectrum{ }, import_spectrum{ }, con-
stant_spectrum{ } within this group.

• Maintained Keywords

– database_spectrum{ }

– database_spectrum{ name }

– import_spectrum{ }

– import_spectrum{ import_from }

– import_spectrum{ cutoff }

– import_spectrum{ energy_spectrum }

– import_spectrum{ decadic_absorption_unit }

– constant_spectrum{ }

– constant_spectrum{ absorption_coeff }

– constant_spectrum{ decadic_absorption_coeff }

• Examples

1208 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

database_spectrum{ }

• usage: optional
• items: maximum 1

Importing absorption spectra from the database or external files.

database_spectrum{ name }

• usage: required
• type: character string

Name of the spectrum contained in the database.

import_spectrum{ }

• usage: optional
• items: maximum 1

Importing spectrum from a file

s Important

The following general conditions must be satisfied when defining import_spectrum{ }

• import{ } is specified in the input file.

import_spectrum{ import_from }

• usage: required
• type: character string

Path to a spectrum for importing

import_spectrum{ cutoff }

• usage: required
• type: choice

• values: yes or no

If set to yes, then the values of the spectrum which are outside the definition interval are set to zero. Otherwise,
the spectrum is extrapolated as a constant with the value on the boundary of the imported data.

7.15. optics{ } 1209

nextnano++ Documentation, Release 1.25.13

import_spectrum{ energy_spectrum }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the imported spectrum is assumed to be given as a function of energy. Otherwise, the spectrum
is assumed to be given as a function of wavelength.

import_spectrum{ decadic_absorption_unit }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical absorption coefficient is assumed to be expressed in dB/𝜇m.

constant_spectrum{ }

• usage: optional
• items: maximum 1

Specify a constant absorption spectrum

s Important

The following general conditions must be satisfied when defining constant_spectrum{ }

• Exactly one of the following must be defined: absorption_coeff, decadic_absorption_coeff
within this group.

constant_spectrum{ absorption_coeff }

• usage: optional
• type: real number

• values: no constraints

• unit: cm−1

The constant value of the absorption coefficient expressed in 1/𝑐𝑚

1210 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

constant_spectrum{ decadic_absorption_coeff }

• usage: optional
• type: real number

• values: no constraints

• unit: dB/𝜇m
The constant value of the absorption coefficient expressed in dB/𝜇m

Examples

global_absorption_coeff{
database_spectrum{

name = "GaAs"
}

}

global_absorption_coeff{
import_spectrum{

import_from = "filename"
cutoff = yes # yes/no: If yes, set values outside definition interval to␣

→˓zero.
(default=?)

decadic_absorption_unit = no # yes or no, default: no
}

}

global_absorption_coeff{
constant_spectrum{

absorption = 0.5 # real value >= 0.0 [1/cm]
or
decadic_absorption = 0.0 # real value >= 0.0

}
}

7.15.5 optics{ global_refractive_index{ } }
• usage: optional
• items: maximum 1

This group is used to specify the effective refractive index 𝑛eff(𝜆) of the modelled device.

s Important

The following general conditions must be satisfied when defining optics{ global_refractive_index{ } }

• Exactly one of the following must be defined: database_spectrum{ }, import_spectrum{ }, con-
stant_spectrum{ } within this group.

• Maintained Keywords

7.15. optics{ } 1211

nextnano++ Documentation, Release 1.25.13

– database_spectrum{ }

– database_spectrum{ name }

– import_spectrum{ }

– import_spectrum{ import_n_from }

– import_spectrum{ import_k_from }

– import_spectrum{ cutoff }

– import_spectrum{ energy_spectrum }

– constant_spectrum{ }

– constant_spectrum{ n }

– constant_spectrum{ k }

– compute_absorption_coeff{ }

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

database_spectrum{ }

• usage: optional
• items: maximum 1

Importing the spectrum from the database or external files.

database_spectrum{ name }

• usage: required
• type: character string

Name of the spectrum contained in the database.

import_spectrum{ }

• usage: optional
• items: maximum 1

Importing spectrum from a file

s Important

The following general conditions must be satisfied when defining import_spectrum{ }

• The global group import{ } is specified in the input file.

1212 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

import_spectrum{ import_n_from }

• usage: required
• type: character string

Path to a spectrum of the real part of the refractive index for importing

import_spectrum{ import_k_from }

• usage: optional
• type: character string

Path to a spectrum of the imaginary part of the refractive index for importing

import_spectrum{ cutoff }

• usage: required
• type: choice

• values: yes or no

If set to yes, then the values of the spectrum which are outside the definition interval are set to zero. Otherwise,
the spectrum is extrapolated as a constant with the value on the boundary of the imported data.

import_spectrum{ energy_spectrum }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the imported spectrum is assumed to be given as a function of energy. Otherwise, the spectrum
is assumed to be given as a function of wavelength.

constant_spectrum{ }

• usage: optional
• items: maximum 1

Specify a constant refractive index spectrum

7.15. optics{ } 1213

nextnano++ Documentation, Release 1.25.13

constant_spectrum{ n }

• usage: required
• type: real number

• values: (0.0, ...)

• unit: −
• default: 𝑟 = 1.0

Constant value of the real part of the refractive index.

constant_spectrum{ k }

• usage: optional
• type: real number

• values: no constraints

• unit: −
• default: 𝑟 = 0.0

Constant value of the imaginary part of the refractive index.

compute_absorption_coeff{ }

• usage: required
• items: maximum 1

When defined, then calculates absorption coefficient from imaginary part of the reflective index.

7.15.6 optics{ light_propagation{ } }
• usage: optional
• items: maximum 1

specifying options related to the light field propagating through the device.

Dependencies

• optics{ global_illumination{ } } is specified in the input file.

• Exactly one of the following must be defined: min_wavelength, min_energy within this group.

• Exactly one of the following must be defined: max_wavelength, max_energy within this group.

• Maximum one of use_local_spectra{ } and use_computed_spectra{ } can be defined within this group.

• Maintained Keywords

– min_wavelength

– max_wavelength

– min_energy

1214 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

– max_energy

– use_global_spectra{ }

– use_global_spectra{ energy_resolution }

– use_local_spectra{ }

– use_local_spectra{ energy_resolution }

– use_computed_spectra{ }

– output_global_spectra{ }

– output_global_spectra{ reflectivity }

– output_global_spectra{ absorption_coeff }

– output_global_spectra{ decadic_absorption_coeff }

– output_global_spectra{ refractive_index }

– output_global_spectra{ spectra_over_energy }

– output_global_spectra{ spectra_over_frequency }

– output_global_spectra{ spectra_over_wavenumber }

– output_global_spectra{ spectra_over_wavelength }

– output_local_spectra{ }

– output_local_spectra{ absorption_coeff }

– output_local_spectra{ decadic_absorption_coeff }

– output_local_spectra{ spectra_over_energy }

– output_local_spectra{ spectra_over_frequency }

– output_local_spectra{ spectra_over_wavenumber }

– output_local_spectra{ spectra_over_wavelength }

– output_light{ }

– output_light{ illumination }

– output_light{ total_absorption }

– output_light{ total_transmission }

– output_light{ lightflux }

– output_light{ spectra_over_energy }

– output_light{ spectra_over_frequency }

– output_light{ spectra_over_wavenumber }

– output_light{ spectra_over_wavelength }

– output_light{ photon_spectra }

– output_light{ power_spectra }

7.15. optics{ } 1215

nextnano++ Documentation, Release 1.25.13

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

min_wavelength

• usage: optional
• type: real number

• values: 10.0 ≤ 𝑟 ≤ 106

• unit: nm
—

max_wavelength

• usage: optional
• type: real number

• values: 10.0 ≤ 𝑟 ≤ 106

• unit: nm
—

min_energy

• usage: optional
• type: real number

• values: 10−6 ≤ 𝑟 ≤ 102

• unit: eV
Low-energy boundary of the energy grid for propagating photons.

max_energy

• usage: optional
• type: real number

• values: 10−6 ≤ 𝑟 ≤ 102

• unit: eV
High-energy boundary of the energy grid for propagating photons.

1216 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

use_global_spectra{ }

• usage: optional
• items: maximum 1

Light propagation model uses single imported global absorption spectrum for all regions. It cannot be computed
during the runtime. The absorption spectrum is also assigned to every region with any boundary conditions (contact
regions).

use_global_spectra{ energy_resolution }

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
• default: 𝑟 = 1𝑒− 2

Spacing between subsequent energy grid points.

use_local_spectra{ }

• usage: optional
• items: maximum 1

Light propagation model uses single imported global absorption spectrum within local absorption framework.
Regions with boundary conditions imposed on the Poisson equation (electric potential) are treated as perfectly
transparent, zero absorption coefficient is assigned.

ò Note

In the future, this feature is planned to use imported position-dependent optical absorption spectra.

� Hint

See contacts{ } for further reference on boundary conditions.

use_local_spectra{ energy_resolution }

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
• default: 𝑟 = 1𝑒− 2

Spacing between subsequent energy grid points.

7.15. optics{ } 1217

nextnano++ Documentation, Release 1.25.13

use_computed_spectra{ }

• usage: optional
• items: maximum 1

Light propagation model uses absorption spectrum within local absorption framework which is computed within
the runtime. Regions with boundary conditions imposed on the Poisson equation (electric potential) are treated as
perfectly transparent, zero absorption coefficient is assigned.

ò Note

Broadening is not included.

� Hint

See contacts{ } for further reference on boundary conditions.

Dependencies

• energy_grid{ } must be defined.

• optics{ semiclassical_spectra{ } } must be defined.

• local_absorption must be defined.

• optics{ global_absorption_coeff{ } } is not specified in the input file.

• optics{ global_refractive_index{ } } is not specified in the input file.

output_global_spectra{ }

• usage: optional
• items: maximum 1

This group is used to output optical spectra which entered the calculation of the light propagation through the
device.

output_global_spectra{ reflectivity }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the reflectivity spectrum is outputted.

1218 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_global_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the absorption spectrum is outputted.

output_global_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the absorption spectrum in decadic units is outputted.

output_global_spectra{ refractive_index }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the refractive index spectrum is outputted.

output_global_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes then the selected spectra are outputted over photon energy.

output_global_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon frequency.

7.15. optics{ } 1219

nextnano++ Documentation, Release 1.25.13

output_global_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon wavenumber.

output_global_spectra{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon wavelength.

output_local_spectra{ }

• usage: optional
• items: exactly 1

This group is used to output optical spectra which entered the calculation of the light propagation through the
device within the framework of locally defined spectra.

output_local_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the absorption spectrum is outputted.

output_local_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the absorption spectrum in decadic units is outputted.

1220 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_local_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes then the selected spectra are outputted over photon energy.

output_local_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon frequency.

output_local_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon wavenumber.

output_local_spectra{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon wavelength.

output_light{ }

• usage: required
• items: exactly 1

—

7.15. optics{ } 1221

nextnano++ Documentation, Release 1.25.13

output_light{ illumination }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the illumination spectrum is outputted.

output_light{ total_absorption }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the total_absorption is outputted, i.e. the fraction of absorbed photons in the device relative to
the number of incident photons for each wavelength.

output_light{ total_transmission }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the total_transmission is outputted, i.e. the fraction of absorbed photons in the device relative
to the number of incident photons for each wavelength, i.e. the fraction of transmitted photons through the device
relative to the number of incident photons for each wavelength.

output_light{ lightflux }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the light flux 𝐼(𝑥,𝐸) of the light propagating through the device

output_light{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes then the selected spectra are outputted over photon energy.

1222 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_light{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon frequency.

output_light{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon wavenumber.

output_light{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes then the selected spectra are outputted over photon wavelength.

output_light{ photon_spectra }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then spectrum of photon number is outputted with one of the following units 1/𝑐𝑚2/𝑠/𝑒𝑉 ,
1/𝑐𝑚2/𝑠/𝑛𝑚, 1/𝑐𝑚2/𝑠/𝑇𝐻𝑧, or 1/𝑐𝑚2/𝑠/𝑐𝑚−1.

output_light{ power_spectra }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then photon power spectrum is outputted with units 𝑊/𝑐𝑚2.

7.15. optics{ } 1223

nextnano++ Documentation, Release 1.25.13

7.15.7 optics{ photogeneration{ } }
• usage: optional
• items: maximum 1

Triggers position-dependent generation rates, which are included in the current solver. Output generated carriers
𝐺(𝑥) and 𝐺(𝑥,𝐸) due to photon absorption.

s Important

The following general conditions must be satisfied when defining optics{ photogeneration{ } }

• optics{ light_propagation{ } } is specified in the input file.

• Maintained Keywords

– output

– output_integrated

– output_energy_resolved

• Examples

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

output

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the generation rate as function of position 𝐺(𝑥) is outputted.

output_integrated

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the generation rate as function of energy 𝐺(𝐸) is outputted.

1224 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_energy_resolved

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the generation rate as function of position and energy 𝐺(𝑥,𝐸) is outputted.

Examples

photo_generation{
output = yes # yes/no (default: yes)
output_integrated = yes # yes/no (default: no)

}

7.15.8 optics{ semiclassical_spectra{ } }
• usage: optional
• items: maximum 1

Compute and output emission spectra calculated from energy-resolved densities 𝑛(𝑥,𝐸) and 𝑝(𝑥,𝐸)
computed by energy_resolved_density{}. Radiative recombination rate reads 𝑅radiative(𝑥,𝐸) =
𝐶(𝑥)

∫︀
𝑑𝐸ℎ

∫︀
𝑑𝐸𝑒 𝑛(𝑥,𝐸𝑒)𝑝(𝑥,𝐸ℎ)𝛿(𝐸𝑒 − 𝐸ℎ − 𝐸), where 𝐶(𝑥) [cm3/s] is the (material-dependent)

radiative recombination parameter. “spectra” and “density” in the following refer to the integrals of 𝑅radiative

over position and energy, respectively.

Dependencies

• All must be defined: energy_grid{ } / energy_resolved_density{ } / Gamma{ }

• At least on of output_spectra{ } and output_local_spectra{ } must be defined.

• Maintained Keywords

– refractive_index

– energy_broadening_gaussian

– energy_broadening_lorentzian

– absorption

– emission

– local_absorption

– local_emission

– output_spectra{ }

– output_spectra{ im_epsilon }

– output_spectra{ absorption_coeff }

– output_spectra{ decadic_absorption_coeff }

– output_spectra{ gain }

7.15. optics{ } 1225

nextnano++ Documentation, Release 1.25.13

– output_spectra{ decadic_gain }

– output_spectra{ emission_photons }

– output_spectra{ emission_power }

– output_spectra{ spectra_over_energy }

– output_spectra{ spectra_over_frequency }

– output_spectra{ spectra_over_wavenumber }

– output_spectra{ spectra_over_wavelength }

– output_local_spectra{ }

– output_local_spectra{ im_epsilon }

– output_local_spectra{ absorption_coeff }

– output_local_spectra{ decadic_absorption_coeff }

– output_local_spectra{ gain }

– output_local_spectra{ decadic_gain }

– output_local_spectra{ emission_photons }

– output_local_spectra{ emission_power }

– output_local_spectra{ spectra_over_energy }

– output_local_spectra{ spectra_over_frequency }

– output_local_spectra{ spectra_over_wavenumber }

– output_local_spectra{ spectra_over_wavelegth }

– output_photon_density

– output_power_density

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

refractive_index

• usage: optional
• type: real number

• values: [1.0, ...)

• unit: −
• default: substrate

Average refractive index 𝑛𝑟. Refractive index used for calculating gain and absorption spectra. The absorption/gain
spectra is multiplied by the factor 1/𝑛2𝑟 . The values for the optical dielectric constant from the database are not
used yet at this point.

1226 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

energy_broadening_gaussian

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
—

energy_broadening_lorentzian

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
—

absorption

• usage: optional
• type: choice

• values: yes or no

• default: yes
—

emission

• usage: optional
• type: choice

• values: yes or no

• default: yes
—

local_absorption

• usage: optional
• type: choice

• values: yes or no

• default: no
—

7.15. optics{ } 1227

nextnano++ Documentation, Release 1.25.13

local_emission

• usage: optional
• type: choice

• values: yes or no

• default: no
—

output_spectra{ }

• usage: optional
• items: maximum 1

When this group is defined then optical spectra computed within semi-classical models (based on carrier densities)
are saved to the output folder. The spectra are averaged over the entire simulation domain.

output_spectra{ im_epsilon }

• usage: optional
• type: choice

• values: yes or no

• default: yes
The upper 30% of the spectra are cut off.

output_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Absorption spectra are outputted, both positive and negative parts. The upper 30% of the spectra are cut off.

output_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
Decadic absorption spectra are outputted, both positive and negative parts. The upper 30% of the spectra are cut
off.

1228 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_spectra{ gain }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Gain spectra are outputted, only the positive part. The upper 30% of the spectra are cut off.

output_spectra{ decadic_gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
Decadic gain spectra are outputted, only the positive part. The upper 30% of the spectra are cut off.

output_spectra{ emission_photons }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Photon emission spectra are outputted, only the positive part is shown. Stimulated emission assumes that all photon
modes are occupied by one photon. Thus, not the actual stimulated emission in the device is calculated, but rather
a spectral response similar to the gain.

ò Note

The model is not suitable for systems with occupation inversion, above the threshold. It can be successfully
used for modeling, e.g., LEDs.

output_spectra{ emission_power }

• usage: optional
• type: choice

• values: yes or no

• default: no
Power emission spectra are outputted, only the positive part is shown. Stimulated emission assumes that all photon
modes are occupied by one photon. Thus, not the actual stimulated emission in the device is calculated, but rather
a spectral response similar to the gain.

7.15. optics{ } 1229

nextnano++ Documentation, Release 1.25.13

ò Note

The model is not suitable for systems with occupation inversion, above the threshold. It can be successfully
used for modeling, e.g., LEDs.

output_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
selected spectra are outputted over energy

output_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
selected spectra are outputted over frequency

output_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
selected spectra are outputted over wavenumber

output_spectra{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
selected spectra are outputted over wavelength

1230 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_local_spectra{ }

• usage: optional
• items: maximum 1

When this group is defined then optical spectra computed within semi-classical models (based on carrier densities)
are saved to the output folder. The spectra are position-dependent within the simulation domain.

output_local_spectra{ im_epsilon }

• usage: optional
• type: choice

• values: yes or no

• default: yes
The upper 30% of the spectra are cut off.

output_local_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Absorption spectra are outputted, both positive and negative parts. The upper 30% of the spectra are cut off.

output_local_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
Decadic absorption spectra are outputted, both positive and negative parts. The upper 30% of the spectra are cut
off.

output_local_spectra{ gain }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Gain spectra are outputted, only the positive part. The upper 30% of the spectra are cut off.

7.15. optics{ } 1231

nextnano++ Documentation, Release 1.25.13

output_local_spectra{ decadic_gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
Decadic gain spectra are outputted, only the positive part. The upper 30% of the spectra are cut off.

output_local_spectra{ emission_photons }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Photon emission spectra are outputted, only the positive part is shown. Stimulated emission assumes that all photon
modes are occupied by one photon. Thus, not the actual stimulated emission in the device is calculated, but rather
a spectral response similar to the gain.

ò Note

The model is not suitable for systems with occupation inversion, above the threshold. It can be successfully
used for modeling, e.g., LEDs.

output_local_spectra{ emission_power }

• usage: optional
• type: choice

• values: yes or no

• default: no
Power emission spectra are outputted, only the positive part is shown. Stimulated emission assumes that all photon
modes are occupied by one photon. Thus, not the actual stimulated emission in the device is calculated, but rather
a spectral response similar to the gain.

ò Note

The model is not suitable for systems with occupation inversion, above the threshold. It can be successfully
used for modeling, e.g., LEDs.

output_local_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

1232 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• default: yes
selected spectra are outputted over energy

output_local_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
selected spectra are outputted over frequency

output_local_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
selected spectra are outputted over wavenumber

output_local_spectra{ spectra_over_wavelegth }

• usage: optional
• type: choice

• values: yes or no

• default: no
selected spectra are outputted over wavelegth

output_photon_density

• usage: optional
• type: choice

• values: yes or no

• default: no
Output emitted photon density in cm−3s−1 to emitted_photon_density.dat

7.15. optics{ } 1233

nextnano++ Documentation, Release 1.25.13

output_power_density

• usage: optional
• type: choice

• values: yes or no

• default: no
Output emitted power density in W/cm3 to emitted_power_density.dat

Last update: 10/12/2024

7.15.9 optics{ quantum_spectra{ } }
• usage: optional
• items: no constraints

This group specifies numerical properties of the quantum model used for computations of optical spectra base on
the Fermi’s Golden Rule.

ò Note

Our algorithms and models controlled by keywords in this group are intensively developed. For this reason,
related syntax may substantially change with each next release. Users of this group are highly encouraged to
update the tool regularly with the new releases and to use our support system to give us feedback on any related
issues.

ò Note

In the current versions, this group should not be used for modeling optical spectra for transitions between two
separate 1-band models (e.g., triggered by Gamma{ } and HH{ }) or between a 1-band model and 6-band model
(e.g., Gamma{ } and kp_6band{ }). Computations within single models (e.g., only within kp_8band{ }, only
within Gamma{ }, etc.) are supported.

Dependencies

• The global group quantum{ } must be defined.

• Up to one of interband_approximation and intraband_approximation can be defined.

• Up to one of occupation_interpolate_invfermi and occupation_zero_fermilevel can be defined.

• At least one of energy_broadening_gaussian and energy_broadening_lorentzian must be defined.

• The k_integration{ } must be defined if any of simulate1D{ } or simulate2D{ } is defined.

• The excitons{ } is not allowed to be defined if any of simulate2D{ } or simulate3D{ } is defined.

• The k_integration{ } is not allowed to be defined if simulate3D{ } is defined.

• None of occupation_zero_fermilevel and occupation_interpolate_invfermi are allowed to be defined if sim-
ulate3D{ } is defined.

• The spin_align is not allowed to be defined if global{ magnetic_field{ } } is defined.

• output_energies, output_occupations, output_transitions, and output_spinor_components are not allowed if
simulate3D{ } is already specified in the global{ } group.

1234 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• The groups output_energies, output_occupations, output_transitions, and output_spinor_components are
not allowed if the group simulate3D{ } is defined.

• Maintained Keywords

– name

– spin_align

– interband

– intraband

– interband_approximation

– intraband_approximation

– enable_hole_hole

– enable_electron_hole

– enable_electron_electron

– use_kp8_EP

– k_integration{ }

– k_integration{ relative_size }

– k_integration{ num_points }

– k_integration{ num_integrationpoints }

– k_integration{ force_k0_subspace }

– energy_threshold

– transition_threshold

– occupation_threshold

– occupation_ignore

– occupation_zero_fermilevel

– occupation_interpolate_invfermi

– classify_none{ }

– classify_by_energy{ }

– classify_by_energy{ method }

– classify_by_energy{ shift_electrons }

– classify_by_energy{ shift_holes }

– classify_by_spinor{ }

– classify_by_spinor{ threshold_electron }

– classify_by_spinor{ threshold_hole }

– classify_states

– classification_threshold

– excitons{ }

– excitons{ num_exciton_levels }

– excitons{ coulomb_enhancement }

7.15. optics{ } 1235

nextnano++ Documentation, Release 1.25.13

– absorption

– spontaneous_emission

– local_absorption

– local_spontaneous_emission

– polarization{ }

– polarization{ name }

– polarization{ re }

– polarization{ im }

– refractive_index

– normalization_volume

– min_energy

– max_energy

– energy_resolution

– energy_broadening_gaussian

– energy_broadening_lorentzian

– kramers_kronig{ }

– kramers_kronig{ im_epsilon_extension }

– kramers_kronig{ im_epsilon_rescale }

– kramers_kronig{ delta_static_epsilon }

– kramers_kronig{ delta_position }

– kramers_kronig{ delta2_static_epsilon }

– kramers_kronig{ delta2_position }

– kramers_kronig{ delta3_static_epsilon }

– kramers_kronig{ delta3_position }

– kramers_kronig{ use_for_absorption }

– kramers_kronig{ use_for_emission }

– output_energies

– output_occupations

– output_transitions

– output_spinor_components

– output_spectra{ }

– output_spectra{ im_epsilon }

– output_spectra{ absorption_coeff }

– output_spectra{ decadic_absorption_coeff }

– output_spectra{ gain }

– output_spectra{ decadic_gain }

– output_spectra{ re_epsilon }

– output_spectra{ refractive_index }

1236 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

– output_spectra{ emission_photons }

– output_spectra{ emission_power }

– output_spectra{ spectra_over_energy }

– output_spectra{ spectra_over_frequency }

– output_spectra{ spectra_over_wavelength }

– output_spectra{ spectra_over_wavenumber }

– output_component_spectra{ }

– output_component_spectra{ threshold_im_epsilon }

– output_component_spectra{ threshold_emission_photons }

– output_component_spectra{ im_epsilon }

– output_component_spectra{ absorption_coeff }

– output_component_spectra{ decadic_absorption_coeff }

– output_component_spectra{ gain }

– output_component_spectra{ decadic_gain }

– output_component_spectra{ emission_photons }

– output_component_spectra{ emission_power }

– output_component_spectra{ spectra_over_energy }

– output_component_spectra{ spectra_over_frequency }

– output_component_spectra{ spectra_over_wavelength }

– output_component_spectra{ spectra_over_wavenumber }

– output_local_spectra{ }

– output_local_spectra{ im_epsilon }

– output_local_spectra{ absorption_coeff }

– output_local_spectra{ decadic_absorption_coeff }

– output_local_spectra{ gain }

– output_local_spectra{ decadic_gain }

– output_local_spectra{ emission_photons }

– output_local_spectra{ emission_power }

– output_local_spectra{ spectra_over_energy }

– output_local_spectra{ spectra_over_frequency }

– output_local_spectra{ spectra_over_wavelength }

– output_local_spectra{ spectra_over_wavenumber }

• Examples

7.15. optics{ } 1237

nextnano++ Documentation, Release 1.25.13

Maintained Keywords

The keywords below are available in at least one of currently published releases and are planned to be included
also in the next release.

name

• usage: required
• type: character string

The name of already defined region in region{ } for which optical generation should be calculated. Multiple
numerical parameters are inherited after the definitions in the region{ } referred to.

spin_align

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes for Pauli equation solved with 6-band or 8-band k ·p method, a spin-basis transformation is performed
for each pair of quantum states (i, i+1), with i being an odd number, such that matrix representation of the Pauli
operator �̂� multiplied by a selected versor (along the 𝑧 direction in 3D, and the 𝑥 direction in 1D and 2D) becomes
diagonal in the subspace defined by these two states. With other words, spinor compositions of degenerate (due to
lack of magnetic field) pairs of quantum states are chosen as if magnetic field was parallel to the 𝑧 direction (3D)
or 𝑥 direction (1D, 2D). This procedure is triggered before running an algorithm computing optical spectra.

interband

• usage: optional
• type: choice

• values: yes or no

• default: yes
Compute optical transitions dominating in interband transitions, typically conduction band to valence band transi-
tions.

intraband

• usage: optional
• type: choice

• values: yes or no

• default: yes
Compute optical transitions dominating in intraband transitions, typically conduction band to conduction band
transitions.

1238 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

interband_approximation

• usage: optional
• type: choice

• values: yes or no

• default: no
Only terms of the type < 𝑐|𝑝|𝑣 > and < 𝑣|𝑝|𝑐 > are taken into account (𝑐 = 𝑠 and 𝑣 = 𝑥, 𝑦, 𝑧)

intraband_approximation

• usage: optional
• type: choice

• values: yes or no

• default: no
Only terms of the type < 𝑐|𝑝|𝑐 > and < 𝑣|𝑝|𝑣 > are taken into account (𝑐 = 𝑠 and 𝑣 = 𝑥, 𝑦, 𝑧)

enable_hole_hole

• usage: optional
• type: choice

• values: yes or no

• default: yes
If yes then transitions within valence bands are included according to applied classification.

enable_electron_hole

• usage: optional
• type: choice

• values: yes or no

• default: yes
If yes then transitions between conduction and valence bands are included according to applied classification.

enable_electron_electron

• usage: optional
• type: choice

• values: yes or no

• default: yes
If yes then transitions within conduction bands are included according to applied classification.

7.15. optics{ } 1239

nextnano++ Documentation, Release 1.25.13

use_kp8_EP

• usage: optional
• type: choice

• values: yes or no

• default: yes
If yes then uses the 𝑃 parameter from 8-band k · p material data is used to compute the strength of optical
transitions when computing the spectra between 2 states computed within 1-band model, and when computing the
spectra with conduction band expressed within 1-band model and valence bands within 6-band k · p model.

k_integration{ }

• usage: optional
• items: maximum 1

Group defining numerical parameters of integration over the states in the space of the wave vector 𝑘‖ space.

k_integration{ relative_size }

• usage: optional
• type: real number

• values: 10−3 ≤ 𝑟 ≤ 1.0

• unit: −
• default: 𝑟 = 1𝑒− 1

Size of the integrated volume of the 𝑘‖ space expressed as relative value to the size of the First Brillouin Zone

k_integration{ num_points }

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 100

• unit: −
• default: 𝑧 = 5

Number of points counted from 𝑘 = 0 to the border of considered 𝑘‖ space along 𝑘‖ = 𝑘𝑦 or 𝑘𝑧 excluding the
point at 𝑘 = 0. The Schrödinger equation is solved for optical spectra at the grid with the “radius” as described
above. The transition intensities are computed at these points and later used in the integration procedure.

1240 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

k_integration{ num_integrationpoints }

• usage: optional
• type: integer

• values: 𝑧 ≥ 1

• unit: −
• default: 𝑧 = 180

Number of integration points in the 𝑘‖ defining an independent grid analogously as the attribute k_integration{
num_points }.

Spline interpolation at the grid defined with k_integration{ num_integrationpoints } of all quantities necessary for
computation of the optical spectra is performed in the 𝑘‖ space based on solution obtained at the grid defined with
the attribute k_integration{ num_points }. The transition intensities and energies resulting from this interpolation
are integrated and included in the optical spectra.

. Warning

Assigning too small value to k_integration{ num_integrationpoints } may result in artificial oscillatory results
in the spectra.

k_integration{ force_k0_subspace }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, 𝑘‖ integration is modified in a way that only states for point 𝑘 = 0 are computed exactly, whereas for all
other k points the wave functions are computed in the subspace of the solutions for the 𝑘 = 0. Computational speed
is notably improved as a result of this approximation. Therefore enlarging the number of eigenvalues included in
the computation becomes more feasible.

. Attention

This approximation should be used carefully as it reduces accuracy of computed optical spectra.

energy_threshold

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: eV
• default: 𝑟 = 1𝑒− 6

Only transitions between states with at least this energy difference are regarded when computing optical spectra.

7.15. optics{ } 1241

nextnano++ Documentation, Release 1.25.13

transition_threshold

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: eV
• default: 𝑟 = 1𝑒− 6

Only transitions between states with at least this optical intensity are regarded when computing optical spectra.
Increasing the value can reduce computational time but may neglect weak optical transitions.

occupation_threshold

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: −
• default: 𝑟 = 0.0

Only transitions between states with at least this occupation are regarded when computing optical spectra. Increas-
ing the value can reduce computational time but may neglect weakly occupied states.

occupation_ignore

• usage: optional
• type: choice

• values: yes or no

• default: no
Ignore the occupation of states when computing optical spectra: Valence bands and conduction bands are consid-
ered to be fully occupied and fully empty, respectively.

. Warning

This feature is under development.

. Attention

Occupation and classification of states are currently performed independently for carrier densities and for op-
tical spectra.

1242 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

occupation_zero_fermilevel

• usage: optional
• type: choice

• values: yes or no

• default: no
This keyword is active when occupation_ignore is set to no. In semi-classical current calculations, the quasi-Fermi
level may depend on position. Optical spectra, on the other, hand are computed using a quantum mechanical model
with where single states involved in the transitions exhibit non-locality (wave functions) resulting in their existence
in areas with different quasi-Fermi levels assigned. As the model for the spectra assumes a specific quasi-Fermi
level for each state, the inconsistency arises. Using this keyword set to yes resolves this inconsistency by taking
both quasi-Fermi levels equal zero. Taking it no, position dependent occupation number is computed.

. Warning

This feature is under development.

occupation_interpolate_invfermi

• usage: optional
• type: choice

• values: yes or no

• default: yes
This keyword is active when occupation_ignore and occupation_zero_fermilevel are set to no. If yes then Fermi
levels are interpolated between k-points before applying to the integrating algorithm which may increase accuracy
of numerical 𝑘‖ space integration.

. Warning

This feature is under development.

classify_none{ }

• usage: optional
• items: maximum 1

classify_by_energy{ }

• usage: optional
• items: maximum 1

7.15. optics{ } 1243

nextnano++ Documentation, Release 1.25.13

classify_by_energy{ method }

Calling sequence

optics{ quantum_spectra{ classify_by_energy{ method } } }

Properties

• usage: optional
• type: integer

• values: 0 ≤ 𝑧 ≤ 2

• default: 𝑧 = 2???

Functionality

—

classify_by_energy{ shift_electrons }

Calling sequence

optics{ quantum_spectra{ classify_by_energy{ shift_electrons } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV

Functionality

—

classify_by_energy{ shift_holes }

Calling sequence

optics{ quantum_spectra{ classify_by_energy{ shift_holes } } }

Properties

• usage: optional
• type: real number

• values: no constraints

• unit: eV

Functionality

—

1244 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

classify_by_spinor{ }

• usage: optional
• items: maximum 1

classify_by_spinor{ threshold_electron }

Calling sequence

optics{ quantum_spectra{ classify_by_spinor{ threshold_electron } } }

Properties

• usage: optional
• type: real number

• values: 10−2 ≤ 𝑟 ≤ 0.99

• unit: −

Functionality

—

classify_by_spinor{ threshold_hole }

Calling sequence

optics{ quantum_spectra{ classify_by_spinor{ threshold_hole } } }

Properties

• usage: optional
• type: real number

• values: 10−2 ≤ 𝑟 ≤ 0.99

• unit: −

Functionality

—

classify_states

• usage: optional
• type: choice

• values: yes or no

• default: yes
Classifies states as electrons if energy is higher than average value of minimum of the conduction band and maxi-
mum of the valence, (𝐸𝐶𝑚𝑖𝑛 + 𝐸𝑉𝑚𝑎𝑥)/2, plus classification_threshold.

7.15. optics{ } 1245

nextnano++ Documentation, Release 1.25.13

classification_threshold

• usage: optional
• type: real number

• values: no constraints

• unit: eV
• default: 𝑟 = 0.0

A parameter shifting the reference energy for the classification of the states.

excitons{ }

• usage: optional
• items: maximum 1

Include excitonic effects.

. Attention

Excitons are implemented only for 1D simulations.

excitons{ num_exciton_levels }

• usage: optional
• type: integer

• values: 1 ≤ 𝑧 ≤ 10

• unit: −
• default: 𝑧 = 1

Number of exciton levels included in the model.

excitons{ coulomb_enhancement }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the Coulomb enhancement factor, also known as the Sommerfeld factor, is taken into account.

1246 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

absorption

• usage: optional
• type: choice

• values: yes or no

• default: yes
—

spontaneous_emission

• usage: optional
• type: choice

• values: yes or no

• default: no
Calculate spontaneous emission rate using the momentum matrix element obtained by 8-band kp model. (This
feature is not yet implemented in 3D simulation.)

local_absorption

• usage: optional
• type: choice

• values: yes or no

• default: no
Absorption spectrum within local framework is computed and can be outputted using output_local_spectra{ }.
Regions with boundary conditions imposed on the Poisson equation (electric potential) are treated as perfectly
transparent, zero absorption coefficient is assigned.

� Hint

See contacts{ } for further reference on boundary conditions.

. Warning

The feature is experimental and may produce unphysical results.

local_spontaneous_emission

• usage: optional
• type: choice

• values: yes or no

• default: no

7.15. optics{ } 1247

nextnano++ Documentation, Release 1.25.13

Spontaneous emission spectrum within local framework is computed and can be outputted using out-
put_local_spectra{ }. Regions with boundary conditions imposed on the Poisson equation (electric potential) are
treated as perfectly transparent, zero absorption coefficient is assigned.

� Hint

See contacts{ } for further reference on boundary conditions.

. Warning

The feature is experimental and may produce unphysical results.

polarization{ }

• usage: required
• items: no constraints

Define polarization of incoming light for which optical absorption spectrum should be calculated.

s Important

• At least one of the following must be specified within this group, polarization{ re }, polarization{ im }.

polarization{ name }

• usage: required
• type: character string

name attached to output files with computed spectra for the defined polarization

polarization{ re }

• usage: optional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• unit: −
• default: 𝑟1 = 0.0, 𝑟2 = 0.0, 𝑟3 = 0.0

real part of the polarization vector

1248 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

polarization{ im }

• usage: optional
• type: vector of 3 real numbers: (𝑟1, 𝑟2, 𝑟3)

• values: no constraints

• unit: −
• default: 𝑟1 = 0.0, 𝑟2 = 0.0, 𝑟3 = 0.0

imaginary part of the polarization vector

refractive_index

• usage: optional
• type: real number

• values: (0.0, ...)

• unit: −
• default: substrate

Specify constant refractive index for the simulation of the optical spectra.

normalization_volume

• usage: optional
• type: real number

• values: (0.0, ...)

• unit: nmdimension

• default: related quantum region

Specifies normalization volume for the optical spectra.

min_energy

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: eV
• default: 𝑟 = 0.0

lower energy bound for optical spectra

7.15. optics{ } 1249

nextnano++ Documentation, Release 1.25.13

max_energy

• usage: optional
• type: real number

• values: [1e-3, ...)

• unit: eV
• default: 𝑟 = 2.0

upper energy bound for optical spectra

energy_resolution

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
• default: 𝑟 = 1𝑒− 3

Spacing between subsequent energy grid points.

energy_broadening_gaussian

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
Set the broadening to value greater than 0.0 to make the Gaussian broadening

ℒ(𝐸 − 𝐸0) =
1√
2𝜋𝜎

exp

{︂(︀
− (𝐸 − 𝐸0)

2

2𝜎2

)︀}︂
included to the calculation of the optical spectrums. The specifed value is read as the FWHM Γ = 2

√
ln 2 · 𝜎.

(In 1D and 2D, both Lorentzian and Gaussian can be used simultaneously. In 3D, either of these broadenings must
be included.)

energy_broadening_lorentzian

• usage: optional
• type: real number

• values: [1e-6, ...)

• unit: eV
Set the broadening to value greater than 0.0 to make the Lorentzian broadening

ℒ(𝐸 − 𝐸0) =
1

𝜋

Γ/2

(𝐸 − 𝐸0) + (Γ/2)2

included to the calculation of the optical spectrums. The specifed value is read as the FWHM Γ.

1250 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

kramers_kronig{ }

• usage: optional
• items: maximum 1

If specified, then Kramers-Kronig relations are used to evaluate real part of dielectric function and dispersion of
complex refractive index based on previously computed imaginary part of dielectric function.

. Attention

Available Hamiltonians, defined within 1-band, 6-band, or 8-bandk·pmodels, will contribute to the imaginary
part of dielectric function 𝜀𝑖 only with transitions close to theΓ point, therefore, underestimating the spectrum
at higher energies. As Kramers-Kronig relations are non-local, the transformation of such 𝜀𝑖 is reproducing
real part of dielectric function 𝜀𝑟 accurately only up to slow-varying background. The missing background
accounts for not-computed high-energy 𝜀𝑖. Therefore only local features of real part of dielectric function are
accessible within the transformation.

To handle this problem, the missing background can be approximated analytically assuming additional contri-
butions from 𝜀𝑖 at high energies with parameters: kramers_kronig{ im_epsilon_extension }, kramers_kronig{
im_epsilon_rescale }, kramers_kronig{ delta_static_epsilon }, and kramers_kronig{ delta_position }. These
contributions are not shown in the 𝜀𝑖 output, but their effect is present in 𝜀𝑟 output.

ò Note

Specific values of parameters: kramers_kronig{ im_epsilon_extension }, kramers_kronig{ im_epsilon_rescale
}, kramers_kronig{ delta_static_epsilon }, and kramers_kronig{ delta_position } have to be fitted individually
for every device. No tables for materials nor devices are available.

kramers_kronig{ im_epsilon_extension }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: eV
• default: 𝑟 = 0.0

If kramers_kronig{ im_epsilon_extension } is set to non-zero value then 𝜀𝑖 computed at max_energy multiplied by
kramers_kronig{ im_epsilon_rescale } is assumed for 𝜀𝑖 in an energy range from max_energy to max_energy +
kramers_kronig{ im_epsilon_extension }. Effectively a rectangle is attached to the end of the spectra with width
of kramers_kronig{ im_epsilon_extension } and height of the 𝜀𝑖 at max_energy multiplied by kramers_kronig{
im_epsilon_rescale }, to be used in Kramers-Kronig transformation.

kramers_kronig{ im_epsilon_rescale }

• usage: optional
• type: real number

• values: (0.0, ...)

• unit: −
• default: 𝑟 = 1.0

7.15. optics{ } 1251

nextnano++ Documentation, Release 1.25.13

This parameter is rescaling value used to approximate constant 𝜀𝑖 at high energies, from max_energy to max_energy
+ kramers_kronig{ im_epsilon_extension }. When kramers_kronig{ im_epsilon_rescale } = 1 then exactly 𝜀𝑖 at
max_energy is used.

kramers_kronig{ delta_static_epsilon }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: −
• default: 𝑟 = 0.0

If this attribute is set to non-zero value then Dirac delta-function is added to 𝜀𝑖 at energy kramers_kronig{
delta_position } to be used in Kramers-Kronig transformation. The Dirac delta-function is scaled such that it
results in 𝜀𝑟 (0) equal to this attribute.

kramers_kronig{ delta_position }

• usage: optional
• type: real number

• values: (0.0, ...)

• unit: eV
This parameter is defining energy at which the Dirac delta function is added to 𝜀𝑖.

kramers_kronig{ delta2_static_epsilon }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: −
• default: 𝑟 = 0.0

If this attribute is set to non-zero value then second Dirac delta-function is added to 𝜀𝑖 at energy kramers_kronig{
delta_position } to be used in Kramers-Kronig transformation. The Dirac delta-function is scaled such that it results
in 𝜀𝑟 (0) equal to this attribute.

kramers_kronig{ delta2_position }

• usage: optional
• type: real number

• values: (0.0, ...)

• unit: eV
This parameter is defining energy at which the second Dirac delta function is added to 𝜀𝑖.

1252 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

kramers_kronig{ delta3_static_epsilon }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: −
• default: 𝑟 = 0.0

If this attribute is set to non-zero value then the third Dirac delta-function is added to 𝜀𝑖 at energy kramers_kronig{
delta_position } to be used in Kramers-Kronig transformation. The Dirac delta-function is scaled such that it results
in 𝜀𝑟 (0) equal to this attribute.

kramers_kronig{ delta3_position }

• usage: optional
• type: real number

• values: (0.0, ...)

• unit: eV
This parameter is defining energy at which the third Dirac delta function is added to 𝜀𝑖.

kramers_kronig{ use_for_absorption }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then computed refractive index is used to calculate absorption. Otherwise, constant value is used.

kramers_kronig{ use_for_emission }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the computed refractive index is used to calculate emission. Otherwise, constant value is used.

7.15. optics{ } 1253

nextnano++ Documentation, Release 1.25.13

output_energies

• usage: optional
• type: choice

• values: yes or no

• default: no
Output energy dispersion for every transition.

output_occupations

• usage: optional
• type: choice

• values: yes or no

• default: no
Output occupation dispersion for every transition.

output_transitions

• usage: optional
• type: choice

• values: yes or no

• default: no
Output transition strength for every transition.

output_spinor_components

• usage: optional
• type: choice

• values: yes or no

• default: no
Output the spinor components for each state at each 𝑘‖ point (only relevant in multi-band k · p calculations).

ò Note

In 1-dimensional systems the axis of quantization for the angular momentum is x, in 3D z.

output_spectra{ }

• usage: required
• items: exactly 1

Control of optical spectra output

1254 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_spectra{ im_epsilon }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Imaginary part of dielectric function is outputted.

output_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the optical absorption coefficient expressed in cm−1 is outputted.

output_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical absorption coefficient is expressed in dB/𝜇m is outputted.

output_spectra{ gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical gain coefficient expressed in cm−1 is outputted.

output_spectra{ decadic_gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical gain coefficient expressed in dB/𝜇m is outputted.

7.15. optics{ } 1255

nextnano++ Documentation, Release 1.25.13

output_spectra{ re_epsilon }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the real part of dielectric function (relative dielectric permittivity) is outputted.

output_spectra{ refractive_index }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then dispersion of refractive index is outputted.

output_spectra{ emission_photons }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then spectrum of photon number is outputted with one of the following units 1/𝑐𝑚2/𝑠/𝑒𝑉 ,
1/𝑐𝑚2/𝑠/𝑛𝑚, 1/𝑐𝑚2/𝑠/𝑇𝐻𝑧, or 1/𝑐𝑚2/𝑠/𝑐𝑚−1.

output_spectra{ emission_power }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then photon power spectrum is outputted with units 𝑊/𝑐𝑚2.

output_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Output spectra with respect to the energy.

1256 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the frequency.

output_spectra{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the wavelength.

output_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the wave number.

output_component_spectra{ }

• usage: required
• items: exactly 1

Control of output of components of spectra

If this group is defined then state-to-state spectral components are outputted.

output_component_spectra{ threshold_im_epsilon }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: −
• default: 𝑟 = 1𝑒− 2

Only components of dielectric funtion for which transition strength is greater than this attribute are outputted.

7.15. optics{ } 1257

nextnano++ Documentation, Release 1.25.13

output_component_spectra{ threshold_emission_photons }

• usage: optional
• type: real number

• values: [0.0, ...)

• unit: cm−2s−1eV−1 for 1D; cm−1s−1eV−1 for 2D; s−1eV−1 for 3D

• default: 𝑟 = 1018 for 1D; 𝑟 = 1012 for 2D; 𝑟 = 016 for 3D

Only components of emission spectra for which transition strength is greater than this attribute are outputted.

output_component_spectra{ im_epsilon }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Imaginary part of dielectric function is outputted.

output_component_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the optical absorption coefficient expressed in cm−1 is outputted.

output_component_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical absorption coefficient is expressed in dB/𝜇m is outputted.

output_component_spectra{ gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical gain coefficient expressed in cm−1 is outputted.

1258 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_component_spectra{ decadic_gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical gain coefficient expressed in dB/𝜇m is outputted.

output_component_spectra{ emission_photons }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then spectrum of photon number is outputted with one of the following units 1/𝑐𝑚2/𝑠/𝑒𝑉 ,
1/𝑐𝑚2/𝑠/𝑛𝑚, 1/𝑐𝑚2/𝑠/𝑇𝐻𝑧, or 1/𝑐𝑚2/𝑠/𝑐𝑚−1.

output_component_spectra{ emission_power }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then photon power spectrum is outputted with units 𝑊/𝑐𝑚2.

output_component_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Output spectra with respect to the energy.

output_component_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the frequency.

7.15. optics{ } 1259

nextnano++ Documentation, Release 1.25.13

output_component_spectra{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the wavelength.

output_component_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the wave number.

output_local_spectra{ }

• usage: required
• items: exactly 1

Control of output of local optical spectra

output_local_spectra{ im_epsilon }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Imaginary part of dielectric function is outputted.

output_local_spectra{ absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then the optical absorption coefficient expressed in cm−1 is outputted.

1260 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

output_local_spectra{ decadic_absorption_coeff }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical absorption coefficient is expressed in dB/𝜇m is outputted.

output_local_spectra{ gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical gain coefficient expressed in cm−1 is outputted.

output_local_spectra{ decadic_gain }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then the optical gain coefficient expressed in dB/𝜇m is outputted.

output_local_spectra{ emission_photons }

• usage: optional
• type: choice

• values: yes or no

• default: yes
If set to yes, then spectrum of photon number is outputted with one of the following units 1/𝑐𝑚2/𝑠/𝑒𝑉 ,
1/𝑐𝑚2/𝑠/𝑛𝑚, 1/𝑐𝑚2/𝑠/𝑇𝐻𝑧, or 1/𝑐𝑚2/𝑠/𝑐𝑚−1.

output_local_spectra{ emission_power }

• usage: optional
• type: choice

• values: yes or no

• default: no
If set to yes, then photon power spectrum is outputted with units 𝑊/𝑐𝑚2.

7.15. optics{ } 1261

nextnano++ Documentation, Release 1.25.13

output_local_spectra{ spectra_over_energy }

• usage: optional
• type: choice

• values: yes or no

• default: yes
Output spectra with respect to the energy.

output_local_spectra{ spectra_over_frequency }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the frequency.

output_local_spectra{ spectra_over_wavelength }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the wavelength.

output_local_spectra{ spectra_over_wavenumber }

• usage: optional
• type: choice

• values: yes or no

• default: no
Output spectra with respect to the wave number.

Examples

We can generally write the electric field of a traveling wave propagating to k direction as follows:

E(r; 𝑡) =[𝐸𝑥x̂+ 𝐸𝑦ŷ + 𝐸𝑧 ẑ]𝑒
𝚤[kr−𝜔𝑡]

=

⎡⎣𝐸𝑥𝐸𝑦
𝐸𝑧

⎤⎦ 𝑒𝚤[kr−𝜔𝑡] =
⎛⎝⎡⎣Re(𝐸𝑥)Re(𝐸𝑦)

Re(𝐸𝑧)

⎤⎦+ 𝚤

⎡⎣Im(𝐸𝑥)
Im(𝐸𝑦)
Im(𝐸𝑧)

⎤⎦⎞⎠ 𝑒𝚤[kr−𝜔𝑡]

where 𝐸𝑥/𝑦/𝑧 are complex numbers.

re=[, ,] and im = [, ,] correspond to the first and second column in the last line.

1262 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

linearly polarized light in x direction.
name is used for the file names of the output.
polarization{ name = "x" re = [1,0,0] }

linearly polarized light in y direction
polarization{ name = "y" re = [0,1,0] }

linearly polarized light in z direction
polarization{ name = "z" re = [0,0,1] }

TM mode.
This naming might be useful when analyzing heterostructure
grown in x direction.
polarization{ name = "TM" re = [1,0,0] }

TE mode
polarization{ name = "TEy" re = [0,1,0] }

TE mode
polarization{ name = "TEz" re = [0,0,1] }

(sigma+) circularly polarized light around the x axis
polarization{ name = "y+iz" re = [0,1,0] im = [0,0, 1] }

(sigma-) circularly polarized light around the x axis
polarization{ name = "y-iz" re = [0,1,0] im = [0,0,-1] }

an example for an arbitrary polarization direction
polarization{ name = "x1y1z2" re = [1,1,2] }

Last update: 02/04/2025

7.16 database{ }
Using the group database{ } allows to modify any parameters of materials defined in the default database. Use
of this group might be necessary to obtain results corresponding to real devices or to reproduce other simulations
as variety of the parameters are available in the literature established with various accuracies and under various
conditions that may be relevant for specific simulation cases.

7.16.1 Top level keywords in database{ }
Top-level attributes in database{ }

ò Note

This section is under construction

There are two top-level attributes in database{ }, namely default and mandatory. These attributes allow the
user to specify the location of the default database containing material parameters.

7.16. database{ } 1263

nextnano++ Documentation, Release 1.25.13

ò Note

By default, the program will read in the database which is specified under the installpath
(installpath/Syntax/database_nnp.in).
Example: .. \nextnano\2022_08_05\nextnano++\Syntax\database_nnp.in

default (optional)
change default path to database

type
string

example
" .. /Syntax/database_nnp.in"

. Warning

If the location of the database file is specified as a command line argument, this has higher
priority than the location specified in the input file (attribute default).
Example: nextnano++.exe --database
D:\nextnano\2018_10_31\nextnano++\Syntax\database_nnp.in

If you run nextnano++ via nextnanomat, the location of the default database is specified in
nextnanomat ⇒ Tools ⇒ Options ⇒ Material database ⇒ nextnano++ database
file as a command line argument. If you want to use the database location as specified in
the input file (attribute default), the database location of nextnanomat must be empty.

mandatory (optional)
path to database

type
string

example
"../Syntax/database_nnp.in"

ò Note

If a mandatory database is defined, the command line argument for the database (--database
...) is ignored. This feature can e.g. be used to override the default setting in nextnanomat
and to specify different databases in various input files or templates, e.g. in conjunction with the
feature concatenated string variables (Input Syntax), one can dynamically switch between different
databases in templates.

Zincblende-related . . . zb{} groups in database{ }

ò Note

This section is under construction

Almost all of the groups related to materials with zincblende symmetry contain 23 groups of identical structure,
which are listed in the sections:

1264 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• Bands groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Strain groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Low-field mobility groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• High-field mobility groups in database{ . . . _zb{ } } and database{ . . . _wz{ } }

• Recombination groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Phonons in database{ . . . _zb{} } and database{ . . . _wz{} }

• Other groups in database{ . . . _zb{} } and database{ . . . _wz{} }

The exceptions are optical_reflectivity{}, optical_absorption{} and optical_emission{}, which
contain completly differnet groups (see Optical groups in database{ } for more information). All other keywords
can be found below.

database{ binary_zb{} }

name
specify material name

type
string

example
GaAs, Si, GaAs, InP, . . .

database{ ternary_zb{} }

name
type

string

binary_x
specify name of binary constituent

type
string

binary_1_x
specify name of binary constituent

type
string

database{ ternary2_zb{} }

. Warning

Does not contain the groups lattice_consts{}, mass_density{}, dielectric_consts{},
elastic_consts{}, piezoelectric_consts{}, acoustic_phonons{},
optical_phonons{}, conduction_bands{}, valence_bands{}, kp_6_bands{},
kp_8_bands{}, mobility_constant{}, mobility_masetti{}, mobility_arora{},
mobility_minimos{}, recombination{}.

name
type

string

binary_x

7.16. database{ } 1265

nextnano++ Documentation, Release 1.25.13

type
string

binary_1_x
type

string

bowing_x
type

string

bowing_1_x
type

string

database{ bowing_zb{} }

name
type

string

database{ quaternary_zb{} }

name
type

string

binary1
type

string

binary2
type

string

binary3
type

string

ternary12
type

string

ternary13
type

string

ternary23
type

string

database{ quaternary4_zb{} }

name
type

string

1266 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

binary1
type

string

binary2
type

string

binary3
type

string

binary4
type

string

ternary12
type

string

ternary23
type

string

ternary34
type

string

ternary14
type

string

database{ quinternary_zb{} }

name
type

string

binary_a
type

string

binary_b
type

string

binary_c
type

string

binary_d
type

string

ternary_ab
type

string

7.16. database{ } 1267

nextnano++ Documentation, Release 1.25.13

ternary_ac
type

string

ternary_ad
type

string

ternary_bc
type

string

ternary_bd
type

string

ternary_cd
type

string

quaternary_abc
type

string

quaternary_abd
type

string

quaternary_acd
type

string

quaternary_bcd
type

string

database{ quinternary6_zb{} }

name
type

string

binary_ad
type

string

binary_bd
type

string

binary_cd
type

string

binary_ae
type

string

1268 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

binary_be
type

string

binary_ce
type

string

ternary_abd
type

string

ternary_acd
type

string

ternary_bcd
type

string

ternary_abe
type

string

ternary_ace
type

string

ternary_bce
type

string

ternary_a_de
type

string

ternary_b_de
type

string

ternary_c_de
type

string

quaternary_abc_d
type

string

quaternary_abc_e
type

string

quaternary_ab_de
type

string

quaternary_ac_de

7.16. database{ } 1269

nextnano++ Documentation, Release 1.25.13

type
string

quaternary_bc_de
type

string

Wurtzite-related . . .wz{} groups in database{ }

ò Note

This section is under construction

Almost all of the groups related to materials with wurtzite symmetry contain 23 groups of identical structure, which
are listed in the sections:

• Bands groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Strain groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Low-field mobility groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• High-field mobility groups in database{ . . . _zb{ } } and database{ . . . _wz{ } }

• Recombination groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Phonons in database{ . . . _zb{} } and database{ . . . _wz{} }

• Other groups in database{ . . . _zb{} } and database{ . . . _wz{} }

The exceptions are optical_reflectivity{}, optical_absorption{} and optical_emission{}, which
contain completly differnet groups (see Optical groups in database{ } for more information). All other keywords
can be found below.

database{ binary_wz{} }

name
material name

type
string

example
GaN, AlN, InN, . . .

database{ ternary_wz{} }

name
type

string

binary_x
specify name of binary constituent

type
string

binary_1_x
specify name of binary constituent

type
string

1270 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

database{ ternary2_wz{} }

. Warning

Does not contain the groups lattice_consts{}, mass_density{}, dielectric_consts{},
elastic_consts{}, piezoelectric_consts{}, acoustic_phonons{},
optical_phonons{}, conduction_bands{}, valence_bands{}, kp_6_bands{},
kp_8_bands{}, mobility_constant{}, mobility_masetti{}, mobility_arora{},
mobility_minimos{}, recombination{}.

name
type

string

binary_x
type

string

binary_1_x
type

string

bowing_x
type

string

bowing_1_x
type

string

database{ bowing_wz{} }

name
type

string

database{ quaternary_wz{} }

name
type

string

binary1
type

string

binary2
type

string

binary3
type

string

ternary12

7.16. database{ } 1271

nextnano++ Documentation, Release 1.25.13

type
string

ternary13
type

string

ternary23
type

string

database{ quaternary4_wz{} }

name
type

string

binary1
type

string

binary2
type

string

binary3
type

string

binary4
type

string

ternary12
type

string

ternary23
type

string

ternary34
type

string

ternary14
type

string

database{ quinternary_wz{} }

name
type

string

binary_a

1272 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

type
string

binary_b
type

string

binary_c
type

string

binary_d
type

string

ternary_ab
type

string

ternary_ac
type

string

ternary_ad
type

string

ternary_bc
type

string

ternary_bd
type

string

ternary_cd
type

string

quaternary_abc
type

string

quaternary_abd
type

string

quaternary_acd
type

string

quaternary_bcd
type

string

7.16. database{ } 1273

nextnano++ Documentation, Release 1.25.13

database{ quinternary6_wz{} }

name
type

string

binary_ad
type

string

binary_bd
type

string

binary_cd
type

string

binary_ae
type

string

binary_be
type

string

binary_ce
type

string

ternary_abd
type

string

ternary_acd
type

string

ternary_bcd
type

string

ternary_abe
type

string

ternary_ace
type

string

ternary_bce
type

string

ternary_a_de
type

string

1274 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

ternary_b_de
type

string

ternary_c_de
type

string

quaternary_abc_d
type

string

quaternary_abc_e
type

string

quaternary_ab_de
type

string

quaternary_ac_de
type

string

quaternary_bc_de
type

string

Optical groups in database{ }

ò Note

This section is under construction

In this section, we describe all the groups:

• Maintained Keywords

– database{ optical_reflectivity{} }

– database{ optical_absorption_coeff{} }

– database{ optical_refractive_index{} }

– database{ illumination{} }

• Examples

• Spectra

– Solar spectra

– CIE luminants and light sources

– Light sources

7.16. database{ } 1275

nextnano++ Documentation, Release 1.25.13

Maintained Keywords

database{ optical_reflectivity{} }

(as function of wavelength in (nm))

name
type

string

cutoff
value

yes or no

at{}
energy

type
double

unit
eV

wavelength
type

double

unit
nm

reflectivity
type

double

database{ optical_absorption_coeff{} }

in units of (1/cm), (as function of wavelength in (nm) or energy in (eV))

name
type

string

cutoff
value

yes or no

default
???

at{}
energy

type
double

unit
eV

wavelength
type

double

1276 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

unit
nm

absorption_coeff
type

double

decadic_absorption_coeff
type

double

database{ optical_refractive_index{} }

name
type

string

cutoff
value

yes or no

default
???

at{}
energy

type
double

unit
eV

wavelength
type

double

unit
nm

n
type

double

k
type

double

database{ illumination{} }

in units of (1/cm), (as function of wavelength in (nm) or energy in (eV))

name
type

string

cutoff
value

yes or no

7.16. database{ } 1277

nextnano++ Documentation, Release 1.25.13

default
???

absolute_intensities
value

yes or no

default
???

at{}
energy

type
double

unit
eV

wavelength
type

double

unit
nm

intensities
type

double

Examples

optical_reflectivity {
name = "Si-polished-wafer"
cutoff = no

at{ wavelength = 250 reflectivity = 0.672612594 }
at{ wavelength = 260 reflectivity = 0.705174 }
...
at{ wavelength = 1000 reflectivity = 0.316252445 }

}

optical_reflectivity {
name = "Al0.80Ga0.20As"
...

}

optical_absorption{
name = "Si";
cutoff = no

at{ wavelength = 250 absorption_coeff = 1.84E+06 }
at{ wavelength = 260 absorption_coeff = 1.97E+06 }
...
at{ wavelength = 1450 absorption_coeff = 3.20E-08 }

} : {
name = "Silicon";

}
(continues on next page)

1278 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

optical_absorption{
name = "Ge";
...

} : {
name = "Germanium";

}

optical_absorption{
name = "GaAs";
...

}

optical_absorption{
name = "InP";
...

}

optical_absorption{
name = "GaN";
...

}

optical_absorption{
name = "InN";
...

}

optical_absorption{
name = "In0.20Ga0.80N";

...
}

Spectra

The database file contains optional optical data such as

• standard solar spectra

• large collection of CIE illuminants and light sources

• reflectivity spectra

• absorption spectra.

If you wish to use this data, just insert the data of interest to your database file or into a database{ } section of your
input file.

7.16. database{ } 1279

nextnano++ Documentation, Release 1.25.13

Solar spectra

The following solar spectra are already predefined and do not need to be included into database or input files.

extraterrestrial solar spectrum ASTM E-490 (1366.1 W/m^2 integrated)
added cutoff at 119.5 nm and 1000000 nm to keep integrated irradiance finite
#
name = "Solar-ASTME490"

ASTM G-173-03 solar spectrum - extra terrestrial reference (airmass 0.0)
added cutoff at 280 nm and 4000 nm to keep integrated irradiance finite
#
name = "Solar-ASTM-G173-ETR"

ASTM G-173-03 solar spectrum - air mass 1.5 global tilt (1000.4 W/m^2 integrated)
added cutoff at 280 nm and 4000 nm to keep integrated irradiance finite
#
name = "Solar-ASTM-G173-global"

ASTM G-173-03 solar spectrum - air mass 1.5 direct + circumsolar (900.1 W/m^2␣
→˓integrated)
added cutoff at 280 nm and 4000 nm to keep integrated irradiance finite
#
name = "Solar-ASTM-G173-direct"

CIE luminants and light sources

The following CIE luminants and light sources are already predefined and do not need to be included into database
or input files.

CIE illuminant A (tungsten - 2856 K) with additional cutoff at 300 nm and 780 nm ␣
→˓(irradiance NOT normalized)
#
name = "CIE-A"

CIE illuminant D50 (horizon daylight - 5003 K) with additional cutoff at 300 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-D50"

CIE illuminant D55 (mind-morning/mid-afternoon daylight - 5503 K) with additional␣
→˓cutoff at 300 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-D55"

CIE illuminant D65 (noon daylight - 6504 K) with additional cutoff at 300 nm and␣
→˓830 nm (irradiance NOT normalized)
#
name = "CIE-D65"

(continues on next page)

1280 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

CIE illuminant D75 (North sky daylight - 7504 K) with additional cutoff at 300 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-D75"

CIE flourescent FL1 (normal, daylight - 6430 K) with additional cutoff at 380 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL1"

CIE flourescent FL2 (normal, cool white - 4230 K - most representative) with␣
→˓additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL2"

CIE flourescent FL3 (normal, white - 3450 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3"

CIE flourescent FL4 (normal, warm white - 2940 K) with additional cutoff at 380 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL4"

CIE flourescent FL5 (normal, daylight - 6350 K) with additional cutoff at 380 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL5"

CIE flourescent FL6 (normal, light white - 5150 K) with additional cutoff at 380 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL6"

CIE flourescent FL7 (broad band, D65 simulator - 6500 K - most representative) with␣
→˓additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL7"

CIE flourescent FL8 (broad band, D50 simulator, Sylvania F40 Design 50 - 5000 K)␣
→˓with additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL8"

CIE flourescent FL9 (broad band, cool white - 5150 K) with additional cutoff at 380␣

(continues on next page)

7.16. database{ } 1281

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL9"

CIE flourescent FL10 (three narrow bands, Philips TL85, Ultralume 50 - 5000 K) with␣
→˓additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL10"

CIE flourescent FL11 (three narrow bands, Philips TL84, Ultralume 40 - 4000 K -␣
→˓most representative) with additional cutoff at 380 nm and 780 nm (irradiance NOT␣
→˓normalized)
#
name = "CIE-FL11"

CIE flourescent FL12 (three narrow bands, Philips TL83, Ultralume 30 - 3000 K) with␣
→˓additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL12"

CIE flourescent FL3.1 (standard halophosphate - 2932 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.1"

CIE flourescent FL3.2 (standard halophosphate - 3965 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.2"

CIE flourescent FL3.3 (standard halophosphate - 6280 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.3"

CIE flourescent FL3.4 (DeLuxe - 2904 K) with additional cutoff at 380 nm and 780 nm␣
→˓ (irradiance NOT normalized)
#
name = "CIE-FL3.4"

CIE flourescent FL3.5 (DeLuxe - 4086 K) with additional cutoff at 380 nm and 780 nm␣
→˓ (irradiance NOT normalized)
#
name = "CIE-FL3.5"

CIE flourescent FL3.6 (DeLuxe - 4894 K) with additional cutoff at 380 nm and 780 nm␣
→˓ (irradiance NOT normalized)

(continues on next page)

1282 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

#
name = "CIE-FL3.6"

CIE flourescent FL3.7 (three bands - 2979 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.7"

CIE flourescent FL3.8 (three bands - 4006 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.8"

CIE flourescent FL3.9 (three bands - 4853 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.9"

CIE flourescent FL3.10 (three bands - 5000 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.10"

CIE flourescent FL3.11 (three bands - 5854 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.11"

CIE flourescent FL3.12 (multi-band - 2984 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.12"

CIE flourescent FL3.13 (multi-band - 3896 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.13"

CIE flourescent FL3.14 (multi-band - 5045 K) with additional cutoff at 380 nm and␣
→˓780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.14"

CIE flourescent FL3.15 (D65 simulator JIS Z 8716:1991 - 6509 K) with additional␣
→˓cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-FL3.15"

(continues on next page)

7.16. database{ } 1283

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

CIE illuminant LED-B1 (phosphor-converted blue - 2733 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-B1"

CIE illuminant LED-B2 (phosphor-converted blue - 2998 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-B2"

CIE illuminant LED-B3 (phosphor-converted blue - 4103 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-B3"

CIE illuminant LED-B4 (phosphor-converted blue - 5109 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-B4"

CIE illuminant LED-B5 (phosphor-converted blue - 6598 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-B5"

CIE illuminant LED-BH1 (red and phosphor-converted blue mixed - 2851 K) with␣
→˓additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-BH1"

CIE illuminant LED-RGB1 (red, green, and blue mixed - 2840 K) with additional␣
→˓cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-RGB1"

CIE illuminant LED-V1 (phosphor-converted violet - 2724 K) with additional cutoff␣
→˓at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-V1"

CIE illuminant LED-V2 (phosphor-converted violet - 4070 K) with additional cutoff␣
→˓at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-LED-V2"

(continues on next page)

1284 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

CIE recommended indoor illuminant ID50 (5096 K) with additional cutoff at 300 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-ID50"

CIE recommended indoor illuminant ID65 (6596 K) with additional cutoff at 300 nm␣
→˓and 780 nm (irradiance NOT normalized)
#
name = "CIE-ID65"

CIE high pressure discharge lamp HP1 (sodium - 1959 K) with additional cutoff at␣
→˓380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-HP1"

CIE high pressure discharge lamp HP2 (color-enhanced sodium - 2506 K) with␣
→˓additional cutoff at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-HP2"

CIE high pressure discharge lamp HP3 (metal halide - 3144 K) with additional cutoff␣
→˓at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-HP3"

CIE high pressure discharge lamp HP4 (metal halide - 4002 K) with additional cutoff␣
→˓at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-HP4"

CIE high pressure discharge lamp HP5 (metal halide - 4039 K) with additional cutoff␣
→˓at 380 nm and 780 nm (irradiance NOT normalized)
#
name = "CIE-HP5"

Light sources

The following light sources are predefined (from: R. W. G. Hunt et al., Measuring Color, Wiley 2011), and do not
need to be included into database or input files.

low pressure sodium lamp (MB - 1726 K) with additional cutoff at 380 nm and 780 nm ␣
→˓(irradiance NOT normalized)
#
name = "Lamp-SOX"

high pressure mercury lamp (MB - 5592 K) with additional cutoff at 380 nm and 780␣
(continues on next page)

7.16. database{ } 1285

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

→˓nm (irradiance NOT normalized)
#
name = "Lamp-MB"

high pressure mercury lamp (MBF - 3538 K) with additional cutoff at 380 nm and 780␣
→˓nm (irradiance NOT normalized)
#
name = "Lamp-MBF"

high pressure mercury lamp (MBTF - 3652 K) with additional cutoff at 380 nm and 780␣
→˓nm (irradiance NOT normalized)
#
name = "Lamp-MBTF"

high pressure mercury lamp (HMI - 5988 K) with additional cutoff at 380 nm and 780␣
→˓nm (irradiance NOT normalized)
#
name = "Lamp-HMI"

Xenon lamp (6044 K) with additional cutoff at 380 nm and 780 nm (irradiance NOT␣
→˓normalized)
#
name = "Lamp-Xenon"

7.16.2 Nested groups in database{ . . . _zb{} } and database{ . . . _wz{} }
Bands groups in database{ . . . _zb{} } and database{ . . . _wz{} }

• Bands for zincblende in database{ }

– database{ . . . { conduction_bands{} } } for zincblende

– database{ . . . { valence_bands{} } } for zincblende

• database{ . . . { kp_6_bands{} } } for zincblende

• database{ . . . { kp_8_bands{} } } for zincblende

• Bands for Wurtzite in database{ }

– database{ . . . { conduction_bands{} } } for wurtzite

– database{ . . . { valence_bands{} } } for wurtzite

• database{ . . . { kp_6_bands{} } } for wurtzite

• database{ . . . { kp_8_bands{} } } for wurtzite

There are about 23 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe four of them, specifically all groups related to band paramters:

• conduction_bands{}

• valence_bands{}

• kp_6_bands{}

1286 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• kp_8_bands{}

Bands for zincblende in database{ }

database{ . . . { conduction_bands{} } } for zincblende

Gamma{}
material parameters for the conduction band valley at the Gamma point of the Brillouin zone:

mass
electron effective mass (isotropic, parabolic)

value
double

unit
m0

This mass is used for the single-band Schrödinger equation and for the calculation of the densities.

bandgap
band gap energy at 0 K

value
double

unit
eV

bandgap_alpha
Varshni parameter 𝛼 for temperature dependent band gap

value
double

unit
eV/K

bandgap_beta
Varshni parameter 𝛽 for temperature dependent band gap

value
double

unit
K

defpot_absolute
absolute deformation potential of the Gamma conduction band: 𝑎𝑐,Γ = 𝑎𝑣 + 𝑎Γ

value
double

unit
eV

g
g-factor (for Zeeman splitting in magnetic fields)

value
double

L{}
Material parameters for the conduction band valley at the L point of the Brillouin zone

mass_l
longitudinal electron effective mass (parabolic)

7.16. database{ } 1287

nextnano++ Documentation, Release 1.25.13

value
double

unit
m0

mass_t
transversal electron effective mass (parabolic)

value
double

unit
m0

These masses are used for the single-band Schrödinger equation and for the calculation of the
densities.

bandgap
band gap energy at 0 K

value
double

unit
eV

bandgab_alpha
Varshni parameter 𝛼 for temperature dependent band gap

value
double

unit
eV/K

bandgab_beta
Varshni parameter 𝛽 for temperature dependent band gap

value
double

unit
K

defpot_absolute
absolute deformation potential of the L conduction band: ac, L = av + agap, L

value
double

unit
eV

defpot_uniaxial
uniaxial deformation potential of the L conduction band

value
double

unit
eV

g_l
longitudinal g factor (for Zeeman splitting in magnetic fields)

value
double

1288 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

g_t
transversal g factor (for Zeeman splitting in magnetic fields)

value
double

X{}
material parameters for the conduction band valley at the X point of the Brillouin zone. The
options are the same as for L{}

ò Note

In Si, Ge and GaP we have a Delta valley instead of the X conduction band valley.

Delta{}
material parameters for the conduction band valley at the X point of the Brillouin zone. The
options are the same as L{}, however Delta{} has an extra paramter position:

position
value

double

ò Note

At present, the value for position does not enter into any of the equations.

database{ . . . { valence_bands{} } } for zincblende

material parameters for the valence band valley at the Gamma point of the Brillouin zone

bandoffset
average valence band energy 𝐸𝑣,𝑎𝑣 = (𝐸ℎℎ + 𝐸𝑙ℎ + 𝐸𝑠𝑜)/3

value
double

unit
eV

HH{}
mass

heavy hole effective mass (isotropic, parabolic!)

value
double

unit
m0

g
g factor (for Zeeman splitting in magnetic fields)

value
double

LH{}
mass

light hole effective mass (isotropic, parabolic!)

value
double

7.16. database{ } 1289

nextnano++ Documentation, Release 1.25.13

unit
m0

g
g factor (for Zeeman splitting in magnetic fields)

value
double

SO{}
mass

split-off hole effective mass (isotropic, parabolic!)

value
double

unit
m0

g
g factor (for Zeeman splitting in magnetic fields)

value
double

defpot_absolute
absolute deformation potential of the valence bands (average of the three valence bands: 𝑎𝑣)

value
double

unit
eV

defpot_uniaxial_b
uniaxial shear deformation potential b of the valence bands

value
double

unit
eV

defpot_uniaxial_d
uniaxial shear deformation potential d of the valence bands

value
double

unit
eV

delta_SO
spin-orbit split-off energy ∆𝑠𝑜

value
double

unit
eV

database{ . . . { kp_6_bands{} } } for zincblende

gamma1
Luttinger parameter 𝛾1

value
double

1290 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

gamma2
Luttinger parameter 𝛾2

value
double

gamma3
Luttinger parameter 𝛾3

value
double

ò Note

The user can either specify the Luttinger parameters (𝛾1, 𝛾2, 𝛾3) or the Dresselhaus parameters
(L, M, N) parameters

L
Dresselhaus parameter L

value
double

unit
ℏ2/(2𝑚0)

M
Dresselhaus parameter M

value
double

unit
ℏ2/(2𝑚0)

N
Dresselhaus parameter N

value
double

unit
ℏ2/(2𝑚0)

. Warning

There are different definitions of the L and M parameters available in the literature. Definition
used in nextnano++:

L = (−𝛾1 − 4𝛾2 − 1) ·
[︂

ℏ2

2m0

]︂

M = (2𝛾2 − 𝛾1 − 1) ·
[︂

ℏ2

2m0

]︂

database{ . . . { kp_8_bands{} } } for zincblende

S
electron effective mass parameter S for 8-band k.p. The S parameter (S = 1 + 2F) is also defined
in the literature as F, where F = (S - 1)/2, e.g. I. Vurgaftman et al., JAP 89, 5815 (2001).

value
double

7.16. database{ } 1291

nextnano++ Documentation, Release 1.25.13

ò Note

The S parameter (S = 1 + 2F) is also defined in the literature as F where F = (S - 1)/2, e.g. I.
Vurgaftman et al., JAP 89, 5815 (2001).

E_p
Kane’s momentum matrix element. The momentum matrix element parameter P is related to Ep:
𝑃 2 = ℏ2/(2𝑚0) · 𝐸𝑝

value
double

unit
eV

B
bulk inversion symmetry parameter (B=0 for diamond-type materials)

value
double

unit
ℏ2/(2𝑚0)

gamma1
Luttinger parameter 𝛾1’

value
double

gamma2
Luttinger parameter 𝛾2’

value
double

gamma3
Luttinger parameter 𝛾3’

value
double

ò Note

The user can either specify the modified Luttinger parameters (𝛾1’, 𝛾2’, 𝛾3’) or the L’, M’ = M, N’
parameters.

L
Dresselhaus parameter L’

value
double

unit
ℏ2/(2𝑚0)

M
Dresselhaus parameter M’

value
double

unit
ℏ2/(2𝑚0)

1292 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

N
Dresselhaus parameter N’

value
double

unit
ℏ2/(2𝑚0)

Bands for Wurtzite in database{ }

database{ . . . { conduction_bands{} } } for wurtzite

Gamma{}
material parameters for the conduction band valley at the Gamma point of the Brillouin zone:

mass_t
electron effective mass perpendicular to hexagonal c axis (parabolic)

value
double

unit
m0

mass_l
electron effective mass along hexagonal c axis (parabolic)

value
double

unit
m0

This mass is used for the single-band Schrödinger equation and for the calculation of the densities.

bandgap
band gap energy at 0 K

value
double

unit
eV

bandgap_alpha
Varshni parameter 𝛼 for temperature dependent band gap

value
double

unit
eV/K

bandgap_beta
Varshni parameter 𝛽 for temperature dependent band gap

value
double

unit
K

defpot_absolute_t
absolute deformation potential of the Gamma conduction band perpendicular to hexagonal
c axis ac,a = a2

7.16. database{ } 1293

nextnano++ Documentation, Release 1.25.13

value
double

unit
eV

defpot_absolute_l
absolute deformation potential of the Gamma conduction band perpendicular along hexag-
onal c axis ac,c = a1

value
double

unit
eV

ò Note

Note that I. Vurgaftman et al., JAP 94, 3675 (2003) lists a1 and a2 parameters. They refer to
the interband deformation potentials, i.e. to the deformation of the band gaps. Thus, we have
to add the deformation potentials of the valence bands to get the deformation potentials for
the conduction band edge.

ac,a = a2 = a2,Vurgaftman +D2

ac,c = a1 = a1,Vurgaftman +D1

g_t (optional)
g factor perpendicular to hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

g_l (optical)
g factor along hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

database{ . . . { valence_bands{} } } for wurtzite

material parameters for the valence band valley at the Gamma point of the Brillouin zone

bandoffset
value

double

unit
eV

average energy of the three valence band edges (S.L. Chuang, C.S. Chang, “k · p method for strained
wurtzite semiconductors”, Phys. Rev. B 54 (4), 2491 (1996)):

Ev,av = (Ehh + Elh + Ech)/3− 2/3 ·Deltacr

The valence band energies for heavy hole (HH), light hole (LH) and crystal-field split-hole (CH) are
calculated by defining an “average” valence band energy Ev (=Ev,av) for all three bands and adding the
spin-orbit-splitting and crystal-field splitting energies afterwards. The “average” valence band energy
Ev (=Ev,av) is defined on an absolute energy scale and must take into accout the valence band offsets
which are “averaged” over the three holes.

1294 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

ò Note

This energy determines the valence band offset (VBO) between two materials:

VBOv,av = bandoffsetmaterial1 − bandoffsetmaterial2

HH{}
mass_t

heavy hole effective mass perpendicular to hexagonal c axis (parabolic !)

value
double

unit
m0

mass_l
heavy hole effective mass along hexagonal c axis (parabolic !)

value
double

unit
m0

g_t (optional)
g factor perpendicular to hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

g_l (optional)
g factor along hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

LH{}
mass_t

light hole effective mass perpendicular to hexagonal c axis (parabolic !)

value
double

unit
m0

mass_l
light hole effective mass along hexagonal c axis (parabolic !)

value
double

unit
m0

g_t (optional)
g factor perpendicular to hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

g_l (optional)
g factor along hexagonal c axis (for Zeeman splitting in magnetic fields)

7.16. database{ } 1295

nextnano++ Documentation, Release 1.25.13

value
double

SO{}
mass_t

crystal-field split-off hole effective mass perpendicular to hexagonal c axis (parabolic !)

value
double

unit
m0

This mass is used for the single-band Schrödinger equation and for the calculation of the densities.

mass_l
crystal-field split-off hole effective mass along hexagonal c axis (parabolic !)

value
double

unit
m0

This mass is used for the single-band Schrödinger equation and for the calculation of the densities.

g_t (optional)
g factor perpendicular to hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

g_l (optional)
g factor along hexagonal c axis (for Zeeman splitting in magnetic fields)

value
double

defpotentials
deformation potential of the valence bands: [D1, D2, D3, D4, D5, D6]

value
vector of 6 real numbers

units
eV

example
[-3.7, 4.5, 8.2, -4.1, -4.0, -5.5] (for GaN)

delta
crystal-field splitting energy Deltacr = Delta1, spin-orbit splitting energy parameter Delta2, spin-
orbit splitting energy parameter Delta3: [Delta1, Delta2, Delta3]

value
vector of 3 real numbers

units
eV

example
[0.010, 0.00567, 0.00567] (for GaN)

Very often one assumes Delta2 = Delta3 = 1/3 Deltaso.

1296 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

database{ . . . { kp_6_bands{} } } for wurtzite

A1
6-band k · p hole effective mass parameter A1 (Rashba-Sheka-Pikus parameter)

value
double

A2
6-band k · p hole effective mass parameter A2 (Rashba-Sheka-Pikus parameter)

value
double

A3
6-band k · p hole effective mass parameter A3 (Rashba-Sheka-Pikus parameter)

value
double

A4
6-band k · p hole effective mass parameter A4 (Rashba-Sheka-Pikus parameter)

value
double

A5
6-band k · p hole effective mass parameter A5 (Rashba-Sheka-Pikus parameter)

value
double

A6
6-band k · p hole effective mass parameter A6 (Rashba-Sheka-Pikus parameter)

value
double

database{ . . . { kp_8_bands{} } } for wurtzite

S1
electron effective mass parameter S1 = Sparallel for 8-band k · p

value
double

S2
electron effective mass parameter S2 = Sperpendicular for 8-band k · p

value
double

E_P1
Kane’s momentum matrix elements Ep1 = Ep, parallel

value
double

E_P2
Kane’s momentum matrix elements Ep2 = Ep,perpendicular

value
double

7.16. database{ } 1297

nextnano++ Documentation, Release 1.25.13

ò Note

The momentum matrix element parameter P is related to Ep : P2 = ℏ2

2𝑚0
Ep

B1
bulk inversion symmetry parameter B1

value
double

B2
bulk inversion symmetry parameters B2

value
double

B3
bulk inversion symmetry parameters B3

value
double

A1
8-band k · p hole effective mass parameter A1’ (Rashba-Sheka-Pikus parameter)

value
double

A2
8-band k · p hole effective mass parameter A2’ (Rashba-Sheka-Pikus parameter)

value
double

A3
8-band k · p hole effective mass parameter A3’ (Rashba-Sheka-Pikus parameter)

value
double

A4
8-band k · p hole effective mass parameter A4’ (Rashba-Sheka-Pikus parameter)

value
double

A5
8-band k · p hole effective mass parameter A5’ (Rashba-Sheka-Pikus parameter)

value
double

A6
8-band k · p hole effective mass parameter A6’ (Rashba-Sheka-Pikus parameter)

value
double

Strain groups in database{ . . . _zb{} } and database{ . . . _wz{} }

ò Note

This section is under construction

1298 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

There are about 23 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe four of them, specifically all groups related to strain parameters:

• lattice_consts{}

• elastic_consts{}

• piezoelectric_consts{}

• pyroelectric_consts{} (only wurtzite)

Strain for zincblende

database{ . . . { lattice_consts{} } } for zincblende

a
type

double

unit
Angstrom

Specify lattice constant at 300K. In a cubic crystal system (like diamond and zincblende), the lattice
constants in all three crystal axes are equal.

a_expansion
type

double

unit
Angstom/K

The lattice constants are temperature dependent. The lattice constant a in the database should be given
for 300 K. For all other temperatures, the lattice constant is calculated by the following formula:

a(T) = a300K + a_expansion · (T− 300K)

where T is the temperatue in units of K.

database{ . . . { elastic_consts{} } } for zincblade

Specify elastic constants:

c11
type

double

unit
GPa

c12
type

double

unit
GPa

c44
type

double

unit
GPa

7.16. database{ } 1299

nextnano++ Documentation, Release 1.25.13

database{ . . . { piezoelectric_consts{} } } for zincblade

Specify piezoelectric constants (If strain is present, then generally piezoelectric charges and thus piezoelectric
fields arise):

e14
type

double

unit
C/m2

B114 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B124 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B156 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

ò Note

For silicon and germanium there is no piezoelectric effect at all, thus the constants are zero in this case.

Strain for wurtzite

database{ . . . { lattice_consts{} } } for wurtzite

a
Lattice constant at 300 K (perpendicular to hexagonal c axis). In a hexagonal crystal system, the
two lattice constants perpendicular to the hexagonal c axis are equal.

type
double

unit
Angstrom

c
Lattice constant at 300 K (along hexagonal c axis)

type
double

unit
Angstrom

1300 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

a_expansion
type

double

unit
Angstrom/K

c_expansion
type

double

unit
Angstrom/K

The formaula for the temperature dependency of the lattice constants a and c in wurtzite is the same
as for a in zincblende.

database{ . . . { elastic_consts{} } } for wurtzite

Specify elastic constants:

c11
type

double

unit
GPa

c12
type

double

unit
GPa

c13
type

double

unit
GPa

c33
type

double

unit
GPa

c44
type

double

unit
GPa

database{ . . . { piezoelectric_consts{} } } for wurtzite

Specify piezoelectric constants (If strain is present, then generally piezoelectric charges and thus piezoelectric
fields arise):

e31

7.16. database{ } 1301

nextnano++ Documentation, Release 1.25.13

type
double

unit
C/m2

e33
type

double

unit
C/m2

e15
type

double

unit
C/m2

B311 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B312 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B313 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B333 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B115 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B125 (optional)
2nd order piezoelectric constant

1302 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

type
double

unit
C/m2

B135 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

B344 (optional)
2nd order piezoelectric constant

type
double

unit
C/m2

database{ . . . { pyroelectric_consts{} } } for wurtzite

Specify pyroelectric constants (for spontaneous polarization).

p1
type

double

unit
C/m2

The pyroelectric field is directed along the hexagonal c axis ([0 0 0 1] direction).

Low-field mobility groups in database{ . . . _zb{} } and database{ . . . _wz{} }

There are about 23 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe four of them, specifically all groups related to low-field mobility models:

• database{ . . . { mobility_constant{} } }

• database{ . . . { mobility_masetti{} } }

• database{ . . . { mobility_arora{} } }

• database{ . . . { mobility_minimos{} } }

database{ . . . { mobility_constant{} } }

The constant mobility model is due to lattice scattering (phonon scattering) and leads to a constant mobility that
depends only on the temperature. See Low-field mobility models for details on models.

electrons{} (optional)

mumax (optional)
bulk phonon mobility for electrons (𝜇𝑛𝑚𝑎𝑥)

type
double

7.16. database{ } 1303

nextnano++ Documentation, Release 1.25.13

unit
cm2 V-1 s-1

exponent (optional)
temperature dependence exponent for electrons

type
double

unit
None

holes{} (optional)

mumax (optional)
bulk phonon mobility for holes (𝜇𝑝𝑚𝑎𝑥)

type
double

unit
cm2 V-1 s-1

exponent (optional)
temperature dependence exponent for holes

type
double

unit
None

database{ . . . { mobility_masetti{} } }

See Low-field mobility models for details on this model.

electrons{} (optional)

mumax (optional)
bulk phonon mobility (𝜇𝑛𝑚𝑎𝑥)

type
double

unit
cm2 V-1 s-1

exponent (optional)
temperature dependence exponent

type
double

unit
None

mumin1 (optional)
reference mobility parameter (𝜇𝑛𝑚𝑖𝑛1)

type
double

unit
cm2 V-1 s-1

mumin2 (optional)
reference mobility parameter (𝜇𝑛𝑚𝑖𝑛2)

1304 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

type
double

unit
cm2 V-1 s-1

mu1 (optional)
reference mobility parameter (𝜇𝑛1)

type
double

unit
cm2 V-1 s-1

pc (optional)
reference doping concentration parameter (𝑃𝑛𝑐)

type
double

unit
None

cr (optional)
reference doping concentration parameter (𝐶𝑛𝑟)

type
double

unit
None

cs (optional)
reference doping concentration parameter (𝐶𝑛𝑠)

type
double

unit
None

alpha (optional)
reference doping concentration parameter (𝛼𝑛)

type
double

unit
None

beta (optional)
reference doping concentration parameter (𝛽𝑛)

type
double

unit
None

holes{} (optional)

mumax (optional)
bulk phonon mobility (𝜇𝑝𝑚𝑎𝑥)

type
double

unit
cm2 V-1 s-1

7.16. database{ } 1305

nextnano++ Documentation, Release 1.25.13

exponent (optional)
temperature dependence exponent

type
double

unit
None

mumin1 (optional)
reference mobility parameter (𝜇𝑝𝑚𝑖𝑛1)

type
double

unit
cm2 V-1 s-1

mumin2 (optional)
reference mobility parameter (𝜇𝑝𝑚𝑖𝑛2)

type
double

unit
cm2 V-1 s-1

mu1 (optional)
reference mobility parameter (𝜇𝑝1)

type
double

unit
cm2 V-1 s-1

pc (optional)
reference doping concentration parameter (𝑃 𝑝𝑐)

type
double

unit
None

cr (optional)
reference doping concentration parameter (𝐶𝑝𝑟)

type
double

unit
None

cs (optional)
reference doping concentration parameter (𝐶𝑝𝑠)

type
double

unit
None

alpha (optional)
reference doping concentration parameter (𝛼𝑝)

type
double

1306 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

unit
None

beta (optional)
reference doping concentration parameter (𝛽𝑝)

type
double

unit
None

database{ . . . { mobility_arora{} } }

See Low-field mobility models for details on this model.

electrons{} (optional)

mumin (optional)
reference mobility parameter (𝜇𝑛𝑚𝑖𝑛)

type
double

unit
cm2 V-1 s-1

alm (Optional)
reference mobility exponent (𝛼𝑛𝑚)

type
double

unit
None

mud (Optional)
reference mobility parameter (𝜇𝑛𝑑)

type
double

unit
cm2 V-1 s-1

ald (Optional)
reference mobility exponent (𝛼𝑛𝑑)

type
double

unit
None

n0 (Optional)
reference impurity parameter (𝑁𝑛

0)

type
double

unit
cm-3

aln (Optional)
reference impurity exponent (𝛼𝑛𝑛)

type
double

7.16. database{ } 1307

nextnano++ Documentation, Release 1.25.13

unit
None

a (Optional)
reference exponent (𝐴𝑛𝑎)

type
double

unit
None

ala (Optional)
reference exponent (𝛼𝑛𝑎)

type
double

unit
None

holes{} (Optional)

mumin
reference mobility parameter (𝜇𝑝𝑚𝑖𝑛)

type
double

unit
cm2 V-1 s-1

alm (Optional)
reference mobility exponent (𝛼𝑝𝑚)

type
double

unit
None

mud (Optional)
reference mobility parameter (𝜇𝑝𝑑)

type
double

unit
cm2 V-1 s-1

ald (Optional)
reference mobility exponent (𝛼𝑝𝑑)

type
double

unit
None

n0 (Optional)
reference impurity parameter (𝑁𝑝

0)

type
double

unit
cm-3

aln (Optional)
reference impurity exponent (𝛼𝑝𝑛)

1308 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

type
double

unit
None

a (Optional)
reference exponent (𝐴𝑝𝑎)

type
double

unit
None

ala (Optional)
reference exponent (𝛼𝑝𝑎)

type
double

unit
None

database{ . . . { mobility_minimos{} } }

See Low-field mobility models for details on this model.

electrons{} (Optional)

muL300 (Optional)
bulk phonon mobility for electrons (same as database{ . . . { mobility_constant{} } })

type
double

unit
cm2 V-1 s-1

muLexpT (Optional)
temperature dependence exponent (same as database{ . . . { mobility_constant{} } } apart
from the sign)

type
double

unit
None

muLImin300 (Optional)
reference mobility parameter

type
double

unit
cm2 V-1 s-1

muLIexpTabove (Optional)
reference mobility exponent

type
double

unit
None

muLIexpTbelow (Optional)
reference mobility exponent

7.16. database{ } 1309

nextnano++ Documentation, Release 1.25.13

type
double

unit
None

TSwitch (Optional)
Switch between equations (2.10.1.5) and (2.10.1.6) at this temperature

type
double

unit
K

default
200

Cref300 (Optional)
reference impurity parameter

type
double

unit
cm-3

CrefexpT (Optional)
reference impurity exponent

type
double

unit
None

alpha300 (Optional)
reference exponent parameter

type
double

unit
None

alphaexpT (Optional)
reference exponent

type
double

unit
None

holes{} (optional)

muL300 (Optional)
bulk phonon mobility for electrons (same as database{ . . . { mobility_constant{} } })

type
double

unit
cm2 V-1 s-1

muLexpT (Optional)
temperature dependence exponent (same as database{ . . . { mobility_constant{} } } apart
from the sign)

1310 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

type
double

unit
None

muLImin300 (Optional)
reference mobility parameter

type
double

unit
cm2 V-1 s-1

muLIexpTabove (Optional)
reference mobility exponent

type
double

unit
None

muLIexpTbelow (Optional)
reference mobility exponent

type
double

unit
None

TSwitch (Optional)
switch between equations (2.10.1.5) and (2.10.1.6) at this temperature

type
double

unit
K

Cref300 (Optional)
reference impurity parameter

type
double

unit
cm-3

CrefexpT (Optional)
reference impurity exponent

type
double

unit
None

alpha300 (Optional)
reference exponent parameter

type
double

unit
None

7.16. database{ } 1311

nextnano++ Documentation, Release 1.25.13

alphaexpT (Optional)
reference exponent exponent

type
double

unit
None

High-field mobility groups in database{ . . . _zb{ } } and database{ . . . _wz{ } }

There are about 23 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe four of them, specifically all groups related to high-field mobility models:

Nested keywords

• mobility_haensch{ }

• mobility_haensch{ electrons{ } }

• mobility_haensch{ electrons{ vsat } }

• mobility_haensch{ holes{ } }

• mobility_haensch{ holes{ vsat } }

• mobility_canali{ }

• mobility_canali{ electrons{ } }

• mobility_canali{ electrons{ vsat } }

• mobility_canali{ electrons{ alpha } }

• mobility_canali{ electrons{ beta } }

• mobility_canali{ holes{ } }

• mobility_canali{ holes{ vsat } }

• mobility_canali{ holes{ alpha } }

• mobility_canali{ holes{ beta } }

• mobility_transferred{ }

• mobility_transferred{ electrons{ } }

• mobility_transferred{ electrons{ vsat } }

• mobility_transferred{ electrons{ alpha } }

• mobility_transferred{ electrons{ beta } }

• mobility_transferred{ electrons{ gamma } }

• mobility_transferred{ electrons{ E0 } }

• mobility_transferred{ holes{ } }

• mobility_transferred{ holes{ vsat } }

• mobility_transferred{ holes{ alpha } }

• mobility_transferred{ holes{ beta } }

• mobility_transferred{ holes{ gamma } }

• mobility_transferred{ holes{ E0 } }

1312 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

• mobility_eastman{ }

• mobility_eastman{ electrons{ } }

• mobility_eastman{ electrons{ vsat } }

• mobility_eastman{ electrons{ alpha } }

• mobility_eastman{ electrons{ beta } }

• mobility_eastman{ holes{ } }

• mobility_eastman{ holes{ vsat } }

• mobility_eastman{ holes{ alpha } }

• mobility_eastman{ holes{ beta } }

• mobility_eastman4{ }

• mobility_eastman4{ electrons{ } }

• mobility_eastman4{ electrons{ vsat } }

• mobility_eastman4{ electrons{ v_mid } }

• mobility_eastman4{ electrons{ v_peak } }

• mobility_eastman4{ electrons{ E_mid } }

• mobility_eastman4{ electrons{ E_peak } }

• mobility_eastman4{ holes{ } }

• mobility_eastman4{ holes{ vsat } }

• mobility_eastman4{ holes{ v_mid } }

• mobility_eastman4{ holes{ v_peak } }

• mobility_eastman4{ holes{ E_mid } }

• mobility_eastman4{ holes{ E_peak } }

mobility_haensch{ }

Calling sequence

database{ *_zb{ mobility_haensch{ } } } database{ *_wz{ mobility_haensch{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Stores parameters for the Hänsh model.

mobility_haensch{ electrons{ } }

Calling sequence

database{ *_zb{ mobility_haensch{ electrons{ } } } database{ *_wz{ mobility_haensch{
electrons{ } } }

7.16. database{ } 1313

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the Hänsh model for electrons.

mobility_haensch{ electrons{ vsat } }

Calling sequence

database{ *_zb{ mobility_haensch{ electrons{ vsat } } } database{ *_wz{
mobility_haensch{ electrons{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the Hänsh model for electrons.

mobility_haensch{ holes{ } }

Calling sequence

database{ *_zb{ mobility_haensch{ holes{ } } } database{ *_wz{ mobility_haensch{
holes{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the Hänsh model for holes.

mobility_haensch{ holes{ vsat } }

Calling sequence

database{ *_zb{ mobility_haensch{ holes{ vsat } } } database{ *_wz{ mobility_haensch{
holes{ vsat } } }

1314 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the Hänsh model for holes.

mobility_canali{ }

Calling sequence

database{ *_zb{ mobility_canali{ } } } database{ *_wz{ mobility_canali{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Stores parameters for the extended Canali model.

mobility_canali{ electrons{ } }

Calling sequence

database{ *_zb{ mobility_canali{ electrons{ } } } database{ *_wz{ mobility_canali{
electrons{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the extended Canali model for electrons.

mobility_canali{ electrons{ vsat } }

Calling sequence

database{ *_zb{ mobility_canali{ electrons{ vsat } } } database{ *_wz{
mobility_canali{ electrons{ vsat } } }

7.16. database{ } 1315

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the extended Canali model for electrons.

mobility_canali{ electrons{ alpha } }

Calling sequence

database{ *_zb{ mobility_canali{ electrons{ alpha } } } database{ *_wz{
mobility_canali{ electrons{ alpha } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

Functionality

Parameter 𝛼 for the extended Canali model for electrons.

mobility_canali{ electrons{ beta } }

Calling sequence

database{ *_zb{ mobility_canali{ electrons{ beta } } } database{ *_wz{
mobility_canali{ electrons{ beta } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1e-3, ...)

Functionality

Parameter 𝛽 for the extended Canali model for electrons.

ò Note

One should set alpha = 0 if aiming at using the extended Canali model as in references. When alpha = 1
and beta = 2 then Hänsch model is obtained as a special case of implemented formula.

1316 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

mobility_canali{ holes{ } }

Calling sequence

database{ *_zb{ mobility_canali{ holes{ } } } database{ *_wz{ mobility_canali{ holes{
} } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the extended Canali model for holes.

mobility_canali{ holes{ vsat } }

Calling sequence

database{ *_zb{ mobility_canali{ holes{ vsat } } } database{ *_wz{ mobility_canali{
holes{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the extended Canali model for holes.

mobility_canali{ holes{ alpha } }

Calling sequence

database{ *_zb{ mobility_canali{ holes{ alpha } } } database{ *_wz{ mobility_canali{
holes{ alpha } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

Functionality

Parameter 𝛼 for the extended Canali model for holes.

7.16. database{ } 1317

nextnano++ Documentation, Release 1.25.13

mobility_canali{ holes{ beta } }

Calling sequence

database{ *_zb{ mobility_canali{ holes{ beta } } } database{ *_wz{ mobility_canali{
holes{ beta } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1e-3, ...)

Functionality

Parameter 𝛽 for the extended Canali model for holes.

ò Note

One should set alpha = 0 if aiming at using the extended Canali model as in references. When alpha = 1
and beta = 2 then Hänsch model is obtained as a special case of implemented formula.

mobility_transferred{ }

Calling sequence

database{ *_zb{ mobility_transferred{ } } } database{ *_wz{ mobility_transferred{ } }
}

Properties

• usage: optional
• items: maximum 1

Functionality

Stores parameters for the transferred electron model.

mobility_transferred{ electrons{ } }

Calling sequence

database{ *_zb{ mobility_transferred{ electrons{ } } } database{ *_wz{
mobility_transferred{ electrons{ } } }

Properties

• usage: required
• items: maximum 1

1318 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Stores parameters for the transferred electron model for electrons.

mobility_transferred{ electrons{ vsat } }

Calling sequence

database{ *_zb{ mobility_transferred{ electrons{ vsat } } } database{ *_wz{
mobility_transferred{ electrons{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the transferred electron model for electrons.

mobility_transferred{ electrons{ alpha } }

Calling sequence

database{ *_zb{ mobility_transferred{ electrons{ alpha } } } database{ *_wz{
mobility_transferred{ electrons{ alpha } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1e-3, ...)

• default: 𝑟 = 1.0

Functionality

Parameter 𝛼 for the transferred electron model for electrons.

mobility_transferred{ electrons{ beta } }

Calling sequence

database{ *_zb{ mobility_transferred{ electrons{ beta } } } database{ *_wz{
mobility_transferred{ electrons{ beta } } }

7.16. database{ } 1319

nextnano++ Documentation, Release 1.25.13

Properties

• usage: required
• type: real number

• unit: −
• values: [1.001, ...)

Functionality

Parameter 𝛽 for the transferred electron model for electrons.

mobility_transferred{ electrons{ gamma } }

Calling sequence

database{ *_zb{ mobility_transferred{ electrons{ gamma } } } database{ *_wz{
mobility_transferred{ electrons{ gamma } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

• default: 𝑟 = 0.0

Functionality

Parameter 𝛾 for the transferred electron model for electrons.

mobility_transferred{ electrons{ E0 } }

Calling sequence

database{ *_zb{ mobility_transferred{ electrons{ E0 } } } database{ *_wz{
mobility_transferred{ electrons{ E0 } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

• default: 𝑟 = 0.0

Functionality

Parameter 𝐸0 for the transferred electron model for electrons.

1320 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

mobility_transferred{ holes{ } }

Calling sequence

database{ *_zb{ mobility_transferred{ holes{ } } } database{ *_wz{
mobility_transferred{ holes{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the transferred electron model for holes.

mobility_transferred{ holes{ vsat } }

Calling sequence

database{ *_zb{ mobility_transferred{ holes{ vsat } } } database{ *_wz{
mobility_transferred{ holes{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the transferred electron model for holes.

mobility_transferred{ holes{ alpha } }

Calling sequence

database{ *_zb{ mobility_transferred{ holes{ alpha } } } database{ *_wz{
mobility_transferred{ holes{ alpha } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1e-3, ...)

• default: 𝑟 = 1.0

Functionality

Parameter 𝛼 for the transferred electron model for holes.

7.16. database{ } 1321

nextnano++ Documentation, Release 1.25.13

mobility_transferred{ holes{ beta } }

Calling sequence

database{ *_zb{ mobility_transferred{ holes{ beta } } } database{ *_wz{
mobility_transferred{ holes{ beta } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1.001, ...)

Functionality

Parameter 𝛽 for the transferred electron model for holes.

mobility_transferred{ holes{ gamma } }

Calling sequence

database{ *_zb{ mobility_transferred{ holes{ gamma } } } database{ *_wz{
mobility_transferred{ holes{ gamma } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

• default: 𝑟 = 0.0

Functionality

Parameter 𝛾 for the transferred electron model for holes.

mobility_transferred{ holes{ E0 } }

Calling sequence

database{ *_zb{ mobility_transferred{ holes{ E0 } } } database{ *_wz{
mobility_transferred{ holes{ E0 } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

• default: 𝑟 = 0.0

1322 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Parameter 𝐸0 for the transferred electron model for holes.

mobility_eastman{ }

Calling sequence

database{ *_zb{ mobility_eastman{ } } } database{ *_wz{ mobility_eastman{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Stores parameters for the Eastman-Tiwari-Shur.

mobility_eastman{ electrons{ } }

Calling sequence

database{ *_zb{ mobility_eastman{ electrons{ } } } database{ *_wz{ mobility_eastman{
electrons{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the Eastman-Tiwari-Shur for electrons.

mobility_eastman{ electrons{ vsat } }

Calling sequence

database{ *_zb{ mobility_eastman{ electrons{ vsat } } } database{ *_wz{
mobility_eastman{ electrons{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the Eastman-Tiwari-Shur for electrons.

7.16. database{ } 1323

nextnano++ Documentation, Release 1.25.13

mobility_eastman{ electrons{ alpha } }

Calling sequence

database{ *_zb{ mobility_eastman{ electrons{ alpha } } } database{ *_wz{
mobility_eastman{ electrons{ alpha } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

Functionality

Parameter 𝛼 for the Eastman-Tiwari-Shur for electrons.

mobility_eastman{ electrons{ beta } }

Calling sequence

database{ *_zb{ mobility_eastman{ electrons{ beta } } } database{ *_wz{
mobility_eastman{ electrons{ beta } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1.0, ...)

Functionality

Parameter 𝛽 for the Eastman-Tiwari-Shur for electrons.

mobility_eastman{ holes{ } }

Calling sequence

database{ *_zb{ mobility_eastman{ holes{ } } } database{ *_wz{ mobility_eastman{
holes{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores parameters for the Eastman-Tiwari-Shur for holes.

1324 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

mobility_eastman{ holes{ vsat } }

Calling sequence

database{ *_zb{ mobility_eastman{ holes{ vsat } } } database{ *_wz{ mobility_eastman{
holes{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the Eastman-Tiwari-Shur for holes.

mobility_eastman{ holes{ alpha } }

Calling sequence

database{ *_zb{ mobility_eastman{ holes{ alpha } } } database{ *_wz{ mobility_eastman{
holes{ alpha } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [0.0, ...)

Functionality

Parameter 𝛼 for the Eastman-Tiwari-Shur for holes.

mobility_eastman{ holes{ beta } }

Calling sequence

database{ *_zb{ mobility_eastman{ holes{ beta } } } database{ *_wz{ mobility_eastman{
holes{ beta } } }

Properties

• usage: required
• type: real number

• unit: −
• values: [1.0, ...)

7.16. database{ } 1325

nextnano++ Documentation, Release 1.25.13

Functionality

Parameter 𝛽 for the Eastman-Tiwari-Shur for holes.

mobility_eastman4{ }

Calling sequence

database{ *_zb{ mobility_eastman4{ } } } database{ *_wz{ mobility_eastman4{ } } }

Properties

• usage: optional
• items: maximum 1

Functionality

Stores alternative, observable, parameters for the Eastman-Tiwari-Shur.

mobility_eastman4{ electrons{ } }

Calling sequence

database{ *_zb{ mobility_eastman4{ electrons{ } } } database{ *_wz{ mobility_eastman4{
electrons{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores alternative, observable, parameters for the Eastman-Tiwari-Shur for electrons.

mobility_eastman4{ electrons{ vsat } }

Calling sequence

database{ *_zb{ mobility_eastman4{ electrons{ vsat } } } database{ *_wz{
mobility_eastman4{ electrons{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Saturation velocity 𝑣sat for the Eastman-Tiwari-Shur for electrons within the alternative, observable, set of param-
eters.

1326 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

mobility_eastman4{ electrons{ v_mid } }

Calling sequence

database{ *_zb{ mobility_eastman4{ electrons{ v_mid } } } database{ *_wz{
mobility_eastman4{ electrons{ v_mid } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Velocity 𝑣mid for the Eastman-Tiwari-Shur for electrons within the alternative, observable, set of parameters.

mobility_eastman4{ electrons{ v_peak } }

Calling sequence

database{ *_zb{ mobility_eastman4{ electrons{ v_peak } } } database{ *_wz{
mobility_eastman4{ electrons{ v_peak } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Velocity 𝑣peak for the Eastman-Tiwari-Shur for electrons within the alternative, observable, set of parameters.

mobility_eastman4{ electrons{ E_mid } }

Calling sequence

database{ *_zb{ mobility_eastman4{ electrons{ E_mid } } } database{ *_wz{
mobility_eastman4{ electrons{ E_mid } } }

Properties

• usage: required
• type: real number

• unit: V/cm
• values: [1.0, ...)

7.16. database{ } 1327

nextnano++ Documentation, Release 1.25.13

Functionality

Driving force𝐸mid for the Eastman-Tiwari-Shur for electrons within the alternative, observable, set of parameters.

mobility_eastman4{ electrons{ E_peak } }

Calling sequence

database{ *_zb{ mobility_eastman4{ electrons{ E_peak } } } database{ *_wz{
mobility_eastman4{ electrons{ E_peak } } }

Properties

• usage: required
• type: real number

• unit: V/cm
• values: [1.0, ...)

Functionality

Driving force𝐸peak for the Eastman-Tiwari-Shur for electrons within the alternative, observable, set of parameters.

mobility_eastman4{ holes{ } }

Calling sequence

database{ *_zb{ mobility_eastman4{ holes{ } } } database{ *_wz{ mobility_eastman4{
holes{ } } }

Properties

• usage: required
• items: maximum 1

Functionality

Stores alternative, observable, parameters for the Eastman-Tiwari-Shur for holes.

mobility_eastman4{ holes{ vsat } }

Calling sequence

database{ *_zb{ mobility_eastman4{ holes{ vsat } } } database{ *_wz{
mobility_eastman4{ holes{ vsat } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

1328 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

Functionality

Saturation velocity 𝑣sat for the Eastman-Tiwari-Shur for holes within the alternative, observable, set of parameters.

mobility_eastman4{ holes{ v_mid } }

Calling sequence

database{ *_zb{ mobility_eastman4{ holes{ v_mid } } } database{ *_wz{
mobility_eastman4{ holes{ v_mid } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Velocity 𝑣mid for the Eastman-Tiwari-Shur for holes within the alternative, observable, set of parameters.

mobility_eastman4{ holes{ v_peak } }

Calling sequence

database{ *_zb{ mobility_eastman4{ holes{ v_peak } } } database{ *_wz{
mobility_eastman4{ holes{ v_peak } } }

Properties

• usage: required
• type: real number

• unit: cm/s
• values: [1.0, ...)

Functionality

Velocity 𝑣peak for the Eastman-Tiwari-Shur for holes within the alternative, observable, set of parameters.

mobility_eastman4{ holes{ E_mid } }

Calling sequence

database{ *_zb{ mobility_eastman4{ holes{ E_mid } } } database{ *_wz{
mobility_eastman4{ holes{ E_mid } } }

Properties

• usage: required
• type: real number

• unit: V/cm
• values: [1.0, ...)

7.16. database{ } 1329

nextnano++ Documentation, Release 1.25.13

Functionality

Driving force 𝐸mid for the Eastman-Tiwari-Shur for holes within the alternative, observable, set of parameters.

mobility_eastman4{ holes{ E_peak } }

Calling sequence

database{ *_zb{ mobility_eastman4{ holes{ E_peak } } } database{ *_wz{
mobility_eastman4{ holes{ E_peak } } }

Properties

• usage: required
• type: real number

• unit: V/cm
• values: [1.0, ...)

Functionality

Driving force 𝐸peak for the Eastman-Tiwari-Shur for holes within the alternative, observable, set of parameters.

Recombination groups in database{ . . . _zb{} } and database{ . . . _wz{} }

There are about 23 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe one of them, specifically the group related to recombination models recombination{}.

database{ . . . { recombination{} } }

This section specifies the coefficients related to recombination processes. These are used when the current equation
is solved. In nextnano++, the following recombination processes are included:

• Shockley-Read-Hall (SRH) recombination

• Auger recombination

• Radiative recombination

Example

binary_zb {
name = Si # material name, e.g. Si, GaAs, InP, ...

...

recombination{
Shockley-Read-Hall recombination

SRH{ tau_n = 1.0e-9 # [s] zero doping scattering time for␣
→˓electrons

nref_n = 1.0e19 # [cm^-3] reference doping concentration for␣
→˓electrons

tau_p = 1.0e-9 # [s] zero doping scattering time for holes
nref_p = 1.0e18 # [cm^-3] reference doping concentration for␣

→˓holes
}

(continues on next page)

1330 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

Auger recombination
Auger{ c_n = 2.8e-31 # [cm^6/s]

c_p = 9.9e-31 # [cm^6/s]
}

direct recombination
radiative{ c = = 2.0e-10 } # [cm^3/s]

2.0e-10 for GaAs, 0 for Si (indirect␣
→˓semiconductor)

}

}

Shockley-Read-Hall (SRH) recombination

SRH model models the generation/recombination process that is assisted by impurities. The recombina-
tion/generation rates depend on the deviation of the carrier concentration from the equilibrium value and the scat-
tering rates depend on the doping concentration. The rate is calculated using the following formulas:

𝑅𝑆𝑅𝐻 =
𝑝 · 𝑛− 𝑛2𝑖

𝜏𝑝(𝑛+ 𝑛𝑖) + 𝜏𝑛(𝑝+ 𝑝𝑖)
,

𝜏𝑝/𝑛 =
𝜏𝑝0/𝑛0

1 + 𝑁𝐷+𝑁𝐴

𝑁𝑛/𝑝,𝑟𝑒𝑓

,

where 𝜏𝑛0 is zero doping scattering time for electrons, 𝑁𝑛,𝑟𝑒𝑓 is reference doping concentration for electrons, 𝜏𝑝0
is zero doping scattering time for holes, and 𝑁𝑝,𝑟𝑒𝑓 is reference doping concentration for holes.

tau_n
zero doping scattering time for electrons 𝜏𝑛0

type
double

unit
s

nref_n
reference doping concentration for electrons 𝑁𝑛,𝑟𝑒𝑓

type
double

unit
cm-3

tau_p
zero doping scattering time for holes 𝜏𝑝0

type
double

unit
s

nref_p
reference doping concentration for holes and 𝑁𝑝,𝑟𝑒𝑓

7.16. database{ } 1331

nextnano++ Documentation, Release 1.25.13

type
double

unit
cm-3

Auger recombination

More imformation on physics: Auger recombination processes in semiconductor heterostructures.

Auger process is a dominant recombination channel for devices with an extremely high carrier concentrations. It
is a three-particle process, therefore, scaling with the third power of the carrier density.

The phonon-assisted Auger recombination rate, which plays an important role especially at high carrier injection,
is modeled by the following equation:

𝑅𝐴𝑢𝑔𝑒𝑟 = (𝐶𝑛𝑛+ 𝐶𝑝𝑝) · (𝑛𝑝− 𝑛2𝑖),

where 𝐶𝑛 and 𝐶𝑝 are coefficients.

c_n
coefficient 𝐶𝑛

type
double

unit
cm6 s-1

c_p
coefficient 𝐶𝑝

type
double

unit
cm6 s-1

More imformation on physics: Auger recombination processes in semiconductor heterostructures.

Radiative recombination

The simplest, and the most important for light emitting devices, process for the generation and recombination of
electron-hole pairs is the direct emission or absorption spectra of a photon (radiative recombination) modelled
within the formula

𝑅𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑣𝑒 = 𝐶(𝑛𝑝− 𝑛2𝑖),

where 𝐶 is a coefficient.

c
a coefficient 𝐶

type
double

unit
cm3 s-1

example
2.0e-10 (for GaAs), 0.0 (for Si, indirect semiconductor)

c_absorption
If c_absorption > c, then c_absorption will be used instead of c as 𝐶 to compute ab-
sorption coefficients in semiclassical optics. This can be used to enable and control absorp-
tion for indirect bandgap materials where c practically vanishes. Ideally, for these materials,

1332 Chapter 7. Keywords

http://www.ioffe.ru/SVA/NSM/Auger/model.html
http://www.ioffe.ru/SVA/NSM/Auger/model.html

nextnano++ Documentation, Release 1.25.13

c_absorption should be set in the database to values which reproduce the experimentally ob-
served absorption coefficients.

type
double

unit
cm3 s-1

default
1e-11

Phonons in database{ . . . _zb{} } and database{ . . . _wz{} }

There are about 23 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe two of them, specifically all groups related to phonons:

• acoustic_phonons{}
• optical_phonons{}

Phonons in zincblende materials

database{ . . . { acoustic_phonons{} } } for zincblade

LA_energy
longitudinal acoustic phonon energy

type
double

unit
eV

TA_energy
transverse acoustic phonon energy

type
double

unit
eV

database{ . . . { optical_phonons{} } } for zincblade

LO_energy
energy of longitudinal optical phonon

type
double

unit
eV

LO_width
width of longitudinal optical phonon

type
double

unit
nm

TO_energy
energy of transverse optical phonon

7.16. database{ } 1333

nextnano++ Documentation, Release 1.25.13

type
double

unit
eV

Phonons in wurtzite materials

database{ . . . { acoustic_phonons{} } } for wurtzite

LA_energy
energy of longitudinal acoustic phonon

type
double

unit
eV

TA_energy:
energy of transverse acoustic phonon

type
double

unit
eV

database{ . . . { optical_phonons{} } } for wurtzite

LO_energy_l
energy of longitudinal optical phonon (along hexagonal c axis)

type
double

unit
eV

LO_energy_t
energy of longitudinal optical phonon (perpendicular to hexagonal c axis)

type
double

unit
eV

LO_width
width of longitudinal optical phonon

type
double

unit
nm

TO_energy_l
energy of transverse optical phonon (along hexagonal c axis)

type
double

unit
eV

1334 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

TO_energy_t
energy of transverse optical phonon (perpendicular to hexagonal c axis)

type
double

unit
eV

Other groups in database{ . . . _zb{} } and database{ . . . _wz{} }

ò Note

This section is under construction

There are about 18 identical groups available directly under all zincblende- and wurtzite-related groups. In this
section we describe three of them:

• valence{}

• mass_density{}

• dielectric_consts{}

Other groups and attributes for zincblende

database{ . . . { valence } } for zincblende

A label allowing to group materials to prevent formation of unrealistic alloys. Only materials with corresponding
labels can form an alloy.

value
• IV_IV for group IV materials (like Si, Ge, SiC, . . .)

• III_V for III-V materials (like GaAs, AlP, . . .)

• II_VI for II-VI materials (like ZnO, HgTe, . . .)

• I_VII for I-VII materials (like CuCl, . . .)

database{ . . . { mass_density{} } } for zincblende

no information available

database{ . . . { dielectric_consts{} } } for zincblende

static_a
static or low frequency (𝜖(𝜔 = 0)) dielectric constant

type
double

optical_a
optical dielectric constant

type
double

ò Note

The optical dielectric constant is currently not in use but maybe it is necessary in the future for
laser calculations.

7.16. database{ } 1335

nextnano++ Documentation, Release 1.25.13

The static dielectric constant enters the Poisson equation. It is also needed to calculate the optical
absorption spectra and enters the equation for the exciton correction. In a cubic crystal system (like
diamond and zincblende), the dielectric constants in all three crystal axes are equal.

Other groups and attributes for wurtzite

database{ . . . { valence } } for wurtzite

A label allowing to group materials to prevent formation of unrealistic alloys. Only materials with corresponding
labels can form an alloy.

value
• IV_IV for group IV materials (like Si, Ge, SiC, . . .)

• III_V for III-V materials (like GaAs, AlP, . . .)

• II_VI for II-VI materials (like ZnO, HgTe, . . .)

• I_VII for I-VII materials (like CuCl, . . .)

database{ . . . { mass_density{} } } for wurtzite

no information available

database{ . . . { dielectric_consts{} } } for wurtzite

static_a
static or low frequency (𝜖(𝜔 = 0)) dielectric constant (perpendicular to hexagonal c axis). In a
hexagonal crystal system the two dielectric constants perpendicular to the hexagonal c axis are
equal.

type
double

static_c
static or low frequency (𝜖(𝜔 = 0)) dielectric constant (along hexagonal c axis)

type
double

optical_a
optical dielectric constant (perpendicular to hexagonal c axis)

type
double

optical_c
optical dielectric constant (along to hexagonal c axis)

type
double

ò Note

The optical dielectric constants (optical_a, optical_c) are currently not in use, but maybe they
are necessary in the future for laser calculations.

The static dielectric constants enter the Poisson equation. They are also needed to calculate the optical
absorption spectra and enter the equation for the exciton correction.

1336 Chapter 7. Keywords

nextnano++ Documentation, Release 1.25.13

database{ . . . _zb{ kp_30_bands{} } } (optional)

ò Note

This is preliminary documentation of the implemented 30-band k · p model.

List of real parameters for 30-band k · p model:

• E1_q

• E5_d

• E3_t

• E1_u

• E5_c

• E1_c

• E1_w

• P_0

• P_1

• P_2

• P_3

• P_4

• P_5

• P_prime_0

• P_prime_1

• Q_0

• Q_1

• R_0

• R_1

• delta_5v

• delta_5c

• delta_5d

• delta_5v5c

• delta_5v5d

Documentation for the database in nn3 is available here (old documentation layout).

7.16. database{ } 1337

https://www.nextnano.com/nextnanoplus/software_documentation/input_file/database.htm

nextnano++ Documentation, Release 1.25.13

1338 Chapter 7. Keywords

CHAPTER

EIGHT

INPUT SYNTAX

ò Note

this site is under reconstruction

The syntax of input files for nextnano++, nextnano.MSB (included in nextnano++), and nextnano.NEGF has
been unified. The syntax features described below are, therefore, valid for all abovementioned tools. For tool-
specific elements of syntax, such as the meaning, use, and allowed combinations of various keywords, please see
the respective documentations.

• General

– Case Sensitivity

– White-Spaces

– Semicolons

• Variables

– Numbers and arrays

– Strings

• Comments

– One-line comment

– Multi-line comment

• Conditional Statements

– Conditional lines

– Conditional blocks

• Data section

• Operators and functions

– Tables for number variables

– Arithmetic comparisons and logical operators

– Dealing with floating-point numbers

– Functions for array variables

• Debug statements

• Groups and attributes

• XML Tags

1339

nextnano++ Documentation, Release 1.25.13

• Additional Examples and Remarks

8.1 General

8.1.1 Case Sensitivity
Input files are always CASE-SENSITIVE, which means that uppercase and lowercase are distinguished in the
input files.

Example
In the script

text
Text
TeXt
teXt
TEXT

there are 5 different entries.

8.1.2 White-Spaces
The input files are almost white-space independent.

Example 1
The two scripts

x=5 $y=6 z=[1,2]

and

x = 5
$y = 6
z = [1,

2]

have the same effect.

Example 2
Elements of syntax

band{

and

band {

are considered the same.

However, there are exceptions, when breaking line is not allowed.

Example 3
Adding a line breaks like

band
{
x
= 5

is not allowed.

1340 Chapter 8. Input Syntax

nextnano++ Documentation, Release 1.25.13

8.1.3 Semicolons
For better readability, optional semicolons may be used to separate or terminate assignments.

Example 1

x=5; $y=6 ; z=[1,2];

However, placing semicolons at inappropriate places will result in a syntax error.

Example 2
Using a semicolon like

x = ; 5

is not allowed.

8.2 Variables
One can define variables and use them either to set some parameters or to evaluate other quantities for further use.
Variable name always starts with a dollar sign ($) and is followed by a letter or underscore (_), and then by an
arbitrary number of characters, numbers, or underscores.

Example 1
Script below contains 3 variable names

$a_43
$_BT
$_5c

which are a_43, _BT, and _5c.

8.2.1 Numbers and arrays
Variables can be defined to contain a number of an array of numbers. The numbers are of a double-precision
floating-point format by default. If no rounding is needed then they get automatically converted to integers.

Example 1
In the script below

$x = 123
$y = 123.3
$z = 123.0
$zzz_ks = [12.3, 4]

$x, $z, and the last element of $zzz_ks are converted to integers. $y and the first element of
$zzz_ks remain as doubles.

Variables always have a global scope. Therefore, they can be used everywhere after definition. The variables can
be used for mathematical operations.

Example 2
Using variables for mathematical operation can look like

$y = sqrt($y)*$x
a = $zzz_ks

. Attention

Element-wise mathematical operations between vectors or between scalars and vectors are not
supported.

8.2. Variables 1341

nextnano++ Documentation, Release 1.25.13

8.2.2 Strings
It is possible to define string variables, either by assigning a quoted string constant or unquoted string constant.

Example 1
Two string variables are defined in the script below.

$name = "some text"
$id = hello

While $name is defined with a quoted string constant, $id is defined with an unquoted string
constant.

. Attention

Similarly to variable names, unquoted string constants have to begin with a letter or an underscore.
Also, they cannot contain white spaces. Quoted string constants does not have such limitations.

ò Note

While carriage returns are not allowed inside of string constants, they (and also comments) are
allowed between quoted string constants to be concatenated.

Leading and trailing blanks are trimmed. Multiple string constants are automatically concatenated with blanks
inserted in between them.

Example 2
Two quoted string constants

"aa b" "c"

and three unquoted string constants

aa b c

are automatically concatenated as

"aa b c"

To concatenate strings without inserted blanks, one can use + operator. All: string constants, string variables,
double constants, and double variables can be concatenated with some string variable into a string.

Example 3
Concatenating multiple types of data into one string variable.

$id = hello
$id2 = "world"
$num = 3
$concat = $id + "_" + $id2 + $num + 5

As a result $concat contains "hello_world35".

. Attention

Limitation: Quoted string constants can only be added using + from the right. Therefore, in
an expression like for $concat, the leftmost term in a concatenation (here $id) have to be a
variable.

1342 Chapter 8. Input Syntax

nextnano++ Documentation, Release 1.25.13

Double values are rounded into the nearest integer first, before being concatenated to a string variable.

� Hint

Use conversion function string(), if no such rounding is wanted.

8.3 Comments

8.3.1 One-line comment
One-line comments can be started with #. They always run until the end of the line.

Example 1
Line comments can begin anywhere in the line.

This is a comment line.
x = 3.0 # This is a comment, too.

8.3.2 Multi-line comment
Mult-line comments can be defined using text blocks !TEXT !ENDTEXT.

Example 2

!TEXT
almost arbitrary content can come here
!ENDTEXT

. Attention

Nesting text blocks is not allowed.

8.4 Conditional Statements

8.4.1 Conditional lines
Conditional lines allow enabling and disabling individual lines.

Example 1
If $x=0 then all three lines are ignored.

!WHEN $x schottky{
!WHEN $x name = air
!WHEN $x }

The $x must be defined as a number, otherwise an error message will occur.

ò Note

In this example, the text is always commented out, unless $x is defined with value $x != 0.

. Attention

8.3. Comments 1343

nextnano++ Documentation, Release 1.25.13

No rounding or truncation is being performed here on $x so it has to be equivalent to 0.0 if
defined as a double.

. Warning

Conditional #IF and #if have been deprecated and are in the process of being removed. They
should not be used for conditional lines.

8.4.2 Conditional blocks
Conditional blocks can be defined using !IF, !ELIF, ELSE, and ENDIF. They allow enabling and disabling entire
blocks.

ò Note

Use of !ELSE and !ELIF is optional

Example 2

!IF($x)
name = air
note = "Some text"
!WHEN $y note2 = "This is a nested conditional line."

!ELIF($y)
name = GaAs

!ELIF($z)
name = InAs

!ELSE
name = InGaAs

!ENDIF

Here, variables also needs to be defined with non-zero values to be␣
→˓considered ``TRUE``.

. Attention

Nesting conditional blocks is not allowed.

8.5 Data section
A data section can be defined using !DATA statement. As everything below the !DATA statement will be ignored
by the parser, it is available only at the end of the input file.

The data section can be, however, used by some simulators (currently nextnano++) to define and/or run post-
processing scripts of generated data.

Example 1
One can write anything in the data section like it is a comment.

!DATA

An arbitrary text starting from here
until the end of the file.

1344 Chapter 8. Input Syntax

nextnano++ Documentation, Release 1.25.13

However, it is not advised to use it for making comments in the input files.

8.6 Operators and functions

8.6.1 Tables for number variables
The following functions and operators (sorted with decreasing precedence) are available for the use with number
variables.

functions description
sqrt() square root √

cbrt() cubic root 3
√

exp() exponential function exp()
log() natural logarithm log
ln() natural logarithm ln
log2() decadic logarithm (base 2) log2
log10() decadic logarithm (base 10) log10
sin() sine sin()
cos() cosine cos()
tan() tangent tan()
asin() acrsine sin−1()
acos() arccosine cos−1()
atan() arctangent tan−1()
sinh() hyperbolic sine sinh()
cosh() hyperbolic cosine cosh()
tanh() hyperbolic tangent tanh()
asinh() inverse hyperbolic sine sinh−1()

acosh() inverse hyperbolic cosine cosh−1()

atanh() inverse hyperbolic tangent tanh−1()
erf() error function erf()
erfc() complementary error function erfc()
gamma() Gamma function Γ()
fdm3half() complete Fermi–Dirac integral 𝐹−3/2() of order -3/2 (includes the 1/Γ(−1/2) prefactor)
fdmhalf() complete Fermi–Dirac integral 𝐹−1/2() of order -1/2 (includes the 1/Γ(1/2) prefactor)
fdzero() complete Fermi–Dirac integral 𝐹0() of order 0 (includes the 1/Γ(1) = 1 prefactor)
fdphalf() complete Fermi–Dirac integral 𝐹1/2() of order 1/2 (includes the 1/Γ(3/2) prefactor)
fdp3half() complete Fermi–Dirac integral 𝐹3/2() of order 3/2 (includes the 1/Γ(5/2) prefactor)
abs() absolute value | |
floor() floor function floor(x): largest integer ≤ 𝑥
ceil() ceiling function ceil(x): smallest integer ≥ 𝑥
round() rounds the number to the nearest integer
sign() sign function
heaviside() Heaviside step function (corresponds to isnotnegative())
ispositive() returns 1 if value is positive and 0 otherwise
isnegative() returns 1 if value is negative and 0 otherwise
iszero() returns 1 if value is zero and 0 otherwise
isnotpositive() returns 1 if value is not positive and 0 otherwise
isnotnegative() returns 1 if value is not negative and 0 otherwise (corresponds to heaviside())
isnotzero() returns 1 if value is not zero and 0 otherwise
string() converts the argument into a string

8.6. Operators and functions 1345

nextnano++ Documentation, Release 1.25.13

operators symbol comment
round arithmetic brackets ()
power (exponentiation) ^ right associative
unary minus and unary plus - + right associative
arithmetic multiplication, division, remainder * / % remainder is modulo
arithmetic plus and minus + -
arithmetic comparisons < <= >= > less than, less than or equal, . . .
arithmetic comparisons == != equal, not equal
logical NOT ~ right associative
logical AND &&
logical OR ||

8.6.2 Arithmetic comparisons and logical operators
You have to define separate variable beforehand if you want to use any for conditional statements. The logical
operators, conditional blocks, and conditional comments consider any nonzero number as true, and zero as false.

Example 1

$a = 3
$b = 1
$c = $a > $b
!WHEN $c ...

The conditional line will be executed as $c equals 1.

Example 2

$a = 3
$c = $a > 5
!WHEN $c ...

The conditional line will not be executed as $c equals 0.

Example 3

$a = 1
$c = $a && 0
!WHEN $c ...

The conditional line will not be executed as $c equals 0.

. Attention

While the results of all comparison operators and logical operators are 1 and 0 as well, this may
change in the future releases.

. Attention

One should be careful when comparing the results of floating point computations, e.g., (1/3)*3 has
the value 0.99999999. . . not 1.0, and use round() if necessary.

1346 Chapter 8. Input Syntax

nextnano++ Documentation, Release 1.25.13

8.6.3 Dealing with floating-point numbers
Use round() if necessary when calling operators of arithmetic comparison on floating-point numbers to avoid
errors.

Example 1

$a = (1/3)*3
$c = $a && 1
!WHEN $c ...

The conditional line will not be executed as $a has the value 0.99999999... not 1.0 ``,
therefore, ``$c equals 0.

The function string() converts the argument into a string, which can be used to obtain a string representation
of a floating point variable. This string representation may differ for different computer architectures, operating
systems, and software releases.

8.6.4 Functions for array variables
Array variables can be subscripted using round brackets (). If the array subscript is out of range, a run-time error
will occur.

Example 1

$vector = [1, 3, 5, 7]
$element = $vector(2)

$element equals 3

Example 2

$vector = [1, 3, 5, 7]
$element = $vector(5)

Run-time error occurs.

In addition, for the use with array variables, the following function is available:

Dimension of an array variable can be obtained using function dim().

Example 3

$vector = [1, 3, 5, 7]
$size = dim($vector)

$size equals 4

8.7 Debug statements
Next, there are also a couple of debug statements available, that can be used at any (reasonable) point inside an
input file or validation file:

!VARS # prints all variables with their values into the standard output
!TABLE # prints the entire symbol table into the standard output

Example:

--- Variables at line 14 -------------
$QW_WIDTH = 6
$QW_SEPERATION = 4
$QW_min = 20

(continues on next page)

8.7. Debug statements 1347

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

$QW_max = 26

But note that result of these debug statements obviously depends on their location in the file. Additionally, all
variables and their values that are used in a simulation are written to the output folder into a file called

• variables_input.txt (for variables used in the input file)

• variables_database.txt (for variables used in the database file)

8.8 Groups and attributes
Next, we define groups and attributes. Their name follows (except for the leading dollar symbol $) the same
convention as variable names. Validation files may also contain groupnames starting with a question mark ?. We
have here the following syntax:

groupname{
attribute1 = value1
group2{
attribute1 = value2 # Each group has its own scope !!
....

}
group2{ # groups with the same name and content may␣

→˓repeat
....

}
attribute2 = value2 # but attributes are unique.

} # the group groupname ends here

Note that the order of groups is relevant in some cases, but the order of the attributes in a group is always ignored.
Also note that groups may be empty as:

emptygroup{}

The curly brackets {} belonging to each group are checked for correctness.

There exist different types of attributes. Allowed are

• real numbers

x = 12.121

• integers

i = 12

• vectors of real numbers

xV = [12.3e-4, 2, 3, sqrt(54.12)+2.1]

• vectors of integers

iV = [1, 2]

• strings

c="ohohi-oh ./opij " # But many exotic characters are not allowed!

• choices and

1348 Chapter 8. Input Syntax

nextnano++ Documentation, Release 1.25.13

color = red # Pick one from a set of tokens

• enumerations

food = "juice bread dessert" # Pick subset from a set of tokens

Attributes may also (like variables) be initialized with values of variables or the results of computations. But note
that unlike variables, attributes may neither be redefined nor be used in mathematical expressions.

8.9 XML Tags
In addition, it is possible to add tags to explicitly check the current scope. For example,

groupname{
...
<groupname>
...

}

or

groupname{
...

<groupname>}

will have no effect, while

groupname{
...

<differentgroupname> }

will cause an error message, since the assumed scope and the actual scope do not match.

Input files may also be decorated at the root level (i.e. outside of any group) with XML tags such as

<id>
</id>

or also:

<id/>

Here, id follows (except for the leading dollar symbol) the same convention as variable names. For backwards
compatibility, in addition, also the empty (non-XML) tag <> is still available to e.g. check root level group clo-
sure. Please note that, whereas the simulator completely ignores the content of XML tags, they may have special
meaning for calling programs such as nextnanomat and thus should not be altered without understanding their use.
Practically, this means that, outside of groups, you may decorate input files/templates or also databases with XML
tags in any way you wish. Just make sure to comment out stuff to be ignored by nextnano++ with double comments
(to avoid possible collisions with conditional ifs) in order to add things such as:

<description>
##
any stuff you want, e.g. rich text, nextnano++ will happily ignore it
##
</description>
<variables> $mass = 0.067 <unit># m_0</unit> </variables>

At the root level, one can use the empty tag

8.9. XML Tags 1349

nextnano++ Documentation, Release 1.25.13

<>

to check for the root scope. This is optional and not required. Tags with these brackets <...> are ignored by
the parser and can be used to provide additional meta data. That is, everything right (or left) of such symbols is
executed normally, as if there was just a ; (optional separator) instead of each tag.

Example:

<tag/>

It might look like an XML tag but it is much simpler. Nesting and matching tags are not checked. No blanks or
special characters except underscores _ may be used within tags <...>.

8.10 Additional Examples and Remarks
E.g. you can define:

$pi = 4 * atan(1)

This will give 3.1415926535897932384626433832795029. You can also specify:

$pi = 3.1415926535897932384626433832795029

Variable evaluation occurs already during parsing of the input/database file and thus before the beginning of the
actual simulation. The input file after variable evaluation and the database file after the variable evaluation and
possible modification by database{ } in the input file (which are the real inputs of the simulation) are written into
files

• simulation_input.txt and

• simulation_database.txt.

In case of problems, or when many variables are used, it is highly recommended to review the file
simulation_input.txt for possible mistakes. Similarly, simulation_database.txt will tell you (and our
customer support) which values of material parameters were actually used for the simulation.

Further remarks
Except within comments, input files are strictly 7-bit ASCII. That is, no umlauts, diacritics, etc. in strings,
names, etc. This is an inherent limitation of the parser. Command line parameters, file paths, and file names
may contain all characters except \ / ? * ^ & ' ` < > : " and control characters (e.g. newlines). Unfortunately,
e.g. on (US localized) windows, file names or file paths containing characters outside of code page 1252
(https://en.wikipedia.org/wiki/Windows-1252) may not be found or properly processed. Similar issues also
may arise for other Windows localizations or for other operating systems. In order to avoid such problems,
please make to sure to avoid characters outside of code page 1252 for all file names and file paths.

1350 Chapter 8. Input Syntax

https://en.wikipedia.org/wiki/Windows-1252

CHAPTER

NINE

SIMULATION OUTPUT

Here, we will add soon more information on the content of the output file names.

9.1 Basic information
For each simulation run, a new output folder is created in the simulation output folder. The created folder has
the name of the input file. In addition date-time is added to the folder name if the option is selected in Options-
>Expert settings of nextnanomat (this option is recommended in order to avoid overwritten existing output data).
The created output folder contains:

• the input file (.in).

• a folder ‘. . . ’ which gives material parameters used in the calculation.

• a folder . . . (only if the strain option is activated).

• Several files related to the sweep made. For a voltage sweep, it contains

• a log file is created at the end of the simulation, containing all the information displayed during the simulation.

9.2 Diagnostic information and error handling with log file
Every simulation is generating a file with an extension .log. Let say one is running an input file
my_simulation.nnp, then there is always a file my_simulation.log generated in the simulation output
directory. This file contains diagnostic data on the the simulation process. The amount of this infor-
mation can be controlled by the debug keywords available in most of the global groups. This file can
contain warnings, if some solvers failed to converge to requested residuals, and error messages. For
possible error messages please refer to the site: Error and Warning Messages.

9.3 Visualization - VTK and AVS
Specification of options for the visualization of the data with certain programs like

• Origin (1D/2D)

• VTK VTK format (2D/3D)

• AVS/Express (2D/3D)

9.3.1 VTK format for rectilinear grid
==> VTK - The Visualization Toolkit

The .vtr format can be read by the following software:

• VisIt visualization tool (free)

• ParaView (open source)

• ImageVis3D (open source)

1351

https://www.originlab.com
https://www.vtk.org
https://www.avs.com
https://www.vtk.org
https://wci.llnl.gov/simulation/computer-codes/visit/
https://www.paraview.org
https://www.sci.utah.edu/software/imagevis3d.html

nextnano++ Documentation, Release 1.25.13

9.3.2 AVS format for rectilinear grid
The .fld format can be read by the following software:

• AVS/Express visualization tool (commercial)

The main file of AVS format has .fld extention. Here is an example:

AVS/Express field file # necessary header
#
ndim = 3 # number of dimensions

dim1 = 6 # number of nodes along 1st dimension
dim2 = 6 # number of nodes along 2nd dimension
dim3 = 6 # number of nodes along 3rd dimension

number of dim* entry must be consistent to number of␣
→˓dimensions "ndim"
nspace = 3 # must be equal to "ndim"
veclen = 1 # number of components of vector field, "1" = scalar␣
→˓field
data = double # data type. Currently only "double" and "integer" are␣
→˓supported.
field = rectilinear # type of mapping. Only rectilinear field is supported.
label = bandedge_Gamma_1 # label for each vector field component
unit = eV # unit of each vector field component (internally in␣
→˓tool not used at the moment)

variable 1 file=3D_import.dat filetype=ascii skip=0 offset=0 stride=1 #␣
→˓defines where 1st component of vector field is saved. Numbering must be ascending,␣
→˓starting with "1"

and␣
→˓number of "variable" "i" lines must be equal to "veclen". Supported file types are
→˓"ascii" and "binary".

"skip
→˓" defines how many lines in file have to be skipped before data item appears.

#
→˓"offset" defines how many columns in line have to be skipped before searched data␣
→˓items appear.

#
→˓"stride" defines how many steps have to be made before next data item appears.
coord 1 file=3D_import.coord filetype=ascii skip=0 offset=0 stride=1 #␣
→˓contains information about where and how nodes of 1st coordinate are stored
coord 2 file=3D_import.coord filetype=ascii skip=6 offset=0 stride=1 #␣
→˓contains information about where and how nodes of 2nd coordinate are stored
coord 3 file=3D_import.coord filetype=ascii skip=12 offset=0 stride=1 #␣
→˓contains information about where and how nodes of 3rd coordinate are stored

#␣
→˓numbering must be ascending, starting with "1" and number of "coord" "i" lines must␣
→˓be equal to "ndim"
"skip=6" (=7) and "skip=12" (=14) take into account one empty line each that we use␣
→˓to separate the coordinates.

The following shows an example of a file that can be imported using import{ }.

This example shows how to import

i, j, k, fn(i,j,k), fm(i,j,k)

ordered data via AVS format 3D_origin-format.fld file into nextnano++:

1352 Chapter 9. Simulation Output

https://www.avs.com

nextnano++ Documentation, Release 1.25.13

AVS/Express field file
#
ndim = 3
dim1 = 3
dim2 = 3
dim3 = 3
nspace = 3
veclen = 2
data = double
field = rectilinear
label = data_1
label = data_2

variable 1 file=3D_origin-format.dat filetype=ascii skip=0 offset=3 stride=5
variable 2 file=3D_origin-format.dat filetype=ascii skip=0 offset=4 stride=5

coord 1 file=3D_origin-format.dat filetype=ascii skip=24 offset=0 stride=5
coord 2 file=3D_origin-format.dat filetype=ascii skip=18 offset=1 stride=15
coord 3 file=3D_origin-format.dat filetype=ascii skip=8 offset=2 stride=45

The corresponding data is contained in the 3D_origin-format.dat file:

0 0 0 1 -1 # The columns correspond to coordinates x,y,z and data values f_
→˓1(x,y,z) and f_2(x,y,z).
5 0 0 2 -2
10 0 0 3 -3
0 5 0 4 -4
5 5 0 5 -5
10 5 0 6 -6
0 10 0 7 -7
5 10 0 8 -8
10 10 0 9 -9
0 0 5 10 -10
5 0 5 11 -11
10 0 5 12 -12
0 5 5 13 -13
5 5 5 14 -14
10 5 5 15 -15
0 10 5 16 -16
5 10 5 17 -17
10 10 5 18 -18
0 0 10 19 -19
5 0 10 20 -20
10 0 10 21 -21
0 5 10 22 -22
5 5 10 23 -23
10 5 10 24 -24
0 10 10 25 -25
5 10 10 26 -26
10 10 10 27 -27

Note that the order of the values matters.

9.3. Visualization - VTK and AVS 1353

nextnano++ Documentation, Release 1.25.13

1354 Chapter 9. Simulation Output

CHAPTER

TEN

COMMAND LINE

Command line usage:

The general form is nextnano++_Intel_64bit.exe [runmode] [options] filename1 [filename2 ...
], where filename1 is the input file you want to simulate.

An example for Windows:

$ nextnano++_Intel_64bit.exe --license "C:\My Documents\nextnano\
→˓License\License_nnp.lic" --database "C:\Program Files\nextnano\2024_
→˓12_22\nextnano++\Syntax\database_nnp.in" --threads 4 --
→˓outputdirectory "C:\My Documents\nextnano\Output" "C:\Program Files\
→˓nextnano\2024_12_22\Sample files\nextnano++ sample files\HEMT_1D_nnp.
→˓in"

Available optional runmodes are:

-v, --version Show version number only.

-h, --help Show command line usage only.

-p, --parse Parse input file(s) and quit.

-s, --structure Parse input file(s), generate structure(s), and quit.

--postprocess Enable postprocessing from input file using postprocessor{ }

Available options are:

-d database_file, --database database_file Use database file <database_file>.

-l license_file, --license license_file Use license file <license_file>.

Example: --license "C:\My Documents\nextnano\License\
License_nnp.lic"

-i input_directory, --inputdirectory input_directory Specify input directory
<input_directory>.

-o output_directory, --outputdirectory output_directory Specify output directory
<output_directory>.

-n, --noautooutdir Do not create output directory(ies) with same name(s) as input file(s).

(= no automatic output directory)

-q, --quick Enable quick updates of convergence log files.

Multi-threading
-t i, --threads i Set number of parallel threads. Here, i threads are specified, any integer value

between 0 and 1023 is allowed.

Not displayed and effective in serial executables. Currently we do not provide
serial executables any more.

1355

nextnano++ Documentation, Release 1.25.13

Using --threads 0 is equivalent to not specifying --threads at all, i.e. the
code does not attempt to change the number of threads used.

Maximum value for --threads is the number of CPU cores, or possibly
twice that number if Hyper-threading is enabled.

For default value of 0, OpenMP system supplied maximal value is used.

If set (e.g. using nextnanomat Expert Settings), the number of parallel
OpenMP threads is set to the supplied value. If the desired value is too large
for the CPU, the maximum value available for the CPU is set. If not set or set
to 0, the default value as specified by the environment is used (usually 1 or
all available). The actually used value is output near the beginning of the log
file.

For example, on an i7-8700 CPU (6 cores and 12 threads with Hyper-
threading on), the optimal number for best performance is 4. Using the extra
threads from Hyper-threading rather hurts performance, and issues like mem-
ory speed seem to require a further reduction to less than 6 threads. With 4
threads, CPU load is about 45-50% on the tested CPU. This feature may also
be useful for HTCondor to reduce background load, or to limit individual load
for multiple parallel nextnano processes

-b i, --blas_threads i Set number of parallel threads in BLAS, LAPACK, etc. Here, i threads are
specified, any integer value between 0 and 1023 is allowed.

Allows to separately set the number of BLAS (MKL) threads (MKL = Intel
Math Kernel Library).

Maximum value for --blas_threads is typically the number of CPU cores.

Default value is 0 (Then uses the same number as the global number of threads
which can be set by -t or --threads.)

For default value of 0, and if --threads is not specified or 0, the MKL
library supplied maximal value is used.

ò Note

Additional notes on multi-threading
When only running one job at a time, setting --threads and --blas_threads to the number of CPU
cores typically gives best performance. To force serial execution of each job, set both --threads and
--blas_threads to 1.

Note that (the number of threads times the number of parallel jobs) and also (the number of BLAS threads times
the number of parallel jobs) should not exceed the number of cores in order to avoid performance penalties from
oversubscribing the CPU. Limited memory bandwidth may even impose lower limits on notebooks and lower
grade desktop PCs.

Values for --threads and --blas_threads larger than the system supplied maximal values are automatically
adjusted downwards. If unexpected values are automatically set (see log file for output), please also check your
environment variables such as OMP_NUM_THREADS or MKL_NUM_THREADS.

-g, --generate Generate additional debug information.
Also outputs syntax definition files input_syntax.txt and
database_syntax.txt.

Additionally, the files keywords_nnp.xml and database_nnp.xml
are created, which are used by nextnanomat for its auto completion fea-
ture.

Example: nextnano --license License_nnp.lic
--outputdirectory "H:\nextnano\Output\" QuantumDot.in

1356 Chapter 10. Command Line

https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading

nextnano++ Documentation, Release 1.25.13

Soft kill
If the user places or creates a file called SOFT_KILL (without file extension) into the root output folder of
the currently running simulation, a softkill will be performed, i.e. the program exits the iteration cycle and
writes the output.

The concrete effects are the following:

1. As soon as the SOFT_KILL file is detected (may take a while), any running classical or quantum iteration
will be terminated early, but all (incomplete) results will be written into files. Note that the detection
is only performed at the beginning of each iteration step.

2. If the SOFT_KILL file is detected in the classical current-poisson equation, no quantum or optical cal-
culations will be performed afterwards, i.e. only classical (incomplete) results will be written into
files.

3. After any detection, subsequent sweeps will still be executed but their data will be incomplete in the
same way. (We also could prevent further sweeps if this is the preferred approach.)

4. The SOFT_KILL file is not being removed at the end of the simulation. However, old SOFT_KILL files
are automatically removed at the beginning of the simulation and thus will not cause any trouble.

5. If there are multiple simulations running in parallel (or being scheduled sequentially), separate
SOFT_KILL files need to be placed in the respective root output folders.

Further remarks
Priorities in descending order

1. Full (absolute) paths with file names have the highest priority, e.g. H:\nextnano\...

2. Input and output directories (both relative and absolute), defined in command line, have priority over
absolute directory paths (not file paths) defined in input file.

Rules
Default input directory is the directory, where the input file is located (not the current working di-
rectory). It can be redefined in command line (--inputdirectory) or in the input file (import{ }).
By default the output of the simulation is written into an automatically generated directory with the
same name as the input file. This default behavior can be suppressed using the command line flag
--noautooutdir. If no output directory is defined in the command line or input file, the output of
the simulation is written into the current working directory (including the automatically generated di-
rectory unless it is not suppressed). Relative input and output directory paths defined in the command
line are relative to the current working directory. Relative paths to directories, defined in the com-
mand line and in the input file are always concatenated. Command line definitions have priority over
definitions in the input file. If in the command line a relative or absolute path (--inputdirectory /
--outputdirectory) is defined, the corresponding absolute directory path in the input file is ignored.

Examples

• --inputdirectory in command line is not defined

import{ # if no directory is specified,
the directory where the input file is located
is taken as the input directory

directory = "D:\import_files\" # absolute path
= "\import_files\" # root path
= "import_files\" # relative path with respect

to current working directory

file{
...
filename = "D:\any_filename.fld" # absolute path. The above specified␣

→˓directory is ignored.
= "\any_filename.fld" # root path. The above specified␣

→˓directory is ignored.
(continues on next page)

1357

nextnano++ Documentation, Release 1.25.13

(continued from previous page)

= "any_directory\any_filename.fld" # relative path␣
→˓concatenated with path specified by directory.

= "any_filename.fld" # file is searched in directory
}

}

• --inputdirectory in command line is defined, e.g.

--inputdirectory D:\inputdir # absolute path

--inputdirectory \inputdir # root path

--inputdirectory inputdir # path relative to current directory

import{ # if no directory is specified,
the directory specified in the command line
is taken as the input directory

directory = "D:\import_files\" # absolute path is ignored because of␣
→˓definition in command line

= "\import_files\" # root path is ignored because of␣
→˓definition in command line

= "import_files\" # relative path concatenated with␣
→˓path specified in command line

file{
...
filename = "D:\any_filename.fld" # absolute path. The above␣

→˓specified directory and the path specified in the command line are ignored.
= "\any_filename.fld" # root path. The above␣

→˓specified directory and the path from the command line are ignored.
= "any_directory\any_filename.fld" # relative path␣

→˓concatenated with path specified by command line and/or path specified by␣
→˓directory.

= "any_filename.fld" # file is searched in␣
→˓directory defined by the command line and directory

}
}

The whole output of a simulation is written out in a directory named as the input file. This can be suppressed
by command line flag --noautooutdir.

• --outputdirectory in command line is not defined

output{ # if no directory specified,
the current directory is taken as output directory

directory = "D:\simulation_output\" # absolute path
= "\simulation_output\" # root path
= "simulation_output\" # relative (to current directory)␣

→˓path
}

• --outputdirectory in command line is defined, e.g.

--outputdirectory D:\outputdir # absolute path

--outputdirectory \outputdir # root path

--outputdirectory outputdir # relative (to current directory) path

1358 Chapter 10. Command Line

nextnano++ Documentation, Release 1.25.13

output{ # if no directory specified,
the directory specified in command line
is taken as output directory

directory = "D:\simulation_output\" # absolute path is ignored due to␣
→˓definition in command line

= "\simulation_output\" # root path is ignored due to␣
→˓definition in command line

= "simulation_output\" # relative path concatenated with␣
→˓path specified in command line
}

Last update: 08/01/2025

1359

nextnano++ Documentation, Release 1.25.13

1360 Chapter 10. Command Line

CHAPTER

ELEVEN

MAXIMIZING PERFORMANCE

The nextnano++ releases published after 2021/12/24 use significantly more parallelization than previous versions.

The following settings are recommended unless a notebook or an ancient PC is used. This is illustrated for the
example of a CPU 8 physical having 16 logical cores:

1. Single simulation with multiple thread (especially useful for larger simulations)

• Set maximum number of simulations to 1.

• Set number of threads to the number of physical cores (8 in the present case).

• Use “normal” process priority if running on a dedicate machine, or if you are not bothered by the CPU
load.

ò Note

This settings provide high simulation performance with the lowest possible memory usage.

2. Settings for large number of simulations in parallel (especially useful for smaller simulations)

• Set maximum number of simulations to the number of number of physical cores (8 in the present case).

• Set number of threads per simulation to 1.

• Use “normal” process priority if running on a dedicate machine, or if you are not bothered by the CPU
load.

. Attention

This settings require much more RAM than when a single simulation is run, as computer will allocate
RAM for all simulations at the same time. Also, when writing output, all the simulation may try accessing
output directory at the same time, resulting in high disc load. Make sure that your output folder is located
on a fast SSD.

The max. number is specified from “Tools->Options->Simulation” in nextnanomat. The process priority is speci-
fied from “Tools->Options->Expert settings”.

On Linux, corresponding optimal settings apply.

Also note that especially 3D simulations may write huge amounts of data (GBytes) to disk, i.e. using SSDs is
highly recommended.

1361

nextnano++ Documentation, Release 1.25.13

1362 Chapter 11. Maximizing Performance

CHAPTER

TWELVE

RELEASE NOTES

12.1 1.25.13.b (2025-04-25)
Bugfixes

• Important bugfix for state classification in optics

• Bugfix for importing generation rates for periodic structures

• Output of matrix elements is restored

• Minor for interband matrix elements and number of states

General Changes
• Further improvements of convergence when currents are solved, different residuals may be needed to

obtain meaningful solutions.

• Solver for optical spectra with Fermi’s golden rule

• Improved convergence for current-poisson

• Output units of all densities has been set to cm-3

classical{}
• New keyword classical{ limit_classical_density } introduced to allow improving conver-

gence of classical Poisson in certain cases

• New 1-band band structures of bulk materials for valleys𝑋 , ∆, and 𝐿 can be now output with new key-
words: classical{ bulk_dispersion{ X{ } } }, classical{ bulk_dispersion{ Delta{
} } }, and classical{ bulk_dispersion{ L{ } } }

• Better control of the 8-band k · p model is now available for bulk electronic band
structures via keywords classical{ bulk_dispersion{ KP8{ electron_far_band
} } }, classical{ bulk_dispersion{ KP8{ correct_electron_gfactor } } },
classical{ bulk_dispersion{ KP8{ rescale_kp_everywhere } } }, and classical{
bulk_dispersion{ KP8{ avoid_spurious } } }

contacts{}
• New keyword for defining bias ramping along selected bias paths is introduced contact{
bias_steps }, contact{ reuse_previous }, and contact{ bias_output_level } are intro-
duced.

• Previously used keywords contacts{ ...{ steps{} } } remain available with old behavior when
used for sweeping bias for only one contact, but becomes obsolete and are going to be removed in the
future.

currents{}
• Allowed range of values for currents{ minimum_density_electrons }, currents{
minimum_density_holes }, currents{ maximum_density_electrons }, currents{
maximum_density_holes } has been readjusted.

1363

nextnano++ Documentation, Release 1.25.13

• Definition, defaults, and range of currents{ linear_solver{ rel_accuracy } } has been
changed.

poisson{}
• New initialization method for Poisson equation has been introduced with a keyword poisson{
zero_charge{ } }. It provides better convergence conditions for certain simulations.

• Definition, defaults, and range of poisson{ linear_solver{ rel_accuracy } } has been
changed.

run{}
• Maximum and minimum densities entering teh current equations can be con-

trolled separately for algorithms with and without the Schrödinger equations us-
ing keywords run{ current_poisson{ minimum_density_electrons } }, run{
current_poisson{ minimum_density_holes } }, run{ current_poisson{
maximum_density_electrons } }, run{ current_poisson{ maximum_density_holes
} }, run{ quantum_current_poisson{ minimum_density_electrons }
}, run{ quantum_current_poisson{ minimum_density_holes } }, run{
quantum_current_poisson{ maximum_density_electrons } }, and run{
quantum_current_poisson{ maximum_density_holes } }

• The current equation can be additionally solved at the end with new keywords run{
current_poisson{ smooth_currents } } and run{ quantum_current_poisson{
smooth_currents } }

strain{}
• Definition, defaults, and range of strain{ linear_solver{ rel_accuracy } } has been

changed.

quantum{}
• quantum{ region{ quantize_x } }, quantum{ region{ quantize_y } }, quantum{
region{ quantize_z } } are now allowed for wurtzites.

• More options allowed for state classification with groups quantum{ region{ kp_8band{
classify_none{} } } }, quantum{ region{ kp_8band{ classify_by_energy{} }
} }, quantum{ region{ kp_8band{ classify_by_all_energies{} } } }, quantum{
region{ kp_8band{ classify_by_spinor{} } } }, and quantum{ region{ kp_8band{
classify_by_all_spinors{} } } }.

• spin quantization direction can be selected using quantum{ region{ spin_quantization_axis
} }

• quantum{ region{ interband_matrix_elements{ } } } and quantum{ region{
intraband_matrix_elements{ } } }, with related outputs, have been finally properly
named as quantum{ region{ overlap_integrals{ } } } and quantum{ region{
momentum_matrix_elements{ } } }, respectively.

12.2 1.22.18.b (2024-12-18)
• More Dirac deltas are possible to add to imaginary part of dielectric function for Kramers-Kronig relations;

See new keywords in optics{ quantum_spectra{ kramers_kronig{ } } }.

• Experimental implementation of position resolved optical spectra, see optics{ quantum_spectra{
local_absorption } }, optics{ quantum_spectra{ local_spontaneous_emission } }, and
optics{ quantum_spectra{ output_local_spectra{ } } }.

• Major changes in optics{ } group related to calling models and controlling output.

• Bugfixes for optics{ light_propagation{ } }

• New incomplete ionization model, see impurities{ acceptor{ N_ref } } and impurities{
acceptor{ c } }.

1364 Chapter 12. Release Notes

nextnano++ Documentation, Release 1.25.13

• Allowed range of values for currents{ minimum_density_electrons } and currents{
minimum_density_holes } is increased - lower values are available now.

• Improvement of diagnostic output for k.p models.

• Multiple fixes related to missing units and incorrect labels for 2D and 3D simulations.

• Improved output of integrated densities, see bias_*\total_charges.txt.

• Hardened security for script postprocessing, see postprocessor{ } and Command Line.

• Bugfix for B parameter of band k.p models.

• Important improvements of implementation of the interface Hamiltonian.

• Multiple bugfixes in drift-diffusion solver resulting in improvement of convergence for many simulations
with currents, especially for 2D and 3D simulations.

• Integrals of total current around contact improved with visible impact on I-V characteristics for 2D and 3D
simulations.

• Added output of summary log file summary.log.

12.3 1.20.8.b (2024-08-22)
• Important bugfixes and multiple improvements of the code for optical spectra

• Important bugfix for poisson equation for wurtzite simulations in 1D

• Output keywords related to piezo- and pyroelectric charges, and polarization vectors has been changed.
Related output files are named differently; Still, they can be found in the folder Strain.

• total_charges.txt now includes also integrals of piezo- and pyroelectric charges.

• optics{ semiclassical_spectra{ output_spectra{ emission } } }, optics{
semiclassical_spectra{ output_spectra{ photon_spectra } } }, and optics{
semiclassical_spectra{ output_spectra{ power_spectra } } } has been placed by
optics{ semiclassical_spectra{ output_spectra{ emission_photons } } } and optics{
semiclassical_spectra{ output_spectra{ emission_power } } }

• optics{ semiclassical_spectra{ output_local_spectra{ emission } } }, optics{
semiclassical_spectra{ output_local_spectra{ photon_spectra } } }, and optics{
semiclassical_spectra{ output_local_spectra{ power_spectra } } } has been placed by
optics{ semiclassical_spectra{ output_local_spectra{ emission_photons } } } and
optics{ semiclassical_spectra{ output_local_spectra{ emission_power } } }

• optics{ quantum_spectra{ k_integration{ symmetry } } } is removed as was not bringin ex-
pected improvement of computantional performance.

• structure{ integrate{ ionized_donor_density{ } } }, structure{ integrate{
ionized_acceptor_density{ } } }, and structure{ integrate{ fixed_charge_density{
} } } are introduced.

• currents{ electron_mobility{ } } has been deprecated and fully replaced by functionality of
currents{ electron_mobility{ } } and currents{ hole_mobility{ } }

• currents{ electron_mobility{ high_field_model{ } } } has been deprecated and replaced by
currents{ electron_mobility{ high_field_model } }

12.4 1.19.61.a (2024-06-28)
• improvements and bugfixes for optics{ quantum_optics{ } }

• excitons added to spectrum components output

12.3. 1.20.8.b (2024-08-22) 1365

nextnano++ Documentation, Release 1.25.13

• grid{ xgrid{ repeat{ } } }, grid{ xgrid{ repeat2{ } } }, grid{ ygrid{ repeat{ } } },
grid{ ygrid{ repeat2{ } } }, grid{ zgrid{ repeat{ } } }, grid{ xgrid{ repeat2{ } }
} becomes deprecated

• optics{ quantum_spectra{ make_spin_degenerate } } becomes deprecated

12.5 1.19.49.a (2024-06-17)
• region{ repeat_x }, region{ repeat_y }, region{ repeat_z }, region{ repeat2_x },
region{ repeat2_y }, region{ repeat2_z } becomes deprecated

• Initial implementation of interface Hamiltonian for 8-band zincblende k · p, quantum{ region{
kp_8band{ interface{...} } } }

• Multiple improvements and bugfixes for optics{ }

• Minor bugfix for exchange correlation

12.6 1.19.22.a (2024-05-14)
• missing terms added to the 14- and 30-band k · p models

• minor bugfix for strain in the 14- and 30-band k · p models

• other minor bugfixes

12.7 1.19.17.a (2024-04-28)
currents{ }

• import_electron_fermi_level{ } and import_hole_fermi_level{ } are introduced.

optics{ }
• light_propagation{ use_local_absorption{ } } got renamed to light_propagation{
use_computed_absorption{ } }

• light_propagation{ use_local_absorption{ } } reintroduced with different functionality

• multiple output settings added to light_propagation{ }, photogeneration{ }, and
semiclassical_spectra{ }

12.8 1.18.63.b (2024-03-24)
quantum{ }

• davidson{} group introduced for 8-band k · p model

• force_pauli_solver{} group introduced for all one-band models

optics{ }
• bugfix for irradiation{ illumination{ direction_* } } }, now negative values are properly

processed

1366 Chapter 12. Release Notes

nextnano++ Documentation, Release 1.25.13

• improvement of an existing feature optics{ quantum_region{output_spectra{
output_components } } } has different type and allows to output components of all spec-
tra.

• syntax change from irradiation{ photo_generation{ output_spectrum{} } } to
irradiation{ photo_generation{ output_integrated{} } }

• syntax change from irradiation{ output_light_field } to irradiation{
photo_generation{ output_light_intensity }

• optics{ emission_spectrum{ output_spectra{ stimulated_emission } } } removed

• optics{ emission_spectrum{ output_local_spectra{} } } introduced

• in multiple places absorption and decadic_absorption renamed to absorption_coeff and
decadic_absorption_coeff

• photogeneration{ } updated and allowing to use computed generation rates within running simu-
lation

• energy grid definitions are notably changed and partially moved to the group grid{}

• major groups emission_spectrum{} and quantum_region{} are renamed to
semiclassical_spectra{} and quantum_spectra{}, respectively.

• light_propagation{} is introduced

classical{ }
• output_energy_resolved_densities{} moved inside energy_resolved_density{}

• output_LDOS{} group introduced

• bulk_dispersion{ KP30{ } } introduced following [RideauPRB2006]

• energy grid definitions from grid{} are used for densities

grid{}
• energy grid definitions introduced

run{ }
• solve_strain{ }, solve_poisson{ }, solve_current_poisson{ }, solve_quantum{ },
outer_iteration{} become deprecated and not supported anymore

database{ }
• complex refractive index is supported by optical_refractive_index{}

• extensive changes in the database relating to optics{ } group

command line
• -r, --resume option has been removed

12.9 1.17.20 (2023-08-07)
general input syntax

• !DATA statement got introduced for post-processor

• !TEXT and !ENDTEXT statements introduced for multi-line comments

classical{ }
• output_band_densities{} is introduced

• bulk_dispersion{} is moved from quantum{ } with a slight syntax change

12.9. 1.17.20 (2023-08-07) 1367

nextnano++ Documentation, Release 1.25.13

• Bulk dispersions within 1-band models can be now also included in the output (offset might be still
incorrect)

optics{ }
• spin_align is back after reviewing its functionality. Default value is changed to no

• make_spin_degenerate

currents{ }
• robust atribute is introduced to enhance accuracy of bisection algorithm.

• eastman4{} group is introduced to allow alternative parametrization of the Eastman-Tiwari-Shur mo-
bility model

• electron_contact and hole_contact introduced to increase accuracy of quasi-Fermi levels

contacts{ }
• bisection algorithm initializing ohmic and charge-neutral contacts is enhanced

run{ }
• the group becomes required

• an attribute output_local_residuals is introduced for multiple groups

quantum{ }
• computing matrix elements for multiple polarization in one simulation is again possible within groups
intraband_matrix_elements{} and dipole_moment_matrix_elements{}

• bulk_dispersion{} is moved to classical{ }

postprocessor{}
• entirely new group introduced to generate and run batch scripts after simulations

12.10 1.14.33 (2023-05-12)
optics{ }

• syntax change in k_integration{}: num_integrationpoint is introduced, num_subpoints is re-
moved

• spin_align is removed

• occupation_const_fermilevel is renamed to occupation_zero_fermilevel

• classify_states and classification_threshold becomes available

• multiple improvements of the model

• optics for transitions between two 1-band models and between 1-band and 6-band remains under heavy
development

quantum{ }
• definition of leads become mandatory for modeling transport with CBR method related syntax becomes

improved and contained within a group lead{}

1368 Chapter 12. Release Notes

nextnano++ Documentation, Release 1.25.13

12.11 1.13.0 (2023-02-19)
optics{ }

• bug fix of sweeping bias related while computing optical spectra

• improvements of excitons{}

currents{ }
• new output group output_forces{} introduced

• electron_contact and hole_contact are introduced to allow enhanced accuracy for current equa-
tion around selected contacts

quantum{ }
• cbr{} group has been moved into the quantum group

• ldos choice attribute has been added to the quantum{ cbr {} } group

12.12 1.12.35 (2022-12-17)
In this release we introduced further syntax changes aiming at improving clarity of calling models. Selected bowing
parameters of band edges has been updated in the default database. Multiple new sample input files are added to
the installer. All input files with containing updated syntax.

output{ }
• output{ section1D{} } requires specifying at least two attributes x, y, and z for 3D simulations.

currents{ }
• New high-field mobility models (Hänch, Transferred-electron, Eastman-Tiwari-Shur) are implemented

• Improvement of algorithm convergence in case of using high-field velocities

quantum{ }
• Bug fix and syntax change relating computation of lifetimes, see quantum{ region{ lifetimes}
} }

• Model of excitons within effective mass approximation is implemented, see quantum{ regon{
excitons {} } }

optics{ }
• Major syntax change has been implemented. From now on:

– this group contains all keywords related to optical spectra - groups emission_spectrum{}
and irradiation{} are included in this group, see here

– group region{} has been renamed to quantum_region{}

• Excitonic effects can be included in spectra computations by calling excitons{} group.

• Bug fix related to symmetry attribute

classical{ }
• Major syntax change - groups emission_spectrum{} and irradiation{} has been removed from

this group.

• From now on, this group relates only to choice of band edges and density outputs for semi-classical
computations

strain{ }

12.11. 1.13.0 (2023-02-19) 1369

nextnano++ Documentation, Release 1.25.13

• strain relaxation is initially implemented for entire by a scaling factor of all tensor elements, see
strain{ relaxation {} }

run{ }
• calling quantum-optical simulation has been changed: optics{ } is renamed to quantum_optics{
}

12.13 1.10.19 (2022-08-09)
In this release we introduced some syntax changes and number of new keywords. Some algorithms got notably
improved. We fixed number of bugs.

classical{ }
Default behavior of an attribute refractive_index has been changed. New Attributes are:

• energy_broadening_gaussian

• energy_broadening_lorentzian

optics{ }
Some algorithms have been improved so the group is faster. Number of new keywords has been introduced:

• enable_hole_hole

• enable_electron_hole

• enable_electron_electron

• photon_spectra

• power_spectra

• use_for_emission

poisson{ }
Self-consistent algorithm has been improved and convrges quicker. Behavior and way of initialising Poisson-
equation solver has been improved. Related groups and attributes are:

• import_potential{}

• electric_field{}

• between_fermi_levels{}

• charge_neutral{} - it was an atribute before

• reference_potential

strain{ }
Rules of calling inside the group have changed. Related groups are:

• no_strain{ } - a new group

• pseudomorphic_strain{ }

• minimized_strain{ }

• import_strain{ }

1370 Chapter 12. Release Notes

nextnano++ Documentation, Release 1.25.13

12.14 1.9.92 (2022-06-08)
In this release we added support for decadic attenuation units (dB/𝜇𝑚) and new output options inside of optics{
} mirroring the corresponding functionality in classical{ }. Gain in classical{ } is now defined as the
positive part of (minus absorption).

classical{ }
Introduced attributes are:

• decadic_absorption

• decadic_gain

• decadic_absorption_unit

optics{ }
Introduced attributes are:

• decadic_absorption

• decadic_gain

database{ }
Introduced attribute are:

• decadic_absorption

12.15 EARLIER
• Added periodic repetition of quantum regions

• Added electron injection (e.g. by electron beam) into structure definition

• Integration of nextnano.MSB into nextnano++, incl. nextnano.MSB sample files into installer

• Output reflection components of CBR transmissions

• New 2D CBR input files (QPC)

• Synonyms in material database (e.g. Al(x)In(x)As and In(x)Al(1-x)As)

• Calculation of reflection and extinction coefficient

• Gaussian and Lorentzian broadening for optical absorption

• Improvements for optical absorption (k.p)

• Improvements for k.p (speed: k=0 subspace expansion)

• Added more tutorial input files to samples folder

• New UVC LED AlGaN/GaN input files

• Improvements for intersubband absorption (k.p)

• Solar cell features, irradiation

• Added quaternaries and quinternaries to database; AlScN, AlYN, . . .

• Added XML support to input files

• New region objects: circle/sphere

• New region objects: triangle, polygonal_prism, regular_prism, hexagonal_prism, polygonal_pyramid, reg-
ular_pyramid, hexagonal_pyramid

• Array of different biases is allowed in addition to bias sweep using steps

• Output of emission spectrum for LEDs based on classical or quantum density

12.14. 1.9.92 (2022-06-08) 1371

nextnano++ Documentation, Release 1.25.13

• Output of energy resolved density n(E) and n(x,E)

• Improved convergence and speed for current calculations

• More intuitive setting in run{ }

• MOSFET tutorial

ADDITIONAL NOTES

ò Note

The group contact{ ohmic{} } behaves like contact{ charge_neutral{} } by default since 2019-01-23, and it
additionally contains a shift attribute.

ò Note

Currently, the group contacts{ zero_field{} } behaves like contact{ ohmic{} } before, until 2019-01-23.

Last update: 02/04/2025

1372 Chapter 12. Release Notes

CHAPTER

THIRTEEN

FAQS

13.1 Features and Functionalities

• Where to find simulation LOG file

• How can I track how much memory is used during the simulations?

• Can I pass additional command line arguments to the executable?

• How can I speed up my calculations with respect to CPU time?

• Can I take advantage of parallelization of the nextnano software on multi-core CPUs?

• What boundary conditions are available?

• What are quasi-Fermi levels

• I do not understand the k · p parameters

• Can I add new materials to the database?

• Should I use averaged outputs and boxes?

• Current in my simulation seems unphysical. How to deal with it?

13.1.1 Where to find simulation LOG file
The simulation log file is a file with the same name as the input file and the extension *.log. It is located in the
output folder of the simulation. It is necessary for the support team to debug issues with the simulation, thus it
should always be attached to a support request. Please also include additional debug information in case the log
file shall be used for support, refer to FAQ of nextnanomat.

13.1.2 How can I track how much memory is used during the simulations?
See FAQ of nextnanomat.

13.1.3 Can I pass additional command line arguments to the executable?
See FAQ of nextnanomat.

13.1.4 How can I speed up my calculations with respect to CPU time?
The most obvious way is to reduce the number of grid points you are using. For instance, for the following p-n
junction simulation, a grid spacing of 1 nm was used (gray lines in Figure 13.1.4.1). If one is using a coarse grid
of only 10 nm, the calculated values (squares in Figure 13.1.4.1) agree very well with the calculated values of the
thin lines.

1373

nextnano++ Documentation, Release 1.25.13

Figure 13.1.4.1: Hole (blue) and electron (red) densities of the p-n junction in units of 1018𝑐𝑚−3. The gray lines
are from simulations using a 1 nm grid spacing. The squares are from a simulation that uses only a 10 nm grid
resolution. Note that the center coordinate of this plot is x=160 nm. The depletion width for the holes is around
wp:math:approx`50 nm, for the electrons it is wn:math:approx`10 nm which is of the order of the grid spacing.
Even in this case, the calculated electron density is reasonably accurate.

The difference in CPU time comes from the fact that for the 10 nm resolution the dimension of the matrix that is
used for discretizing the Poisson equation is 30, while in the case for the 1 nm grid spacing it has the dimension
300. The proper choice of an optimal grid spacing is very relevant for 2D and 3D simulations, as can be seen in
the following.

1D simulation (length of sample: x = 300 nm)
• 1 nm grid spacing: dimension of Poisson matrix: 𝑁 = 300

• 10 nm grid spacing: dimension of Poisson matrix: 𝑁 = 30

2D simulation (length of sample: x = 300 nm, y = 300 nm)
• 1 nm grid spacing: dimension of Poisson matrix: 𝑁 = 300 · 300 = 90, 000

• 10 nm grid spacing: dimension of Poisson matrix: 𝑁 = 30 · 30 = 900

3D simulation (length of sample: x = 300 nm, y = 300 nm, z = 300 nm)
• 1 nm grid spacing: dimension of Poisson matrix: 𝑁 = 300 · 300 · 300 = 27, 000, 000

• 10 nm grid spacing: dimension of Poisson matrix: 𝑁 = 30 · 30 · 30 = 27, 000

If a quantum mechanical simulation is performed, the numerical effort of eigenvalue solvers increases with the
number of grid points 𝑁 with order 𝑂

(︀
𝑁2
)︀
.

13.1.5 Can I take advantage of parallelization of the nextnano software on multi-
core CPUs?

The short answer is:
Some numerical routines are parallelized which is done automatically. These are the numerical routines, e.g.
for calculating the eigenvalues with a LAPACK solver (which itself uses BLAS).

The long answer is:
The nextnano software includes the Intel® Math Kernel Library (MKL). MKL includes the BLAS and LA-
PACK library routines for numerical operations. The MKL dynamically changes the number of threads.

• nextnano++ uses MKL (parallel version). The executables that are compiled with the Intel and Mi-
crosoft compilers use MKL (parallel version). The executable that is compiled with the GNU compiler
(gcc/gfortran) uses the nonparallelized version of the BLAS and LAPACK source codes available from
netlib webpage.

– CBR (parallelization with respect to energy grid)

1374 Chapter 13. FAQs

https://www.nextnano.com/products/overview.php
http://software.intel.com/en-us/intel-mkl
https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
https://en.wikipedia.org/wiki/LAPACK
https://en.wikipedia.org/wiki/LAPACK
http://www.netlib.org

nextnano++ Documentation, Release 1.25.13

– NEGF (parallelization with respect to energy grid and further loops) number-of-MKL-threads
= 8

– Calculation of eigenstates for each 𝑘‖ (1D and 2D simulations)

– Matrix-vector products of numerical routines Note: Not all operations are thread-safe, e.g.
one cannot combine 𝑘‖ parallelization with the ARPACK eigenvalue solver. Only for this ex-
ecutable, the flag number-of-parallel-threads = 4 has an effect. The NEGF keyword
also supports number-of-MKL-threads = 4 (0 means dynamic with is recommended) and
MKL-set-dynamic = yes / no.

• nextnano.NEGF - uses MKL (parallel version)

• nextnano.MSB - uses MKL (parallel version)

The NEGF algorithms (nextnano.NEGF, nextnano.MSB, CBR) include matrix-matrix operations which are
well parallelized within the BLAS routines.

If e.g. 4 nextnano simulations are running in parallel on a quad-core CPU, i.e. 4 nextnano executables are
running simultaneously and each of them is using calls to the parallelized MKL library simultaneously, the
total performance might be slower compared to running these simulations one after the other. In this case
using a nextnano executable compiled with the serial version of the Intel MKL could be faster.

In fact, it strongly depends on your nextnano application (e.g. 1D vs. 3D simulation, LAPACK vs. ARPACK
eigenvalue solver, . . .) if you benefit from parallelization or not. In general, the best parallelization can be
obtained if you run several nextnano simulations in parallel. For instance, you could do parameter sweeps
(e.g. sweep over quantum well width) using nextnanomat’s Template feature, i.e. if you run 4 simulations
simultaneously on a quad-core CPU, e.g. for 4 different quantum well widths.

13.1.6 What boundary conditions are available?
There are three different boundary conditions that we use:

• periodic: 𝜓(𝑥 = 0) = 𝜓(𝑥 = 𝐿)

• Dirichlet: 𝜓(𝑥 = 0) = 𝜓(𝑥 = 𝐿) = 0, and

• Neumann: d𝜓
d𝑥 = const at the left (𝑥 = 0) and right (𝑥 = 𝐿) boundary. Typically, const = 0.

By specifying both Dirichlet and Neumann boundary conditions, the system would be over-determined.

13.1.7 What are quasi-Fermi levels
So-called quasi-Fermi levels which are different for electrons 𝐸F,n and holes 𝐸F,p are used to describe non-
equilibrium carrier concentrations. In equilibrium the quasi-Fermi levels are constant and have the same value
for both electrons and holes, 𝐸F,n = 𝐸F,n = 0 eV. The electron current is proportional to the electron mobility
𝜇n(𝑥), carrier density 𝑛(𝑥) and the gradient of the quasi-Fermi level of the carriers, ∇𝐸F,n(𝑥), and analogously
for the holes.

13.1.8 I do not understand the k · p parameters
In the literature, there are two different notations used:

• Dresselhaus–Kip–Kittel (DKK): 𝐿,𝑀,𝑁+, 𝑁− (zinc blende); 𝐿1, 𝐿2,𝑀1,𝑀2,𝑀3, 𝑁
+
1 , 𝑁

−
1 , 𝑁

+
2 , 𝑁

−
2

(wurtzite)

• Luttinger parameters: 𝛾1, 𝛾2, 𝛾3, 𝜅 (zinc blende); Rashba–Sheka–Pikus (RSP) parameters
𝐴1, 𝐴2, 𝐴3, 𝐴4, 𝐴5, 𝐴6, 𝐴7 (wurtzite)

They are equivalent and can be converted into each other.

Some authors only use 3 parameters𝐿,𝑀,𝑁 (or 𝛾1, 𝛾2, 𝛾3) which is fine for bulk semiconductors without magnetic
field but not for heterostructures because the latter require 4 parameters, i.e. 𝑁+, 𝑁− (instead of 𝑁 only) or 𝜅. If
these parameters are not known, they can be approximated.

There are different k · p parameters for

13.1. Features and Functionalities 1375

nextnano++ Documentation, Release 1.25.13

• 6-band k · p and

• 8-band k · p.

The 8-band k · p parameters can be calculated from the 6-band parameters taking into account the temperature
dependent band gap 𝐸gap and the Kane parameter 𝐸P (zinc blende). For wurtzite the parameters are 𝐸gap and the
Kane parameters 𝐸P1, 𝐸P2.

The 8-band Hamiltonian also needs the conduction band mass parameter 𝑆 (zinc blende) or 𝑆1, 𝑆2 (wurtzite).
They can be calculated from the conduction band effective mass 𝑚c, the band gap 𝐸gap, the spin-orbit split-off
energy ∆so and the Kane parameter 𝐸P (zinc blende). For wurtzite the parameters are𝑚c,‖,𝑚c,⊥, 𝐸gap, ∆so, the
crystal-field split-off energy ∆cr and the Kane parameters 𝐸P1, 𝐸P2.

Finally there is the inversion asymmetry parameter 𝐵 for zinc blende. For wurtzite there are 𝐵1, 𝐵2, 𝐵3.

For more details on these equations, please refer to Section 3.1 The multi-band k · p Schrödinger equation in the
PhD thesis of S. Birner.

Spurious solutions
Some people rescale the 8-band k · p in order to avoid spurious solutions. The 8-band k · p parameters
can be calculated from the 6-band parameters taking into account the band gap 𝐸gap, the spin-orbit split-off
energy ∆so and the Kane parameter 𝐸P (zinc blende). For wurtzite the parameters are 𝐸gap, the spin-orbit
split-off energy ∆so, the crystal-field split-off energy ∆cr and the Kane parameters 𝐸P1, 𝐸P2.

For more details, please refer to Section 3.2 Spurious solutions in the PhD thesis of S. Birner.

See section quantum{ region{ kp_8band{} } } in kp_8band{ }.

13.1.9 Can I add new materials to the database?
Yes.

Option 1 (quick)
Directly in the input file, you can overwrite certain material parameters of any material already defined in
the database. For instance if you need ‘’HfO2”, you can use the material ‘’SiO2” and just change the static
dielectric constant and conduction and valence band edges or any other relevant parameters that you need.
So basically, you are using the material ‘’SiO2” with modified static dielectric constant and band edges.

Please note that every material has assigned crystal symmetry of either zinc blende (including diamond type)
or wurtzite.

Option 2 (general)
The material parameters are contained in ASCII text files. You can find them in the installation folder, e.g.,
C:\Program Files\nextnano\<date>\nextnano++\database\database_nnp.in.

These files can be edited with any text editor, such as Notepad++.

It is best if you search for a material such as ‘’GaSb” and then simply use ‘’Copy & Paste” to reproduce
all relevant entries. Then you can rename ‘’GaSb” to anything else, like ‘’GaSb_test”. Finally, you adjust
the necessary material parameters that you need. In most cases you do not have to replace all material
parameters. It is only necessary to replace the ones that you need in the simulation.

It is a good idea to save the new database to a new location, such as C:\Users\<user name>\Documents\
nextnano\My Database\database_nnp_GaSb_modified.inYou can then read in the new nextnano++
database specifying the location within the Tools Options of nextnanomat.

Tools => Options... => Workspace => nextnano++ database file:

� Hint

More information on how to add materials can be found in Material Database. Useful tutorial to practice
definition is — EDU — Interpolation of 2-component alloys.

1376 Chapter 13. FAQs

http://www.nextnano.com/downloads/publications/PhD_thesis_Stefan_Birner_TUM_2011_WSIBook.pdf
http://www.nextnano.com/downloads/publications/PhD_thesis_Stefan_Birner_TUM_2011_WSIBook.pdf
https://notepad-plus-plus.org/

nextnano++ Documentation, Release 1.25.13

13.1.10 Should I use averaged outputs and boxes?
The averaged = yes is similar to boxes = no. Note that boxes is related to output of material grid points while
averaged is related to output of simulation grid points.

2D and 3D simulations can produce a lot of output data (order of GB). It is strongly recommended to use averaged
= yes for 2D and 3D simulations to avoid excessive consumption of your hard disk.

13.1.11 Current in my simulation seems unphysical. How to deal with it?
Most likely you are observing some spikes in the output of the total current. The reason is that the self-consistent
algorithm did not converge to a reasonable solution.

To fix the problem you can begin with trying standard solutions listed in Quantum-Current-Poisson fails to con-
verge. If they to not help you, then please follow our guides in Convergence. Meaning of residuals, which you
should understand, is explained in Residuals.

If you are solving semi-classical system, then you should get familiar with the keyword group current_poisson{
}. In case of solving the Schrödinger equation as well, you need also to learn about functionalities of quan-
tum_current_poisson{ }.

In the systems with extremely large or small carrier densities, you may need to stabilize the solver on the
level of the drift-diffusion equations themselves, constraining carrier densities entering the equation by: maxi-
mum_density_electrons, maximum_density_holes, minimum_density_electrons, and minimum_density_holes.

Last update: 22/01/2025

13.2 Error and Warning Messages

• Quantum-Current-Poisson fails to converge

• WARNING: Linear solver residual of ARPACK-INVERSE set too large in multiband quantum solver

• Error: (nodes number of coordinate 1) != (lines number in file)

• nextnano++ exit code: -1073741795

• nextnano++ exit code: -1

• nextnano++ exit code: 1

• nextnano++ exit code: 3

13.2.1 Quantum-Current-Poisson fails to converge
Most often Quantum-Current-Poisson calculation fails to converge because:

a) The maximum number of iterations has been chosen too small.

SOLUTION: Increase the number of iteration using iterations.

b) The number of electron or hole eigenstates has been chosen too small.

SOLUTION: Check the occupations in the files bias_*\Quantum\occupation_*.dat. If the occupation
does not drop from the ground state to the highest excited state by several orders of magnitude, you need
to calculate more states. If you are using one-band model or 6-band k · p model then you need to adjust a
keyword attributes num_ev in Gamma{}, L{}, X{}, Delta{}, HH{}, LH{}, SO{} or in kp_6band{ }. In teh case
of using 8-band k · p model, the number of states can be adjusted by num_electrons and num_holes in
kp_8band{ }.

13.2. Error and Warning Messages 1377

nextnano++ Documentation, Release 1.25.13

c) The under-relaxation parameter has been chosen too large.

SOLUTION: Check whether the solution oscillates, i.e., residuals do not drop continuously but increase in
some iterations. Try to decrease the under-relaxation parameter controlled by alpha_fermi in order to damp
the oscillations.

d) The minimum charge density in the current equation has been chosen too small (currents{ } ==>
minimum_density_*).

SOLUTION: Try to increase the minimum charge densities to improve conditioning of the current equation.
Relevant keywords are minimum_density_electrons and minimum_density_holes.

13.2.2 WARNING: Linear solver residual of ARPACK-INVERSE set too large in
multiband quantum solver

Linear solver residual of ARPACK-INVERSE set too large in multiband quantum solver. ARPACK-INV solver uses
internally the linear solver on each iteration, therefore the accuracy of ARPACK-INV is limited by accuracy of the
linear solver. It is recommended to set the residuals of linear solver to be smaller than residuals of the ARPACK-
INV, otherwise this warning is thrown. The residual of the ARPACK-INV can be set by a keyword accuracy. The
linear solver residuals can be set by keywords linear_solver{ abs_accuracy } or linear_solver{ rel_accuracy }.

13.2.3 Error: (nodes number of coordinate 1) != (lines number in file)
Simulation *.log file contains the following error

error:(nodes number of coordinate 1) != (lines number in file)

It means that you have defined values at some grid points twice inside the imported file. Check if some points are
duplicated in the file that you are trying to import. For example, you should avoid situation as the following:

...
1.0 0.5
1.1 0.5
1.2 0.5
1.2 0.6
1.3 0.6
...

In this case the point 1.2 is defined twice, which is the source of the problem.

13.2.4 nextnano++ exit code: -1073741795
Simulation *.log file contains the following exit code -1073741795 or other big negative number

(nextnano++ exit code: -1073741795)

Most likely you need to install the Microsoft Visual C++ Redistributable . Choose the corresponding version
matching your operation system architecture (most likely X64) from the section Latest Microsoft Visual C++
Redistributable Version. It’s a typical error when running nextnano++ on Windows Server OS.

It is also possible that your CPU is not suited for nextnano++ executable, i.e., you are using processor from Pentium
family, typical on old laptops. You can use nextnano++_Microsoft_32bit_serial.exe, see FAQ of nextnanomat.

Other possibility is that your computer enters sleep mode during the runtime of your simulation. Turn off disable
sleep mode on your computer to fix the problem.

1378 Chapter 13. FAQs

https://support.microsoft.com/help/2977003/the-latest-supported-visual-c-downloads

nextnano++ Documentation, Release 1.25.13

13.2.5 nextnano++ exit code: -1
Simulation *.log file contains the following exit code -1

(nextnano++ exit code: -1)

It means that the simulation has been aborted by nextnanomat or by other means.

13.2.6 nextnano++ exit code: 1
Simulation *.log file contains the following exit code 1

(nextnano++ exit code: 1)

It means that there is error in the command line calling the solver.

13.2.7 nextnano++ exit code: 3
Simulation *.log file contains the following exit code 3

(nextnano++ exit code: 3)

There is a problem with validating your license.

Last update: 22/01/2025

Last update: 25/10/2024

13.2. Error and Warning Messages 1379

nextnano++ Documentation, Release 1.25.13

1380 Chapter 13. FAQs

CHAPTER

FOURTEEN

BOOKS

• [Adachi2009]
Proerties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors
S. Adachi
John Wiley & Sons, Inc., New York (2009)

• [Beynon1996]
Buffer solutions: The basics
R. J. Beynon, and J. S. Easterby
Oxford University Press (1996)

• [ChuangOpto1995]
Physics of Optoelectronic Devices
S. L. Chuang
John Wiley & Sons, Inc., New York (1995)

• [DattaCambridge2005]
Quantum Transport: Atom to Transistor
S. Datta
Cambridge University Press (2005)

• [DattaETMS1995]
Electronic Transport in Mesoscopic Systems
S. Datta
Cambridge Studies in Semiconductor Physics and Microelectronic Engineering, Cambridge University
Press, Cambridge (1995)
DOI 10.1017/CBO9780511805776

• [Davies1998]
J. H. Davies
The Physics of Low-Dimensional Semiconductors - An Introduction
Cambridge University Press (1998)

• [FaistQCL2013]
Quantum Cascade Lasers
J. Faist
Oxford University Press (2013)

• [GrahnITSP1999]
Introduction To Semiconductor Physics
H. T. Grahn
World Scientific Publishing (1999)

• [HarrisonQWWD2005]
Quantum Wells, Wires and Dots
P. Harrison

1381

https://onlinelibrary.wiley.com/doi/book/10.1002/9780470744383
https://doi.org/10.1021/ed075p153.1
https://doi.org/10.1017/CBO9781139164313
https://doi.org/10.1017/CBO9780511805776
https://global.oup.com/academic/product/quantum-cascade-lasers-9780198795889
https://www.lehmanns.de/shop/naturwissenschaften/1551714-9789810233020-introduction-to-semiconductor-physics
https://doi.org/10.1002/0470010827

nextnano++ Documentation, Release 1.25.13

Theoretical and Computational Physics of Semiconductor Nanostructures, 2nd ed., John Wiley & Sons, Ltd
(2005)
DOI 10.1017/CBO9780511805776

• [HaugKinetics2008]
Quantum Kinetics in Transport and Optics of Semiconductors
H. Haug, A-P. Jauho
Springer (2008)

• [NelsonPSC2003]
The Physics of Solar Cells
J. Nelson
World Scientific Publishing (2003)

• [Landau Lifshitz]
Quantum Mechanics Non-Relativistic Theory
L. D. Landau, E. M. Lifshitz
(Pergamon Press, Vol. 3)

• [LeviAQM2006]
Applied Quantum Mechanics
A. F. J. Levi
Cambridge University Press (2006)

• [Shi-Dong-Liang]
R.-S. Liang,
Quantum Tunneling and Field Electron Emission Theories
(World Scientific, Singapore, 2014)
p. 61

• [Sze Kwok]
S. M. Sze, Kwok K. Ng
Physics of Semiconductor Devices
John Wiley & Sons, Inc., New York (2007)
DOI 10.1002/0470068329

• [MitinKochelapStroscio1999]
Quantum Heterostructures (Microelectronics and Optoelectronics)
V. Mitin, V. Kochelap, M. Stroscio
Cambridge University Press (1999)

• [PiprekE2003]
Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation
J. Piprek
Elsevier (2003)

1382 Chapter 14. Books

https://doi.org/10.1007/978-3-540-73564-9
https://doi.org/10.1142/p276
https://www.cambridge.org/core/books/applied-quantum-mechanics/0F4AB601E299940E8A98ACAA15AD431F
https://books.google.de/books?id=zPy6CgAAQBAJ&printsec=copyright&redir_esc=y#v=onepage&q&f=false
https://onlinelibrary.wiley.com/doi/book/10.1002/0470068329
https://www.elsevier.com/books/semiconductor-optoelectronic-devices/piprek/978-0-08-046978-2

CHAPTER

FIFTEEN

JOURNAL PAPERS

• [AltermattI2006]
A simulation model for the density of states and for incomplete ionization in crystalline silicon. I.
Establishing the model in Si:P
P. P. Altermatt, A. Schenk, G. Heiser
J. Appl. Phys. 100, 1113714 (2006)

• [AltermattII2006]
A simulation model for the density of states and for incomplete ionization in crystalline silicon. II.
Investigation of Si:As and Si:B and usage in device simulation
P. P. Altermatt, A. Schenk, B. Schmitthüsen, G. Heiser
J. Appl. Phys. 100, 1113715 (2006)

• [Andrews2008]
Doping dependence of LO-phonon depletion scheme THz quantum-cascade lasers
A. M. Andrews, A. Benz, C. Deutsch, G. Fasching, K. Unterrainer, P. Klang, W. Schrenk, G. Strasser
Materials Science and Engineering B 147, 152 (2008)

• [Andreev2000]
Theory of the electronic structure of GaN/AlN hexagonal quantum dots
A. D. Andreev, E. P. O’Reilly
Phys. Rev. B 62, 15851 (2000)

• [Arora1982]
Electron and hole mobilities in silicon as a function of concentration and temperature
N.D. Arora, J.R. Hauser, D.J. Roulston
IEEE Trans. Electron Devices 29, 292 (1982)

• [BahderPRB1990]
Eight-band kp model of strained zinc blende crystals
Thomas B. Bahder
Phys. Rev. B 41, 11992 (1990)

• [Bai2010]
Quantum cascade lasers that emit more light than heat
Y. Bai, S. Slivken, S. Kuboya, S. R. Darvish, M. Razeghi
Nature Photonics 4, 99-102 (2010)

• [BastardPRB1982]
Exciton binding energy in quantum wells
G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki
Physical Review B 26, 1974 (1982)

• [Beynon1988]
A Macintosh Hypercard stack for calculation of thermodynamically-corrected buffer recipes
R. J. Beynon

1383

https://doi.org/10.1063/1.2386934
https://doi.org/10.1063/1.2386934
https://doi.org/10.1063/1.2386935
https://doi.org/10.1063/1.2386935
https://doi.org/10.1016/j.mseb.2007.08.012
https://doi.org/10.1103/PhysRevB.62.15851
https://doi.org/10.1109/T-ED.1982.20698
https://doi.org/10.1103/PhysRevB.41.11992
https://doi.org/10.1038/nphoton.2009.263
https://doi.org/10.1103/PhysRevB.26.1974
https://doi.org/10.1093/bioinformatics/4.4.487

nextnano++ Documentation, Release 1.25.13

Comput. Appl. Biosci. 4 (4), 487 (1988)

• [BirnerPhotonikInt2008]
Simulation of quantum cascade lasers - optimizing laser performance
S. Birner, T. Kubis, and P. Vogl
Photonik international 2, 60 (2008)

• [BirnerPhotonik2008]
Simulation zur Optimierung von Quantenkaskadenlasern
S. Birner, T. Kubis, and P. Vogl
Photonik 1, 44 (2008)

• [BirnerAPhys2006]
Modeling of Semiconductor Nanostructures with nextnano3
S. Birner, S. Hackenbuchner, M. Sabathil, G. Zandler, J.A. Majewski, T. Andlauer, T. Zibold, R. Morschl,
A. Trellakis, P. Vogl
Acta Physica Polonica A 110 (2), 111 (2006)

• [BirnerCBR2009]
Ballistic Quantum Transport using the Contact Block Reduction (CBR) Method - An introduction
S. Birner, C. Schindler, P. Greck, M. Sabathil, and P. Vogl
Journal of Computational Electronics 8, 267–286 (2009)

• [Biscani2020]
A parallel global multiobjective framework for optimization: pagmo
F. Biscani, D. Izzo
Journal of Open Source Software 5 (53), 2338 (2020)

• [BelyakovBurdov2008]
Anomalous splitting of the hole states in silicon quantum dots with shallow acceptors
V. A. Belyakov, V. A. Burdov
J. Phys. Condens. Matter 20, 025213 (2008)

• [Burdov2002]
Electron and hole spectra of silicon quantum dots
V. A. Burdov
JETP 94, 411 (2002)

• [Canali1975]
Electron and Hole Drift Velocity Measurements in Silicon and Their Empirical Relation to Electric Field
and Temperature
C. Canali, G. Majni, R. Minder, and G. Otaviani
IEEE Trans. Electron Dev. 22 (11), 1045 (1975)

• [CapassoIEEE1986]
Resonant Tunneling Through Double Barriers, Perpendicular Quantum Transport Phenomena in
Superlattices, and Their Device Applications
F. Capasso, K. Mohammed, and A. Y. Cho
IEEE Journal of Quantum Electronics QE-22, 1853 (1986)

• [CardonaPR1966]
Energy-band structure of Germanium and Silicon: The k.p method
M. Cardona, F. H. Pollak
Physical Review 142 (2), 530 (1996)

• [CarloSST2003]
Microscopic theory of nanostructured semiconductor devices: beyond the envelope=function
approximation
A. D. Carlo

1384 Chapter 15. Journal Papers

https://www.nextnano.com/downloads/publications/Photonik_2008_01_44_Birner_QCL.pdf
https://www.nextnano.com/downloads/publications/PhotonikIntl_2008_02_60_Birner_QCL_300dpi.pdf
https://doi.org/10.12693/APhysPolA.110.111
https://doi.org/10.1007/s10825-009-0293-z
https://doi.org/10.21105/joss.02338
https://doi.org/10.1088/0953-8984/20/02/025213
https://doi.org/10.1134/1.1458492
https://doi.org/10.1109/T-ED.1975.18267
https://doi.org/10.1109/T-ED.1975.18267
https://doi.org/10.1109/JQE.1986.1073171
https://doi.org/10.1109/JQE.1986.1073171
https://doi.org/10.1103/PhysRev.142.530
http://dx.doi.org/10.1088/0268-1242/18/1/201
http://dx.doi.org/10.1088/0268-1242/18/1/201

nextnano++ Documentation, Release 1.25.13

Semiconductor Science and Technology 18 (1), R1-31

• [CaugheyThomas1967]
Carrier mobilities in silicon empirically related to doping and field
D. Caughey, R. Thomas
Proc. IEEE 55, 2192 (1967)

• [Chatzikyriakou_PhysRevResearch_2022]
Unveiling the charge distribution of a GaAs-based nanoelectronic device: A large experimental dataset
approach
E. Chatzikyriakou, J. Wang, L. Mazzella, A. Lacerda-Santos, M. C. da S. Figueira, A. Trellakis, S. Birner,
T. Grange, C. Bäuerle, and X. Waintal
Phys. Rev. Research 4, 043163, December (2022)

• [Chilleri2021]
An improved empirical model for a semiconductor’s velocity-field characteristic applied to gallium arsenide
J. Chilleri, Y. Wang, M. S. Shur, and S. K. O’Leary
Solid State Communications 330, 114240, (2021)

• [Chuang1996]
k.p method for strained wurtizte semiconductors
S. L. Chuang and C. S. Chang
Physical Review B 54 (4), 2491, January (1996)

• [ChuangIEEE1996]
Optical gain of strained wurtzite GaN quantum-well lasers
S. L. Chuang
IEEE Journal of Quantum Electronics 32, no. 10, pp. 1791-1800, October (1996)

• [DarwishIEEE1997]
An Improved Electron and Hole Mobility Model for General Purpose Device Simulation
M. N. Darwish, J. L. Lentz, M. R. Pinto, P. M. Zeitzoff, T. J. Krutsick, and H. H. Vuong
IEEE Transactions on Electron Devices 44, 1529 (1997)

• [DattaSuperlatticesMicrostructures2000]
Nanoscale device modeling: the Green’s function method
S. Datta
Superlattices and Microstructures 28, 253 (2000)

• [Dehlinger2000]
Intersubband Electroluminescence from Silicon-Based Quantum Cascade Structures
G. Dehlinger, L. Diehl, U. Gennser, H. Sigg, J. Faist, K. Ensslin, D. Grützmacher, E. Müller
Science 290, 2277 (2000)

• [Duboz2019]
Theoretical estimation of tunnel currents in hetero-junctions: The special case of nitride tunnel junctions
J-Y. Duboz and B. Vinter
J. Appl. Phys. 126, 174501 (2019)

• [DumitrasPRB2002]
Surface photovoltage studies of InGaAs and InGaAsN quantum well structures
Gh. Dumitras and H. Riechert
Physical Review B 66, 205324 (2002)

• [Eastman1980]
DESIGN CRITERIA FOR GaAs MESFETs RELATED TO STATIONARY HIGH FIELD DOMAINS
L. F. Eastman, S. Tiwiari, and M. S. Shur
Solid-State Electronics 23 (4), 383 (1980)

1385

http://dx.doi.org/10.1109/PROC.1967.6123
https://doi.org/10.1103/PhysRevResearch.4.043163
https://doi.org/10.1103/PhysRevResearch.4.043163
https://doi.org/10.1016/j.ssc.2021.114240
https://doi.org/10.1103/PhysRevB.54.2491
https://doi.org/10.1109/3.538786
https://doi.org/10.1109/16.622611
https://doi.org/10.1006/spmi.2000.0920
https://doi.org/10.1126/science.290.5500.2277
https://doi.org/10.1063/1.5111194
https://doi.org/10.1103/PhysRevB.66.205324
https://doi.org/10.1016/0038-1101(80)90206-3

nextnano++ Documentation, Release 1.25.13

• [Edlbauer2022]
Semiconductor-based electron flying qubits: review on recent progress accelerated by numerical modelling
Edlbauer, H., Wang, J., Crozes, T. et al.
EPJ Quantum Technol. 9, 21 (2022)

• [Farahmand2001]
Monte Carlo Simulation of Electron Transport in the III-Nitride Wurtzite Phase Materials System: Binaries
and Ternaries
M. Farahmand, C. Garetto, E. Bellotti, K. F. Brennan, M. Goano, E. Ghillino, G. Ghione, J. D. Albrecht,
and P. P. Ruden
IEEE Trans. Electron Dev. 48 (3), 535 (2001)

• [FathololoumiOE2012]
Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved
injection tunneling
S. Fathololoumi, E. Dupont, C.W.I. Chan, Z.R. Wasilewski, S.R. Laframboise, D. Ban, A. Mátyás, C.
Jirauschek, Q. Hu, and H. C. Liu
Optics Express 20, 3866 (2012)

• [FerreiraBastard1989]
Evaluation of some scattering times for electrons in unbiased and biased single- and
multiple-quantum-well structures
R. Ferreira, G. Bastard
Physical Review B 40 (2), 1074 (1989)

• [Ferreira2006]
Optical Properties of Ellipsoidal CdSe Quantum Dots
W.S. Ferreira, J.S. de Sousa, J.A.K. Freire, G.A. Farias, V.N. Freire
Brazilian Journal of Physics 36, 438 (2006)

• [Fischer2006]
Tunnel-coupled one-dimensional electron systems with large subband separations
S. F. Fischer, G. Apetrii, U. Kunze, D. Schuh, and G. Abstreiter
Phys. Rev. B 74, 115324

• [FischettiJAP2003]
Six-band k”p calculation of the hole mobility in silicon inversion layers: Dependence on surface
orientation, strain, and silicon thickness
M. Fischetti, M. Solomon, M. Yang, and K. Rim
J. Appl. Phys. 94, 1079 (2003)

• [Fischetti1998]
Theory of electron transport in small semiconductor devices using the Pauli master equation
M. V. Fischetti
J. Appl. Phys. 83, 270-291 (1998)

• [FowlerNordheim1928]
Electron emission in intense electric fields
R. H. Fowler and L. Nordheim
Royal Society 119 (781), 173 (1928)

• [FranceschiJancuBeltram1999]
Boundary conditions in multiband k.p models: A tight-binding test
S. De Franceschi, J.-M. Jancu, F. Beltram
Physical Review B 59 (15), 9691 (1999)

• [Friedrich2005]
Quantum-cascade lasers without injector regions operating above room temperature

1386 Chapter 15. Journal Papers

https://doi.org/10.1140/epjqt/s40507-022-00139-w
https://doi.org/10.1109/16.906448
https://doi.org/10.1109/16.906448
http://doi.org/10.1364/OE.20.003866
http://doi.org/10.1364/OE.20.003866
https://doi.org/10.1103/PhysRevB.40.1074
https://doi.org/10.1103/PhysRevB.40.1074
https://www.sbfisica.org.br/bjp/files/v36_438.pdf
https://doi.org/10.1103/PhysRevB.74.115324
https://doi.org/10.1063/1.1585120
https://doi.org/10.1063/1.1585120
https://doi.org/10.1063/1.367149
https://royalsocietypublishing.org/doi/10.1098/rspa.1928.0091
https://doi.org/10.1103/PhysRevB.59.9691
https://doi.org/10.1063/1.1906302

nextnano++ Documentation, Release 1.25.13

A. Friedrich, G. Böhm, M.C. Amann, G. Scarpa
Applied Physics Letters 86, 161114 (2005)

• [GovernalePRB1998]
Gauge-invariant grid discretization of the Schrödinger equation
M. Governale, C. Ungarelli
Phys. Rev. B 58 (12), 7816 (1998)

• [GreckOE2015]
Efficient Method for the Calculation of Dissipative Quantum Transport in Quantum Cascade Lasers
P. Greck, S. Birner, B. Huber, and P. Vogl
Optics Express 23, 6587–6600 (2015)

• [GreckIWCE2010]
The nonequilibrium Green’s functions method and descendants: ways to avoid and to go
P. Greck, C. Schindler, T. Kubis, and P. Vogl
Abstracts of 14th International Workshop on Computational Electronics (IWCE), Pisa, Italy, 145 (2010)

• [GreinAIP1995]
Long wavelength InAs/InGaSb infrared detectors: Optimization of carrier lifetimes
C. H. Grein, P. M. Young
J. Appl. Phys. 78, 7143 (1995)

• [GunapalaJAP1991]
Bound to continuum superlattice miniband long wavelength GaAs/AlxGa1-xAs photoconductors
S. D. Gunapala, B. F. Levine, and Naresh Chand
J. Appl. Phys. 70, 305-308 (1991)

• [HalvorsenPR2000]
Optical transitions in broken gap heterostructures
E. Halvorsen, Y. Galperin, K. A. Chao
Physical Review B 61, 16743 (2000)

• [Hänsch1986]
The hotelectron problem in small semiconductor devices
W. Hänch and M. Miura-Mattausch
J. Appl. Phys 60, 650 (1986)

• [HirayamaJAP2005]
Quaternary InAlGaN-based high-efficiency ultraviolet light-emitting diodes
H. Hirayama
J. Appl. Phys 97, 091101 (2005)

• [Hu2005]
Resonant-phonon-assisted THz quantum-cascade lasers with metal-metal waveguides
Q. Hu, B.S. Williams, S. Kumar, H. Callebaut, S. Kohen, J.L. Reno
Semiconductor Science and Technology 20, S228 (2005)

• [Holleitner2007]
Dimensionally constrained D’yakonov-Perel’ spin relaxation in n-InGaAs channels: transition from 2D to
1D
A.W. Holleitner, V. Sih, R.C. Myers, A.C. Gossard, D.D. Awschalom
New Journal of Physics 9, 342 (2007)

• [JancuPRB1998]
Empirical spds* tight-binding calculation for cubic semiconductors: General method and material
parameters
J.-M. Jancu, R. Scholz, F. Beltram, F. Bassani

1387

https://doi.org/10.1103/PhysRevB.58.7816
https://doi.org/10.1364/OE.23.006587
https://doi.org/10.1109/IWCE.2010.5677996
https://doi.org/10.1063/1.360422
https://doi.org/10.1063/1.350301
https://doi.org/10.1103/PhysRevB.61.16743
http://doi.org/10.1063/1.337408
http://doi.org/10.1063/1.1899760
http://doi.org/10.1088/0268-1242/20/7/013
http://doi.org/10.1088/1367-2630/9/9/342
http://doi.org/10.1088/1367-2630/9/9/342
https://doi.org/10.1103/PhysRevB.57.6493
https://doi.org/10.1103/PhysRevB.57.6493

nextnano++ Documentation, Release 1.25.13

Physical Review B 57, 6493 (1998)

• [Jiang1988]
Temperature dependence of photoluminescence from GaAs single and multiple quantumwell
heterostructures grown by molecularbeam epitaxy
D. S. Jiang, H. Jung, K. Ploog
J. Appl. Phys. 64, 1371 (1988)

• [Jirauschek2014]
Modeling techniques for quantum cascade lasers
C. Jirauschek, T. Kubis
Appl. Phys. Rev. 1, 011307 (2014)

• [Jogai2003]
Influence of surface states on the two-dimensional electron gas in AlGaN/GaN heterojunction field-effect
transistors
Jogai2003
J. Appl. Phys. 93, 1631 (2003)

• [Jeon1996]
Valence band parameters of wurtzite materials
J.-B. Jeon, Yu.M. Sirenko, K.W. Kim, M.A. Littlejohn, M.A. Stroscio
Solid State Communications 99, 423 (1996)

• [Kilpstein2010]
Operator ordering and interface-band mixing in the Kane-like Hamiltonian of lattice-matched
semiconductor superlattices with abrupt interfaces
P. C. Kilpstein
Phys. Rev. B 81, 235314 (2010)

• [Klaassen1992]
A unified mobility model for device simulation - I. Model equations and concentration dependence
D. B. M. Klaassen
Solid-State Electronics 35, 953 (1992)

• [KlimeckSM2000]
sp3s* Tight-binding parameters for transport simulations in compound semiconductors
G. Klimeck, R. C. Bowen, T. B. Boykin, T. A. Cwik
Superlattices and Microstructures 27 (5), 519-524 (2000)

• [KnoetigLaserPhotRev2022]
Mitigating valence intersubband absorption in interband cascade lasers
H. Knoetig, J. Nauschuetz, N. Opacak, S. Hoefling, J. Koeth, R. Weih, B. Schwarz
Laser & Photonics Reviews 16, 2200156 (2022)

• [Kriekouki2022]
Interpretation of 28 nm FD-SOI quantum dot transport data taken at 1.4 K using 3D quantum TCAD
simulations
I. Kriekouki, F. Beaudoin, P. Philippopoulos, C. Zhou, J. Camirand-Lemyre, S. Rochette, S. Mir, M.J.
Barragan, M- Pioro-Ladriere, P. Galy
Solid-State Electronics 194 (1), 108355 (2022)

• [KouwenhovenRPP2001]
Few-electron quantum dots
L.P. Kouwenhoven, D.G. Austing, and S. Tarucha
Rep. Prog. Phys. 64, 701 (2001)

• [KozodoyAPL1999]
Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN

1388 Chapter 15. Journal Papers

https://doi.org/10.1063/1.341862
https://doi.org/10.1063/1.341862
https://doi.org/10.1063/1.4863665
https://doi.org/10.1063/1.1530729
https://doi.org/10.1063/1.1530729
https://doi.org/10.1016/0038-1098(96)00282-7
https://doi.org/10.1103/PhysRevB.81.235314
https://doi.org/10.1103/PhysRevB.81.235314
https://doi.org/10.1016/0038-1101(92)90325-7
https://doi.org/10.1006/spmi.2000.0862
https://doi.org/10.1002/lpor.202200156
http://doi.org/10.1016/j.sse.2022.108355
http://doi.org/10.1016/j.sse.2022.108355
http://doi.org/10.1088/0034-4885/64/6/201
http://doi.org/10.1063/1.123220

nextnano++ Documentation, Release 1.25.13

P. Kozodoy, M. Hansen, S. P. DenBaars, U. K. Mishra
Appl. Phys. Lett. 74, 3681 (1999)

• [KubisNEGF2005]
Self-consistent quantum transport theory of carrier capture in heterostructures
T. Kubis, A. Trellakis, and P. Vogl
Proceedings of the 14th International Conference on Nonequilibrium Carrier Dynamics in Semiconductors,
M. Saraniti and U. Ravaioli, eds., Chicago, USA, July 25-19, 2005, Springer Proceedings in Physics, Vol.
110, 369–372 (2005)

• [KumagaiChuangAndoPRB1998]
Analytical solutions of the block-diagonalized Hamiltonian for strained wurtzite semiconductors
M. Kumagai, S. L. Chuang, H. Ando
Phys. Rev. B 57 15303 (1998)

• [KumarHuPRB2009]
Coherence of resonant-tunneling transport in terahertz quantum-cascade lasers
S. Kumar, Q. Hu
Phys. Rev. B 80, 245316 (2009)

• [KuoNature2005]
Strong quantum-confined Stark effect in germanium quantum-well structures on silicon
Y.-H. Kuo, Y. K. Lee, Y. Ge, S. Ren, J. E. Roth, T. I. Kamins, D. A. B. Miller and J. S. Harris1
Nature 437, 7063 (2005)

• [Lazarenkova2001]
Miniband formation in a quantum dot crystal
O. L. Lazarenkova and A. A. Balandin
J. Appl. Phys. 89, 5509 (2001)

• [LenzlingerSnow1969]
Fowler-Nordheim Tunneling into Thermally Grown SiO_2
M. Lenzlinger and E. H. Snow
J. Appl. Phys. 40, 278 (1969)

• [LeverJLT2010]
Design of Ge–SiGe Quantum-Confined Stark Effect Electroabsorption Heterostructures for CMOS
Compatible Photonics
L. Lever, Z. Ikonic, A. Valavanis, J. D. Cooper, and R. W. Kelsall
Journal of Lightwave Technology 28, 3273 (2010)

• [_LivnehPRB2014]
Erratum: k.p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices
[Phys. Rev. B 86, 235311 (2012)]
Y. Livneh, P. C. Klipstein, O. Klin, N. Snapi, S. Grossman, A. Glozman, and E. Weiss
Physical Review B 86, 235311 (2012)

• [_LivnehPRB2012]
k.p model for the energy dispersions and absorption spectra of InAs/GaSb type-II superlattices
Y. Livneh, P. C. Klipstein, O. Klin, N. Snapi, S. Grossman, A. Glozman, and E. Weiss
Physical Review B 86, 235311 (2012)

• [LombardiIEEE1988]
A physically based mobility model for numerical simulation of nonplanar devices
C. Lombardi, S. Manzini, A. Saporito, and M. Vanzi
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 7, 1164 (1988)

• [MamaluyCBR2003]
Efficient method for the calculation of ballistic quantum transport

1389

https://doi.org/10.1007/978-3-540-36588-4_84
https://doi.org/10.1103/PhysRevB.57.15303
https://doi.org/10.1103/PhysRevB.80.245316
https://doi.org/10.1038/nature04204
https://doi.org/10.1063/1.1366662
https://doi.org/10.1063/1.1657043
http://opg.optica.org/jlt/abstract.cfm?URI=jlt-28-22-3273
http://opg.optica.org/jlt/abstract.cfm?URI=jlt-28-22-3273
https://doi.org/10.1103/PhysRevB.90.039903
https://doi.org/10.1103/PhysRevB.90.039903
https://doi.org/10.1103/PhysRevB.86.235311
https://doi.org/10.1109/43.9186
https://doi.org/10.1063/1.1560567

nextnano++ Documentation, Release 1.25.13

D. Mamaluy, M. Sabathil, and P. Vogl
J. Appl. Phys. 93, 4628 (2003)

• [MasettiIEEE1983]
Modeling of Carrier Mobility Against Carrier Concentration in Arsenic-, Phosphorus- and Boron-Doped
Silicon
G. Masetti, M. Severi, S. Solmi
IEEE Trans. Electron Devices, Vol. ED-30 (7), 764 (1983)

• [MeyerMDPIPhot2020]
The Interband Cascade Laser
J. R. Meyer, W. W. Bewley, C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, I. Vurgaftman
Phot. 7(3), 75 (2020)

• [Mourokh2007]
Vertically coupled quantum wires in a longitudinal magnetic field
L. G. Mourokh, A. Y. Smirnov, S. F. Fischer
Appl. Phys. Lett. 90, 132108 (2007)

• [Page2001]
300 K operation of a GaAs-based quantum-cascade laser at lambda=9 µm
H. Page, C. Becker, A. Robertson, G. Glastre, V. Ortiz, C. Sirtori
Appl. Phys. Lett. 78 (22), 3529 (2001)

• [ParkChuangPRB1999]
Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite
semiconductors
S.-H. Park, S.-L. Chuang
Phys. Rev. B 59, 4725 (1999)

• [ParkChuang2000]
Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and
piezoelectric field effects
S.-H. Park, S.L. Chuang
J. Appl. Phys. 87, 353 (2000)

• [Park2000]
Crystal Orientation Effects on Electronic Properties of Wurtzite GaN/AlGaN Quantum Wells with
Spontaneous and Piezoelectric Polarization
S.-H. Park
J. Appl. Phys. 39, 3478 (2000)

• [Povolotskyi2005]
Strain effects in freestanding three-dimensional nitride nanostructures
M. Povolotskyi, M. Auf der Maur, A. Di Carlo
Phys. Stat. Sol. (c) 2, 3891 (2005)

• [Pryor1998]
Eight-band calculations of strained InAs/GaAs quantum dots compared with one-, four-, and six-band
approximations
C. Pryor
Physical Review B 57 (12), 7190 (1998)

• [ReichPR2002]
Tight-binding description of graphene
S. Reich, J. Maultzsch, C. Thomsen, P. Ordejon
Physical Review B 66, 035412 (2002)

• [RideauPRB2006]

1390 Chapter 15. Journal Papers

https://doi.org/10.1109/T-ED.1983.21207
https://doi.org/10.1109/T-ED.1983.21207
https://www.mdpi.com/2304-6732/7/3/75
https://doi.org/10.1063/1.2717147
https://doi.org/10.1063/1.1374520
https://doi.org/10.1103/PhysRevB.59.4725
https://doi.org/10.1103/PhysRevB.59.4725
https://doi.org/10.1063/1.371915
https://doi.org/10.1063/1.371915
https://doi.org/10.1143/JJAP.39.3478
https://doi.org/10.1143/JJAP.39.3478
https://doi.org/10.1002/pssc.200562040
https://doi.org/10.1103/PhysRevB.57.7190
https://doi.org/10.1103/PhysRevB.57.7190
https://doi.org/10.1103/PhysRevB.66.035412

nextnano++ Documentation, Release 1.25.13

Strained Si, Ge, and Si(1-x)Ge(x) alloys modelled with a first-principles-optimized full-zone k.p method
D. Rideau, M. Feraille, L. Ciampolini, M. Minondo, C. Tavernier, H. Jaouen, A. Ghetti
Physical Review B 74 (19), 195208 (2006)

• [Rochat2005]
Low-threshold terahertz quantum-cascade lasers
M. Rochat, L. Ajili, H. Willenberg, J. Faist, H. Beere, G. Davies, E. Linfield, D. Ritchie
Applied Physics Letters 81 (8), 1381 (2002)

• [Sabathil2002]
Towards fully quantum mechanical 3D device simulation
M. Sabathil, S. Hackenbuchner, J. A. Majewski, G. Zandler, P. Vogl
Journal of Computational Electronics 1, 81 (2002)

• [SaitoS2001]
Optical Properties and Raman Spectroscopy of Carbon Nanotubes
M.S. Dresselhaus, G. Dresselhaus, P. Avouris (Eds.)
Topics in Applied Physics 80, Springer (2001)

• [Sarma2002]
Realistic tight-binding model for the electronic structure of II-VI semiconductors
S. Sapra, N. Shanthi, D. D. Sarma
Physical Review B 66, 205202 (2002)

• [SawamuraOME2018]
Nearest-neighbor sp3d5s* tight-binding parameters based on the hybrid quasi-particle self-consistent GW
method verified by modeling of type-II superlattices
A. Sawamura, J. Otsuka, T. Kato, T. Kotani, S. Souma
Optical Materials Express 8, 1569 (2018)

• [Scholze2000]
Single-Electron Device Simulation
A. Scholze, A. Schenk, W. Fichtner
IEEE Transactions on Electron Devices 47, 1811 (2000)

• [Schwierz2010]
Reversed Anionic Hofmeister Series: The Interplay of Surface Charge and Surface Polarity
N. Schwierz, D. Horinek, R. R. Netz
Langmuir 26, 7370 (2010)

• [SirtoriPRB1994]
Nonparabolicity and a sum rule associated with bound-to-bound and bound-to-continuum intersubband
transitions in quantum wells
C. Sirtori, F. Capasso, J. Faist, and S. Scandolo
Physical Review B 50, 8663 (1994)

• [Sirtori1998]
GaAs/AlGaAs quantum cascade lasers
C. Sirtori, P. Kruck, S. Barbieri, P. Collot, J. Nagle, M. Beck, J. Faist, U. Oesterle
Applied Physics Letters 73 (24), 3486 (1998)

• [SchäfflerSST1997]
High-Mobility Si and Ge structures
F. Schäffler
Semiconductor Science and Technology 12, 1515 (1997)

• [SchubertAPL1996]
Enhancement of deep acceptor activation in semiconductors by superlattice doping

1391

https://doi.org/10.1103/PhysRevB.74.195208
https://doi.org/10.1063/1.1498861
https://doi.org/10.1023/A:1020719928653
http://doi.org/10.1007/3-540-39947-X_9
https://doi.org/10.1103/PhysRevB.66.205202
https://doi.org/10.1364/OME.8.001569
https://doi.org/10.1364/OME.8.001569
https://doi.org/10.1109/16.870553
https://doi.org/10.1021/la904397v
https://doi.org/10.1103/PhysRevB.50.8663
https://doi.org/10.1103/PhysRevB.50.8663
https://doi.org/10.1063/1.122812
https://doi.org/10.1088/0268-1242/12/12/001
https://doi.org/10.1063/1.117206

nextnano++ Documentation, Release 1.25.13

E. F. Schubert, W. Grieshaber, I. D. Goepfert
Appl. Phys. Lett. 69, 3737 (1996)

• [TsuEsaki1973]
Tunneling in a finite superlattice
R. Tsu and L. Esaki
Appl. Phys. Lett. 22, 562 (1973)

• [VurgaftmanJAP2001]
Band parameters for III-V compound semiconductors and their alloys
I. Vurgaftman and J. R. Meyer
J. Appl. Phys. 89, 5815 (2001)

• [VurgaftmanJAP2003]
Band parameters for nitrogen-containing semiconductors
I. Vurgaftman and J. R. Meyer
J. Appl. Phys. 94, 3675 (2003)

• [VurgaftmanNatCommun2011]
Rebalancing of internally generated carriers for mid-infrared interband cascade lasers with very low power
consumption
I. Vurgaftman, W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, J. Abell, J.R. Lindle, J.R.
Meyer
Nature Communications 2, 585 (2011)

• [VoglJPCS1983]
A Semi-Empricial Tight-Binding Theory of the Electronic Structure of Semiconductors
P. Vogl, H. P. Hjalmarson, and J. D. Dow
Journal of Physics and Chemistry of Solids 44 (5), 365 (1983)

• [WackerAPL2005]
Self-consistent theory of the gain linewidth for quantum-cascade lasers
F. Banit, S.-C. Lee, A. Knorr, A. Wacker
Appl. Phys. Lett. 86, 041108 (2005)

• [WackerPRB2002]
Gain in quantum cascade lasers and superlattices: A quantum transport theory
A. Wacker
Phys. Rev. B 66, 085326 (2002)

• [Wang2004]
Quantum mechanical calculation of hole mobility in silicon inversion layers under arbitrary stress
E. Wang, P. Matagne, L. Shifren, B. Obradovic, R. Kotlyar, S. Cea, J. He, Z. Ma, R. Nagisetty, S. Tyagi, M.
Stettler, M.D. Giles
IEDM Technical Digest. IEEE International Electron Devices Meeting (2004)

• [ZakharovaPR2001]
Hybridization of electron, light-hole, and heavy-hole states in InAs/GaSb quantum wells
A. Zakharova, S. T. Yen, K. A. Chao
Physical Review B 64, 235332 (2001)

• [ZhangXia2006]
Optical properties of GaN wurtzite quantum wires
X. W. Zhang, J. B. Xia
J. Phys.: Condens. Matter 18, 3107 (2006)

• [Zhao2021]
High Performance p-i-n Photodetectors on Ge-on-Insulator Platform

1392 Chapter 15. Journal Papers

https://doi.org/10.1063/1.1654509
https://doi.org/10.1063/1.1368156
https://doi.org/10.1063/1.1600519
https://doi.org/10.1038/ncomms1595
https://doi.org/10.1038/ncomms1595
https://doi.org/10.1016/0022-3697(83)90064-1
https://doi.org/10.1063/1.1851004
https://doi.org/10.1103/PhysRevB.66.085326
https://doi.org/10.1109/IEDM.2004.1419091
https://doi.org/10.1103/PhysRevB.64.235332
https://doi.org/10.1088/0953-8984/18/11/016
https://doi.org/10.3390/nano11051125

nextnano++ Documentation, Release 1.25.13

X. Zhao, G. Wang , H. Lin, Y. Du, X. Luo, Z. Kong, J. Su, J. Li , W. Xiong. Y. Miao, H. Li, G. Guo, H. H.
Radamson
Nanomaterials 11, 1125 (2021)

1393

nextnano++ Documentation, Release 1.25.13

1394 Chapter 15. Journal Papers

CHAPTER

SIXTEEN

THESES

• [AndlauerPhD2009]
Optoelectronic and spin-related properties of semiconductor nanostructures in magnetic fields
T. Andlauer
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 105, Verein zur Förderung des Walter Schottky Instituts der Technischen
Universität München e.V., München, 157 pp. (2009)

• [BirnerPhD2011]
Modeling of semiconductor nanostructures and semiconductor-electrolyte interfaces
S. Birner
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 135, Verein zur Förderung des Walter Schottky Instituts der Technischen
Universität München e.V., München, 239 pp. (2011)
ISBN 978-3-941650-35-0

• [Eissfeller2008]
Linear Optical Response of Semiconductor Nanodevices
T. Eißfeller
Diploma Thesis, Technische Universität München, Germany (2008)

• [GreckPhD2012]
Efficient calculation of dissipative quantum transport properties in semiconductor nanostructures
P. Greck
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 153,
Verein zur Förderung des Walter Schottky Instituts der Technischen Universität München e.V., München,
149 pp. (2012)
ISBN 978-3-941650-53-4

• [HackenbuchnerPhD2002]
Elektronische Struktur von Halbleiter-Nanobauelementen im thermodynamischen Nichtgleichgewicht
S. Hackenbuchner
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 48, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität
München e.V., München, 213 pp. (2002)

• [KubisPhD2009]
Quantum transport in semiconductor nanostructures
T. C. Kubis
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 114, Verein zur Förderung des Walter Schottky Instituts der Technischen
Universität München e.V., München, 253 pp. (2009)

• [SabathilPhD2005]
Opto-electronic and quantum transport properties of semiconductor nanostructures

1395

https://d-nb.info/994061374/34
https://www.nextnano.com/downloads/publications/PhD_thesis_Stefan_Birner_TUM_2011_WSIBook.pdf
http://d-nb.info/1031075062/34
https://www.nextnano.com/downloads/publications/PhD_thesis_Stefan_Hackenbuchner_TUM_2002.pdf
https://nanohub.org/resources/8613/download/Diss_tkubis_final_print.pdf
https://www.nextnano.com/downloads/publications/PhD_thesis_Matthias_Sabathil_TUM_2004.pdf

nextnano++ Documentation, Release 1.25.13

M. Sabathil
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 67, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität
München e.V., München, 156 pp. (2005)

• [SchusterPhD2005]
Hochortsaufgelöste optische Spektroskopie an niedrigdimensionalen Halbleiterstrukturen
R. Schuster
PhD Thesis, University of Regensburg, Germany, 2005

• [ZiboldPhD2007]
Semiconductor based quantum information devices: Theory and simulations
T. Zibold
Selected Topics of Semiconductor Physics and Technology (G. Abstreiter, M.-C. Amann, M. Stutzmann,
and P. Vogl, eds.), Vol. 87, Verein zur Förderung des Walter Schottky Instituts der Technischen Universität
München e.V., München, 151 pp. (2007)

1396 Chapter 16. Theses

https://doi.org/10.5283/epub.10343
https://www.nextnano.com/downloads/publications/PhD_thesis_Tobias_Zibold_TUM_2007.pdf

CHAPTER

SEVENTEEN

PDF DOCUMENTATION

• version 1.25.13 from 2025-04-25

Last update: 2025/06/26

1397

https://www.nextnano.com/docu/nextnanoplus/nnp_1.25.13.pdf

	Overview
	Running
	Input file
	Output
	Examples
	Material database

	Models
	Crystal coordinate systems
	Introduction to strain calculation
	Strain tensor
	Stress tensor
	Strain and stress calculation
	In general
	In nextnano++

	Piezoelectricity in wurtzite
	Specify crystal orientation
	Parameter sweep of the angle using Template: Sweep over the variable theta
	Strain
	Piezoelectric effect (first-order)
	Post-Processing for polarization
	Alloy content dependence
	AlGaN
	Piezoelectric effect (second-order)

	Electrostatic potential
	Poisson Equation

	Charge densities
	Classical
	Quantum mechanical
	Multi-band model (kp model)
	Single-band model

	Doping
	Activation Energies

	Incomplete ionization
	Carrier transport
	Drift-Diffusion Model

	Generation and recombination rates
	Spontaneous emission rate
	Generation by the irradiation (fixed(applied))

	Mobility
	Low-field mobility models
	Constant
	Masetti
	Arora
	MINIMOS 6

	High-Field Mobility Models
	Hänsch
	Extended Canali
	Transferred-Electron
	Eastman-Tiwari-Shur

	Hamiltonian: 8-band model for zincblende
	The Model
	Offsets
	Deformation potentials
	k.p parameters
	Default settings
	Luttinger parameters and electron effective mass
	Rescaling S

	Zeeman Term

	Interface Hamiltonian 8-band Zinc-Blende
	The Model
	Implementation and usage

	Excitons
	Model
	Averaging model parameters
	Excitons in multiband Hamiltonians

	Optical spectra
	Fermi’s golden rule

	Optoelectronic characterization
	Current and Power
	^Photocurrent
	Power
	Absorbed-power
	Emitted-power

	Efficiencies
	IQE - internal quantum efficiency
	RQE - volume quantum efficiency

	Courses
	Tutorials
	Introduction
	Basics
	Defining Structures
	— FREE — Hello World
	Header
	Introduction
	Global Settings of the Simulation
	Numerical Grid
	Defining the Structure
	Bondary conditions
	Choice of Bands
	Running the Simulation and Viewing the Results

	— FREE — Finite Periodic Structures
	Header
	Introduction
	Main
	Input file 1: Repeated regions
	Input file 2: Repeated structres

	Important things to remember

	— FREE — Constant Doping
	Header
	Introduction
	Overview
	The Basics I: Adding doping to bulk material
	The Basics II: Adding different doping to bulk material (p-n junction)

	Important things to remember

	— FREE — Adding and Replacing Doping
	Header
	Introduction
	Overview
	1. Replace and remove doping
	2. Add different dopants

	Important things to remember

	— FREE — Doping Functions
	Header
	Introduction
	Overview
	Using pre-defined doping profiles
	2. Using custom doping profiles
	Important things to remember

	— FREE — Doping in Heterostructure
	Header
	Introduction
	Specifying the structure
	Specify impurity species

	— FREE — Variables
	Header
	Introduction
	Application: Performing a parameter sweep

	Important things to remember

	Importing files
	Header
	Importing data
	Reading external files
	Electric potential
	Strain tensor
	Alloy compositions

	Imported data in the simulation
	Electric potential
	Strain tensor
	Alloy compositions
	Resulting bandedges

	2D and 3D simulations

	Contacts and Boundary Conditions
	— FREE — Schottky Barrier
	Header
	Introduction
	Schottky Barrier

	— FREE — Surface Charges
	Header
	Interface charges (surface states)
	Surface states - Acceptors

	Electrostatics and Strain
	— DEV — Solution of the Poisson equation for different charge density profiles
	1) Dipole: Constant charge density profile of positive and negative charge
	2) Linear charge density profile of positive and negative charge
	3) Delta-function like charge density profile of positive and negative charges

	Band gap of strained AlGaInP on GaAs substrate
	Strain
	band gaps

	— NEW/EDU — Piezo- and Pyroelectric charges in GaN/AlN/GaN wurtzite heterostructure
	Header
	Introduction
	Crystallographic orientation
	Strain-induced energy shift
	Energy profiles without the strain effects
	Including energy shift due to pseudomorphic strain

	Polarization Effects
	Pyroelectric polarization (spontaneous polarization)
	Piezoelectric polarization
	Electrostatic potential of piezo- and pyroelectric charges
	N-face polarity versus Ga-face polarity

	Exercises

	Currents
	— EDU — Electron transport in n-type Silicon
	Header
	Problem
	Input file
	Solutions
	Mean drift velocity
	Mean free path
	Resistance and conductivity

	Further Exercises
	Answers

	— DEV — I–V characteristics of n-doped Si structure
	I-V characteristics of an n-doped Si structure
	Structure
	Results

	I-V characteristics of an n-i-n-doped Si structure
	Structure
	Results

	— DEV — I–V characteristics of n-doped GaN single layer
	Header
	Introduction
	IV characteristics of an n-doped GaN single layer
	Results
	1D
	2D
	3D

	— DEV — n-i-n Si resistor
	Structure
	Simulation
	Electron densities
	I-V characteristics
	Quantum mechanical calculations
	Conclusion

	Other
	— EDU — Interpolation of 2-component alloys
	Header
	Introduction
	How to set up simulations and why
	Interpolations
	Linear - no bowing
	Quadratic - constant bowing
	Cubic - composition-dependent bowing
	Band offsets with the different schemes
	Exercises

	p-n Junctions & Solar Cells
	— FREE — GaAs p–n junction
	Doping concentration
	Carrier concentrations
	Net charges (space charge)
	Electric field
	Electrostatic potential, conduction and valence band edges
	Quantum mechanical solution
	Non-equilibrium
	2D/3D Simulations
	Complete input file for nextnano++

	I–V characteristic of GaAs p–n junction | 1D/2D/3D
	Introduction
	Input File
	Results

	— NEW/EDU — p-n junction in the dark
	Header
	Introduction
	At equilibrium
	Under applied bias
	J-V curve
	Recombination current region
	Diffusion current region
	High-injection region
	Series-resistance effect

	Numerical control
	Exercises

	— EDU — p-n junction under illumination
	Header
	Introduction
	How to illuminate in nextnano++
	Short circuit
	The Photovoltatic effect
	Open circuit
	J-V curve
	Effects of irradiation intensity and temperature
	Effect of irradiation intensity
	Effect of temperature

	Exercises

	GaAs solar cell
	Header
	Input files
	Reference
	Structure
	Simulation procedure
	How does a solar cell work? & How do we simulate it?
	1. Solar spectrum
	1. Generation rate (internal calculation)
	1. Generation rate (import)
	4. Current-Voltage characteristics
	5. Solar efficiency

	Cascade solar cell (Tandem solar cell)
	Outputs
	Band profile
	Band gap
	Electron and hole densities
	Tunnel junction

	What we can do on a solar cell using nextnano

	Light-Emitting Diodes
	InGaAs Multi-quantum well laser diode
	Header
	Introduction
	Current equation
	Recombination of carriers and emission spectrum
	Input file
	Results
	Band structure
	Energy eigenstates and eigenvalues
	Charge densities
	Emission and absorption spectra
	Current and internal quantum efficiency

	UV LED: Quantitative evaluation of the effectiveness of EBL
	Header
	Structure
	Scheme
	Results
	Current-voltage characteristics
	Bandedges
	Current Density
	Charge carrier densities
	Power of light emission

	Internal quantum efficiency

	What can we do further?

	UV LED: Quantitative evaluation of the effectiveness of superlattice structure in p-region
	Header
	Hole density estimation
	Structure
	Bandedges

	Scheme
	Schrödinger-Poisson equation
	Ionization of dopant

	Results
	Spatially averaged hole density
	Hole density/Ionized acceptor density distribution

	IQE estimation
	Structure
	Bandedges

	Scheme
	IQE result

	What can we do further?

	Quantum Mechanics
	Parabolic Quantum Well (GaAs / AlAs)
	General comments on the solutions of a parabolic potential
	Parabolic quantum well: 10 nm AlAs / 10 nm AlGaAs / 10 nm AlAs
	Bandeges
	Technical details
	Output
	Matrix elements

	“Infinite” (30 eV) parabolic QW confinement for GaAs
	“Infinite” (30 eV) half-parabolic QW confinement for GaAs
	Conclusion

	Triangular well
	Structure
	Comparison of nextnano++ and the analytic solution

	— FREE — Double Quantum Well
	Structure: AlGaAs / 6 nm GaAs / AlGaAs / 6 nm AlGaAs / AlGaAs
	Material Parameters
	Results
	1. barrier width = 4 nm
	Output

	2. barrier width = 1 ~ 14 nm
	Output

	Tip: Sweeping

	— EDU — Orbitals of the Hydrogen Atom
	Header
	Introduction
	Preparing the simulation
	Convenient vacuum “material”
	The grid and simulation domain
	Regularized Coulomb potential

	Results and Discussion
	Orbitals s1 and s2
	Regularized potential
	Energies
	Degeneracy of orbitals

	Exercises

	Quantum Wells
	InAs / GaSb broken gap quantum well (BGQW) (type-II band alignment)
	Results

	Exciton Binding Energy in an Infinite Quantum Well
	Description of analytical formulas
	1) Bulk
	2) Quantum well (type-I)

	Numerical calculation
	Simulation
	Input file
	Parameter Sweep
	Results

	Scattering times for electrons in unbiased and biased single and multiple quantum wells
	Scattering time as a function of quantum well width
	Scattering times as a function of electric field magnitude
	Single quantum wells
	Double quantum wells
	Biased double quantum well

	— DEV — Strain effects in freestanding nitride nanostructures
	Structure
	Results
	Strain tensor components
	Elastic energy density

	Quantum Wires
	Hexagonal GaAs/AlGaAs nanowires
	Part A: Schrödinger equation of a two-dimensional core-shell structure
	Circular core-shell structure
	Hexagonal core-shell structure
	Alloy sweep

	Part B: Hexagonal 2DEG - Two-dimensional electron gas in a delta-doped hexagonal shaped GaAs/AlGaAs nanowire heterostructure

	Electron wave functions in a cylindrical well (2D Quantum Corral)
	Structure
	Simulation outcome
	Electron wave functions

	Energy spectrum

	T-shaped quantum wire grown by cleaved edge overgrowth (CEO): wave functions without strain
	Header
	Structure
	Input file
	Results
	Effective mass approximation
	6-band k.p approximation
	Eigenenergies

	Including anisotropic effects in the effective mass model

	T-shaped quantum wire grown by cleaved edge overgrowth (CEO): wave functions and strain
	Header
	Calculation of the strain tensor
	Calculation of the piezoelectric charge density
	Calculation of the conduction and valence band edges
	Electron and heavy hole wave functions

	Quantum Dots
	Energy levels in idealistic 3D cubic and cuboidal shaped quantum dots
	Energy levels in an idealistic 3D cubic quantum dot
	Intraband (= intersubband) transitions

	Energy levels in an idealistic 3D cuboidal shaped quantum dot with Lx = Ly =Lz

	Hole energy levels of an “artificial atom” - Spherical Si Quantum Dot (6-band k.p)
	Introduction
	Results
	Comparison of nextnano3 and nextnano++
	Additional comment for experts

	Quantum Dot Molecule
	Simulation
	Results
	Electron and heavy hole ground states
	Electron and heavy hole energies
	Bonding and antibonding heavy hole state at anticrossing point
	Electron-hole transition energies and overlap

	Energy levels in a pyramidal shaped InAs/GaAs quantum dot including strain and piezoelectric fields
	Introduction
	Conduction and valence band profiles
	Electron wave functions (single-band effective-mass approximation)
	10 nm quantum dot
	14 nm quantum dot (Pryor’s Fig. 7)

	Hexagonal shaped GaN quantum dot embedded in AlN (wurtzite)
	Header
	Conduction and valence band alignment in AlN/GaN QWs (unstrained)
	Conduction and valence band alignment in AlN/GaN QWs (pseudomorphically strained)
	Conduction and valence band edges in AlN/GaN QWs (pseudomorphically strained, including piezo- and pyroelectric fields)
	Electron and hole wave functions in AlN/GaN QWs
	Hexagonal shaped GaN quantum dot embedded in AlN (wurtzite)

	— DEV — Energy levels of an “artificial atom” - Spherical and ellipsoidal CdSe Quantum Dot
	Energy levels of an “artificial atom” - Spherical CdSe Quantum Dot
	Energy levels of an “artificial atom” - Ellipsoidal, cigar-shaped CdSe quantum dot
	Energy levels of an “artificial atom” - 2D harmonic potential

	Electronic Band Structures
	k.p dispersion in bulk GaAs (strained / unstrained)
	Band structure of bulk GaAs
	Bulk dispersion along [100] and along [110]
	8-band k.p vs. effective-mass approximation

	Band structure of strained GaAs
	Analysis of eigenvectors

	k.p dispersion in bulk unstrained, compressively and tensely strained GaN (wurtzite)
	k.p dispersion in bulk unstrained GaN (wurtzite)
	Calculating the bulk k.p dispersion

	k.p dispersion in compressively and tensilely strained GaN (wurtzite)
	Energy dispersion E(k) in three dimensions

	k.p dispersion in bulk unstrained ZnS, CdS, CdSe and ZnO (wurtzite)
	Introduction
	Bulk dispersion along [0001] and [110]
	Results
	Plotting E(k) in three dimensions

	k.p dispersion in bulk unstrained ZnO

	Energy dispersion of holes in a quantum well
	a) Unstrained GaAs/ AlAs quantum well
	k|| dispersion for the three uppermost subbands

	b) Tensely strained GaSb/ AlSb quantum wells
	c) Tensely strained In0.43Ga0.57As/ InP quantum wells
	d) Strained In0.2Ga0.8As/ GaAs quantum well
	1DIn20Ga80AsQW_75nm_sg.in
	1DIn20Ga80AsQW_75nm_kp.in
	1DIn20Ga80AsQW_75nm_kp_dispersion.in

	k.p dispersion of an unstrained GaN QW embedded between strained AlGaN layers
	[0001] growth direction
	Calculation of electron and hole energies and wave functions for k|| = 0
	k|| dispersion: Calculation of the electron and hole energies and wave functions for k|| = 0.

	[10-10] growth direction (m-plane)
	k|| dispersion: Calculation of the electron and hole energies and wave functions for k|| = 0.

	Energy dispersion of a cylindrical shaped GaN nanowire
	Introduction
	Electrons
	Holes

	Electronic band structure of 2DHG in Silicon inversion layers under pseudomorphic strain | 1D
	Unstrained silicon inversion layer with (001) surface orientation
	Unstrained silicon inversion layer with (011) surface orientation
	Unstrained silicon inversion layer with (111) surface orientation
	1% tensilely strained silicon inversion layer with (001) surface orientation
	1% compressively strained silicon inversion layer with (001) surface orientation
	Unstrained silicon inversion layer with (001) surface orientation with different k|| points

	Electronic band structure of 2DHG in Si inversion layers under arbitrary stress | 1D
	Header
	Introduction
	Coordinate systems
	Defining the strain tensor
	Uniaxial stress along [110]
	Biaxial compressive stress along [100] and [010]
	Biaxial tensile stress along [100] and [010]

	Simulation results
	No stress applied

	Superlattices
	Dispersion in infinite superlattices: Minibands (Kronig-Penney model)
	Superlattice 1: 4 nm AlGaAs / 4 nm GaAs
	Superlattice 2: 6 nm AlGaAs / 6 nm GaAs
	Technical details
	Dispersion in bulk GaAs
	Template

	InAs / In0.4Ga0.6Sb superlattice dispersion with 8-band k.p (type-II band alignment)
	Conduction and valence band edges
	Electron and hole wave function for k||=0
	Electron and hole energies for k||=0
	Electron and hole energies for kz =0

	Multiple quantum wells and finite superlattices
	Structure
	Simulation Settings
	Ground state energies
	Wave function in a superlattice
	Wave function in a multiple quantum well system

	— NEW — Modeling type-II superlattice using interface Hamiltonian within 8-band k p method
	Introduction
	Results

	— DEV — Artificial quantum dot crystal - Superlattice dispersion (minibands)
	Cubic Quantum Dots
	Results
	Tetragonal Quantum Dot
	Results

	Cascade Structures
	Simple quantum cascade structure
	Output
	Bandedges
	Eigenvalues
	Wave Functions
	Effective masses
	Intersubband matrix elements

	Quantum-Cascade Lasers
	GaAs/ AlGaAs Quantum-Cascade Laser
	Bandedge profile
	Dipole matrix elements

	QCL examples
	1. = 9 m, i.e. 33 THz or 138 meV
	2. = 9.4 m or 132 meV
	3. = 10 m or 124 meV (77 K)
	4. = 66 m, i.e. 4.54 THz or 18.8 meV
	5. = 89.2 m, i.e. 3.4 THz or 13.9 meV
	6. = 107 m, i.e. 2.8 THz or 11 meV
	7. = 9.9 m, i.e. 30.2 THz or 125 meV

	Optical Spectra and Transitions
	Single Particle
	Optical absorption for interband and intersubband transitions
	Contents
	Principle and nextnano++ implementation
	k space
	Optical absorption spectrum
	Parameters in k_integration{} (for fine tuning)

	1D tutorial for intersubband transitions: Quantum well infrared photodetector
	Input files
	GaAs/AlGaAs single QW - band structure, eigenstates and absorption
	InAs/AlSb single QW - small band gap & large confinement
	Periodic case

	1D tutorial for interband transitions: Frankenberger
	Input files
	Optical absorption and interband transitions
	Doping and Schottkey barrier

	Optical interband transitions in a quantum well - Matrix elements and selection rules
	Eigenstates and wave functions in the quantum well
	a) Finite quantum well

	Overlap integrals
	Case b) Infinite quantum well
	Case a) finite quantum well

	6-band k.p calculations for the infinite barrier AlAs/ GaAs/ AlAs quantum well
	6-band k.p calculations for the finite barrier AlAs/ GaAs/ AlAs quantum well

	Optical intraband transitions in a quantum well - Momentum matrix elements and selection rules
	Eigenstates and wave functions in the quantum well
	Momentum matrix elements
	8-band k.p calculation for k|| = (Ky,kz) = 0

	Optical absorption of an InGaAs quantum well | 1D
	Header
	Introduction
	Simulation
	Input file
	Eigenstates in the quantum well
	Optical absorption spectrum

	Intersubband absorption of an infinite quantum well
	Structure
	Results

	Intersubband transitions in InGaAs/AlInAs multiple quantum well systems
	Layer sequence
	Material parameters
	Method
	Results

	Interband absorption of a GaAs cylindrical quantum wire
	Structure
	Results
	Absorption
	Eigenvalues, transition energies, and occupations
	Transition intensity (Momentum matrix element)
	Eigenstates

	Intersubband absorption of a GaAs cylindrical quantum wire
	Structure
	Scheme
	Results
	Absorption
	Eigenvalues, transition energies, and occupations
	Transition intensity (Momentum matrix element)
	Eigenstates

	Absorption of a GaAs spherical quantum dot
	Structure
	Scheme
	Results
	Absorption
	Eigenvalues, transition energies, and occupations
	Transition intensity (Momentum matrix element)
	Eigenstates

	Optics: Optical gain of InGaAs quantum wells with different strain
	Introduction
	Results
	Discussion

	— DEV — Optical gain and spontaneous emission rate of strained GaN quantum well
	Structure
	Results
	Spontaneous emission rate
	Optical Gain

	Excitons
	Exciton absorption in infinite quantum well
	Theory of optical excitonic correction
	Input File
	Simulation 1: single-band model
	Simulation 2: 8-band kp model

	SiGe QW excitonic absorption
	Introduction

	SiGe MQW QCSE electro-absorption modulator (EAM)
	Introduction
	Simulation 1: Only intrinsic region
	Simulation 2: Whole pin device

	2-Dimensional Electron Gases (2DEGs)
	— FREE — Schrödinger-Poisson - A comparison to the tutorial file of Greg Snider’s code
	Structure
	Doping
	Conduction and valence band edges
	Electron eigenstates and eigenfunctions
	Electron and hole densities
	2D simulations
	Self-consisent Schrödinger-Poisson solution

	Si/SiGe MODQW (Modulation Doped Quantum Well)
	Introduction
	Layer sequence
	Material parameters
	Method

	Results

	— DEV — Shubnikov-de Haas effect and subband occupation of 2DEG
	Depletion of electrons in a two-dimensional electron gas (2DEG)
	Structure simulated
	Input files
	1D simulations
	2D Simulations
	3D Simulations

	Transmission and Conductance (CBR method)
	Transmission (CBR)
	Header
	Introduction
	Single potential barrier
	Step potential
	Quantum well
	Double potential barrier
	CBR efficiency assessment

	Landauer conductance and conductance quantization: from quantum wires to quantum point contacts
	Header
	Introduction
	Simulations of the current in 1D wires
	Transmission and conductance of QPC, conductance quantization

	Electron Flying Qubit
	— DEV — Efficient method for the calculation of ballistic quantum transport - The CBR method (2D example)
	Header
	Introduction
	Simulation setup
	Transmission
	Lead modes

	Transmission through a nanowire (CBR)
	Header
	System
	Input file
	CBR efficiency assessment
	Lead modes

	Conductance of a quantum point contact (gated two-dimensional electron gas)
	Simulated Structure
	The Simulation
	Phase 1: Obtaining the conduction band in the 2DEG region using nextnano++
	Phase 2: Setting up Kwant
	Phase 3: Computing the conductance coefficients with Kwant

	Phase 4: Computing conductance with potential from self-consistent Schrödinger-Poisson calculations

	Transistors
	HEMT structure (High Electron Mobility Transistor)
	HEMT structure
	2D/ 3D simulations

	Two-dimensional electron gas in an AlGaN/GaN FET
	Introduction
	Variation of the AlxGa1-xN layer thickness and alloy content x (Fig. 2 and Fig. 3 of [Jogai2003])
	Variation of the Schottky barrier height (Fig. 7 of [Jogai2003])
	AlGaN/GaN FET including a GaN cap layer
	Variation of the GaN cap layer thickness (Fig. 5 of [Jogai2003])
	Additional comments

	MOS Capacitor & MOSFET
	Contents
	Part 1: Capacitance-voltage characteristics of a 2D MOS capacitor
	Part 2: Current-voltage characteristics of a 2D n-Channel MOSFET
	Part 3: Mobility models and pinch-off in a 2D n-Channel MOSFET
	References

	2D MOS Capacitor
	Low-Frequency Capacitance
	The Schottky Barrier, Doping Concentration, Depletion Region
	Appendix: 2D MOS

	2D N-Ch MOSFET
	Input Characteristics
	Output Characteristics
	Transconductance and Channel Conductance

	Comparison of Different Mobility Models
	Channel Length Modulation and Pinch-Off effect
	Short Channel Effects, DIBL and Punch-Through
	Appendix: MOSFET

	Two-dimensional electron gas in a Si MOSFET
	Header
	Introduction
	Layer sequence
	Calculations
	Results
	Electron sheet density in the inversion channel as a function of applied gate voltage

	Electron wave functions of a 2D slice of a Triple Gate MOSFET
	2D Simulation
	Structure
	Simulation Details

	Results
	Electron wave functions |2|
	Electron density

	Isotropic electron masses
	3D simulation of the Triple Gate MOSFET

	Single-electron transistor - laterally defined quantum dot
	Introduction
	Part 1: 1D simulation (self-consistent Schrödinger-Poisson)
	Part 2: 3D simulation with top gates (Poisson equation only)

	— DEV — Ultrathin-body DG MOSFET with 2-nm channel
	Double Gate MOSFET
	Input file
	Electron densities
	I-V characteristics

	Ultrathin-body DG MOSFET with 5-nm channel
	Introduction
	Structure
	Electron density and conduction band profile
	Electron wave functions
	I-V characteristics

	Magnetic Effects
	Fock-Darwin states of a parabolic, anisotropic (elliptical) potential in a magnetic field
	1D parabolic confinement along the x direction with 0=4.6 meV (1D simulation)
	1D parabolic confinement along the y direction with 0=6.1 meV (1D simulation)
	2D parabolic, anisotropic (elliptical) confinement with x=4.6 meV and y=6.1 meV - Fock-Darwin-like spectrum (2D simulation)

	Fock-Darwin states of parabolic, isotropic potential in a magnetic field
	Header
	Introduction
	2D parabolic confinement with 0=4 meV
	Results

	2D parabolic confinement with 0=3 meV - Fock-Darwin spectrum
	Results

	Landau levels of a bulk GaAs sample in a magnetic field
	Simulation details
	Results

	Hole wave functions in a quantum wire subjected to a magnetic field
	Structure
	Single-band effective-mass approximation
	Hole wave functions (without magnetic field)
	Hole wave functions (with magnetic field)

	6-band k.p approximation
	Hole wave functions - (without magnetic field)

	— DEV — Vertically coupled quantum wires in a longitudinal magnetic field
	Structure
	Comparison with analytical results
	Comparison with experimental results

	Numerics
	General
	Convergence
	Introduction
	Setting the input file for performing self-consistent current-Schrödinger-Poisson computations
	Talking about convergence
	Recommended strategy
	Getting some intuition…
	Sweeping parameters
	… and when nothing works

	Residuals
	Quasi-Fermi Levels
	Carrier Densities
	Electric Potential
	Self-Consistent Simulations

	Big 3D systems
	Approaching large 3D designs with Schrödinger-Poisson self-consistent solver
	Reducing dimensionality of large 3D designs
	Header
	Device to be simulated
	Reducing the dimensionality of the problem
	Learning from 1D Simulations
	Refining grid in 2D Simulations

	Optimizing electrostatics simulation for large 3D designs
	Header
	Device to be simulated
	Starting simulations in the semiclassical domain
	Refining the grid of 3D-input files
	Considerations if quantum computations will be required

	Optimizing Schrödinger-Poisson self-consistent solver for electrostatic quantum dots
	Header
	Device to be simulated
	Setting input files for self-consistent calculations of Schrödinger-Poisson equations
	Define the goals of the quantum computations
	Optimizing the grid within the quantum regions
	1. Defining the bounds of the quantum region: at the beginning does not need to be perfect!
	2. Finding a suitable number of eigenvalues
	3. Making the grid fine in the quantum region
	4. Expanding the Quantum Region: time to get beautiful plots (and accurate results)!
	Final considerations

	Tricks and Hacks
	C-V curve calculation for general structures (Post-processing by python)
	Header
	Introduction
	Post-processing without nextnanopy
	Example

	Post-processing with nextnanopy

	Interband tunneling current in a highly-doped nitride heterojunction
	Header
	Introduction
	The script
	Options in the script
	Results

	Optical generation in InGaAs/GaAs QW
	Header
	Introduction
	Simulation Scheme
	First Step
	Second Step
	Third Step

	Results

	Photoluminescence of Quantum Well
	Header
	Introduction
	Simulation scheme
	Simulation

	From GDSII to Transmission Workflow
	Header
	The simulated structure : Electron flying qubit
	Work flow
	1. Implementing the structure without gates
	2. Importing the geometry of the gates
	3. Setup of the input file for 3D simulations
	4. Setup of the input file for 2D simulations
	5. Plotting the transmission through the channel

	Wurtzite GaN/AlN/GaN on Si(111)
	Header
	Introduction
	Solution for a special case
	Implementation

	Automatically running processes after simulation
	Header
	Properties of the input file
	Deleting excess output files

	Other Simulations
	Christmas HEMT (2021/12)

	Material Database
	Introduction to Material Database
	Parameters of Elements & Binary Compounds
	Bowing Parameters and Ternary Alloys
	Constant Bowing Parameters
	Fraction-Dependent Bowing Parameters
	Ternaries, Quaternaries, & Quinternaries

	Defining New Materials
	Database or Input File?
	Modifying an Existing Material
	Defining a New Binary Compound or Element
	Defining a New Alloy

	Interpolation Schemes
	Introduction
	Two-component alloys
	Linear - no bowing
	Quadratic - constant bowing
	Cubic - composition-dependent bowing

	Three-component alloys
	Four-component alloys
	Six-component alloys
	Eight-component alloys

	Default Materials and Alloys
	Insulators and Metals
	Binary alloys
	Ternary alloys
	Quaternary alloys
	Quinternary alloys

	Definition of Band Offsets (zincblende)

	Keywords
	postprocessor{ }
	datafile
	goto_output
	call

	import{ }
	directory
	file{ }
	file{ name }
	file{ filename }
	file{ format }
	file{ scale }
	file{ number_of_dimensions }
	analytic_function{ }
	analytic_function{ name }
	analytic_function{ function }
	analytic_function{ label }
	analytic_function{ component{ } }
	analytic_function{ component{ function_i } }
	analytic_function{ component{ label } }
	output_imports{ }

	output{ }
	directory
	mandatory_path
	set_origin{ }
	set_origin{ x }
	set_origin{ y }
	set_origin{ z }
	format2D
	format3D
	silent
	write_avs_v
	write_origin_plt
	write_gnuplot_plt
	use_gnuplot_one_file
	only_sections
	section{ }
	section{ name }
	section{ range_x }
	section{ range_y }
	section{ range_z }
	section1D{ }
	section1D{ name }
	section1D{ x }
	section1D{ y }
	section1D{ z }
	section1D{ range_x }
	section1D{ range_y }
	section1D{ range_z }
	section2D{ }
	material_parameters{ }
	material_parameters{ kp_parameters{ } }
	material_parameters{ kp_parameters{ boxes } }
	material_parameters{ spin_orbit_coupling_energies{ } }
	material_parameters{ spin_orbit_coupling_energies{ boxes } }
	material_parameters{ charge_carrier_masses{ } }
	material_parameters{ charge_carrier_masses{ boxes } }
	material_parameters{ static_dielectric_constants{ } }
	material_parameters{ static_dielectric_constants{ boxes } }
	material_parameters{ deformation_potentials{ } }
	material_parameters{ deformation_potentials{ boxes } }

	run{ }
	structure_only{ }
	last_region

	strain{ }
	poisson{ }
	current_poisson{ }
	fermi_limit
	multi_stage_solve
	fast_poisson
	system_solve
	iterations
	current_repetitions
	limit_repetitions
	residual
	residual_fermi
	alpha_fermi
	alpha_iterations
	alpha_scale
	minimum_density_electrons
	minimum_density_holes
	maximum_density_electrons
	maximum_density_holes
	smooth_currents
	output_log
	output_local_residuals

	quantum{ }
	quantum_density{ }
	residual
	iterations
	use_subspace
	subspace_iterations
	subspace_residual_factor
	output_log
	output_local_residuals

	quantum_poisson{ }
	residual
	iterations
	use_subspace
	subspace_iterations
	subspace_residual_factor
	alpha_potential
	output_log
	output_local_residuals

	quantum_current_poisson{ }
	residual
	iterations
	use_subspace
	subspace_iterations
	subspace_residual_factor
	fermi_limit
	current_repetitions
	limit_repetitions
	residual_fermi
	alpha_fermi
	alpha_iterations
	alpha_scale
	alpha_potential
	minimum_density_electrons
	minimum_density_holes
	maximum_density_electrons
	maximum_density_holes
	smooth_currents
	output_log
	output_local_residuals

	quantum_optics{ }

	global{ }
	simulate1D{ }
	simulate2D{ }
	simulate3D{ }
	crystal_zb{ }
	crystal_zb{ x_hkl }
	crystal_zb{ y_hkl }
	crystal_zb{ z_hkl }
	crystal_wz{ }
	crystal_wz{ x_hkl }
	crystal_wz{ y_hkl }
	crystal_wz{ z_hkl }
	crystal_wz{ rotation_c_a_ratio_use_substrate }
	crystal_wz{ rotation_c_a_ratio }
	substrate{ }
	substrate{ name }
	substrate{ alloy_x }
	substrate{ alloy_y }
	substrate{ alloy_z }
	temperature
	temperature_dependent_bandgap
	temperature_dependent_lattice
	magnetic_field{ }
	magnetic_field{ direction }
	magnetic_field{ strength }
	periodic{ }
	periodic{ x }
	periodic{ y }
	periodic{ z }

	impurities{ }
	donor{ }
	donor{ name }
	donor{ degeneracy }
	donor{ energy }
	donor{ N_ref }
	donor{ c }
	acceptor{ }
	acceptor{ name }
	acceptor{ degeneracy }
	acceptor{ energy }
	acceptor{ N_ref }
	acceptor{ c }
	charge{ }
	charge{ name }
	charge{ type }

	contacts{ }
	vacuum_level
	schottky{ }
	schottky{ name }
	schottky{ bias }
	schottky{ barrier }
	schottky{ work_function }
	ohmic{ }
	ohmic{ name }
	ohmic{ bias }
	ohmic{ shift }
	fermi{ }
	fermi{ name }
	fermi{ bias }
	fermi_electron{ }
	fermi_electron{ name }
	fermi_electron{ bias }
	fermi_hole{ }
	fermi_hole{ name }
	fermi_hole{ bias }
	charge_neutral{ }
	charge_neutral{ name }
	charge_neutral{ bias }
	zero_field{ }
	zero_field{ name }
	zero_field{ bias }
	long_directory_names
	bias_steps
	reuse_previous
	bias_output_level

	structure{ }
	region{ }
	user_index
	array_x{ }
	shift
	max
	min

	array_y{ }
	shift
	max
	min

	array_z{ }
	shift
	max
	min

	array2_x{ }
	shift
	max
	min

	array2_y{ }
	shift
	max
	min

	array2_z{ }
	shift
	max
	min

	repeat_profiles
	contact{ }
	name
	remove

	doping{ }
	remove{ }
	constant{ }
	constant{ name }
	constant{ conc }
	constant{ add }
	linear{ }
	linear{ name }
	linear{ conc }
	linear{ x }
	linear{ y }
	linear{ z }
	linear{ add }
	gaussian1D{ }
	gaussian1D{ name }
	gaussian1D{ conc }
	gaussian1D{ dose }
	gaussian1D{ x }
	gaussian1D{ y }
	gaussian1D{ z }
	gaussian1D{ sigma_x }
	gaussian1D{ sigma_y }
	gaussian1D{ sigma_z }
	gaussian1D{ add }
	gaussian2D{ }
	gaussian2D{ name }
	gaussian2D{ conc }
	gaussian2D{ dose }
	gaussian2D{ x }
	gaussian2D{ y }
	gaussian2D{ z }
	gaussian2D{ sigma_x }
	gaussian2D{ sigma_y }
	gaussian2D{ sigma_z }
	gaussian2D{ add }
	gaussian3D{ }
	gaussian3D{ name }
	gaussian3D{ conc }
	gaussian3D{ dose }
	gaussian3D{ x }
	gaussian3D{ y }
	gaussian3D{ z }
	gaussian3D{ sigma_x }
	gaussian3D{ sigma_y }
	gaussian3D{ sigma_z }
	gaussian3D{ add }
	import{ }
	import{ name }
	import{ import_from }

	output_region_index{ }
	boxes

	output_material_index{ }
	boxes

	output_user_index{ }
	boxes

	output_contact_index{ }
	boxes

	output_alloy_composition{ }
	boxes

	output_impurities{ }
	boxes

	output_generation{ }
	boxes

	output_injection{ }
	boxes

	structure{ region{} } - generation & electron injection
	injection{}
	Specifications of generation rate profile
	Print out
	Remove
	Example

	3D

	structure{ region{ integrate{ } } }
	integrate{}

	structure{ region{} } - assigning materials
	binary{}
	ternary_constant{}
	ternary_linear{}
	ternary_pyramid{}
	ternary_trumpet{}
	ternary_import{ }
	quaternary_import{ }
	quinternary_import{ }
	quaternary_constant{}
	quaternary_linear{}
	quaternary_pyramid{}
	quaternary_trumpet{}
	quinternary_constant{}
	quinternary_linear{}
	quinternary_pyramid{}
	quinternary_trumpet{}

	structure{ region{} } - shape objects
	1D simulations
	line{}

	2D simulations
	rectangle{}
	circle{}
	trapezoid{}
	semiellipse{}
	triangle{}
	polygon{}
	regular_polygon{}
	hexagon{}

	3D simulations
	cuboid{}
	sphere{}
	cylinder{}
	obelisk{}
	hexagon_obelisk{}
	semiellipsoid{}
	cone{}
	polygonal_prism{}
	regular_prism{}
	hexagonal_prism{}
	polygonal_pyramid{}
	regular_pyramid{}
	hexagonal_pyramid{}
	pyramid{}

	grid{ }
	xgrid{ }
	xgrid{ min_pos }
	xgrid{ max_pos }
	xgrid{ allow_spacing_jumps }
	xgrid{ line{ } }
	xgrid{ line{ pos } }
	xgrid{ line{ spacing } }
	xgrid{ line{ array{ } } }
	xgrid{ line{ array{ shift } } }
	xgrid{ line{ array{ min } } }
	xgrid{ line{ array{ max } } }
	xgrid{ line{ array2{ } } }
	xgrid{ line{ array2{ shift } } }
	xgrid{ line{ array2{ min } } }
	xgrid{ line{ array2{ max } } }
	ygrid{ }
	zgrid{ }
	energy_grid{ }
	energy_grid{ min_energy }
	energy_grid{ max_energy }
	energy_grid{ energy_resolution }

	classical{ }
	Gamma{ }
	output_bandedge{ }
	output_bandedge{ averaged }

	HH{ }
	output_bandedge{ }
	output_bandedge{ averaged }

	LH{ }
	output_bandedge{ }
	output_bandedge{ averaged }

	SO{ }
	output_bandedge{ }
	output_bandedge{ averaged }

	X{ }
	output_bandedge{ }
	output_bandedge{ averaged }

	Delta{ }
	output_bandedge{ }
	output_bandedge{ averaged }

	L{ }
	Maintained Keywords
	output_bandedge{ }
	output_bandedge{ averaged }

	carrier_statistics
	limit_classical_density
	energy_distribution{ }
	min_energy
	max_energy
	energy_resolution
	only_density_quantum_regions

	energy_resolved_density{ }
	only_density_quantum_regions
	output_energy_resolved_densities{ }
	output_LDOS{ }

	bulk_dispersion{ }
	Gamma{ }
	X{ }
	Delta{ }
	L{ }
	HH{ }
	LH{ }
	SO{ }
	KP6{ }
	KP6{ use_Luttinger_parameters }
	KP6{ approximate_kappa }
	KP8{ }
	KP8{ use_Luttinger_parameters }
	KP8{ from_6band_parameters }
	KP8{ evaluate_S }
	KP8{ rescale_S_to }
	KP8{ approximate_kappa }
	KP8{ electron_far_band }
	KP8{ correct_electron_gfactor }
	KP8{ rescale_kp_everywhere }
	KP8{ avoid_spurious }
	KP14{ }
	KP14{ use_Luttinger_parameters }
	KP14{ from_6band_parameters }
	KP14{ evaluate_S }
	KP30{ }
	full{ }
	full{ name }
	full{ position{ } }
	full{ position{ x } }
	full{ position{ y } }
	full{ position{ z } }
	full{ shift_holes_to_zero }
	full{ kxgrid{ } }
	full{ kxgrid{ line{ } } }
	full{ kxgrid{ line{ pos } } }
	full{ kxgrid{ line{ spacing } } }
	full{ kygrid{ } }
	full{ kzgrid{ } }
	path{ }
	path{ name }
	path{ position{ } }
	path{ position{ x } }
	path{ position{ y } }
	path{ position{ z } }
	path{ shift_holes_to_zero }
	path{ point{ } }
	path{ point{ k } }
	path{ spacing }
	path{ num_points }
	lines{ }
	lines{ name }
	lines{ position{ } }
	lines{ position{ x } }
	lines{ position{ y } }
	lines{ position{ z } }
	lines{ shift_holes_to_zero }
	lines{ k_max }
	lines{ spacing }
	output_bulk_dispersions{ }
	output_masses{ }
	output_inverse_masses{ }
	output_k_vectors{ }

	output_bandgap{ }
	averaged

	output_bandedges{ }
	profiles
	averaged

	output_carrier_densities{ }
	output_band_densities{ }
	output_ionized_dopant_densities{ }
	output_carrier_densities_matgrid{ }
	output_carrier_densities_matgrid{ boxes }

	output_band_densities_matgrid{ }
	output_band_densities_matgrid{ boxes }

	output_ionized_dopant_densities_matgrid{ }
	output_ionized_dopant_densities_matgrid{ boxes }

	output_intrinsic_density{ }
	output_intrinsic_density{ boxes }

	strain{ }
	debuglevel
	no_strain{ }
	pseudomorphic_strain{ }
	minimized_strain{ }
	growth_direction
	residual_strain
	linear_solver{ }
	iterations
	abs_accuracy
	rel_accuracy
	use_cscg
	force_diagonal_preconditioner

	import_strain{ }
	import_from
	coordinate_system

	piezo_density
	second_order_piezo
	pyro_density
	output_hydrostatic_strain{ }
	boxes

	output_strain_tensor{ }
	crystal_system
	simulation_system
	boxes

	output_distortion_tensor{ }
	crystal_system
	simulation_system
	boxes

	output_stress_tensor{ }
	crystal_system
	simulation_system
	boxes

	output_displacement{ }
	crystal_system
	simulation_system

	output_force_density{ }
	crystal_system
	simulation_system

	output_elastic_energy_density{ }
	boxes

	output_polarization_charge{ }
	output_polarization_charge_components{ }
	output_polarization_vector{ }
	crystal_system
	simulation_system
	boxes

	output_polarization_vector_components{ }
	crystal_system
	simulation_system
	boxes

	output_lattice_constants{ }
	boxes

	output_elastic_constants{ }
	boxes

	output_piezo_constants{ }
	boxes

	output_second_order_piezo_constants{ }
	boxes

	output_pyro_constants{ }
	boxes

	poisson{ }
	debuglevel
	import_potential{ }
	import_potential{ import_from }
	import_potential{ component_number }
	electric_field{ }
	electric_field{ direction }
	electric_field{ strength }
	electric_field{ reference_potential }
	between_fermi_levels{ }
	charge_neutral{ }
	zero_charge{ }
	newton_solver{ }
	newton_solver{ iterations }
	newton_solver{ search_steps }
	newton_solver{ residual }
	newton_solver{ gradient_shift }
	linear_solver{ }
	linear_solver{ iterations }
	linear_solver{ abs_accuracy }
	linear_solver{ rel_accuracy }
	linear_solver{ dkr_value }
	linear_solver{ use_cscg }
	linear_solver{ force_diagonal_preconditioner }
	linear_solver{ force_iteration }
	bisection{ }
	bisection{ delta }
	bisection{ residual }
	bisection{ iterations }
	bisection{ robust }
	output_potential{ }
	output_electric_field{ }
	output_electric_displacement{ }
	output_electric_polarization{ }
	output_dielectric_tensor{ }
	output_dielectric_tensor{ boxes }

	currents{ }
	debuglevel
	import_electron_fermi_level{ }
	import_from
	component_number

	import_hole_fermi_level{ }
	Maintained Keywords
	import_from
	component_number

	insulator_bandgap
	electron_mobility{ }
	low_field_model
	high_field_model

	hole_mobility{ }
	low_field_model
	high_field_model

	recombination_model{ }
	SRH
	Auger
	radiative
	enable_generation

	linear_solver{ }
	iterations
	abs_accuracy
	rel_accuracy
	dkr_value
	use_cscg
	force_diagonal_preconditioner
	force_iteration
	extended_accuracy

	minimum_density_electrons
	minimum_density_holes
	maximum_density_electrons
	maximum_density_holes
	electron_contact
	hole_contact
	output_fermi_levels{ }
	output_fermi_level_difference{ }
	output_velocities{ }
	output_forces{ }
	output_currents{ }
	output_power_density{ }
	output_mobilities{ }
	boxes

	output_recombination{ }
	output_injection{ }

	quantum{ }
	debuglevel
	allow_overlapping_regions
	region{ }
	name
	no_density
	x
	y
	z
	spin_quantization_axis
	array_x{ }, array_y{ }, array_z{ }
	array_x{ shift }, …
	array_x{ min }, …
	array_x{ max }, …

	array2_x{ }, array2_y{ }, array2_z{ }
	array2_x{ shift }, …
	array2_x{ min }, …
	array2_x{ max }, …

	Gamma{}, L{}, X{}, Delta{}, HH{}, LH{}, SO{}
	force_complex_solver
	force_pauli_solver
	accuracy
	iterations
	num_ev
	lapack{ }
	arpack{ }
	preconditioner
	order_polynomial
	order_chebyshev
	order_legendre
	cutoff
	abs_cutoff
	k_integration{ }
	k_integration{ relative_size }
	k_integration{ max_symmetry }
	k_integration{ num_points }
	k_integration{ num_subpoints }
	k_integration{ force_k0_subspace }
	dispersion{ }
	dispersion{ path{ } }
	dispersion{ path{ name } }
	dispersion{ path{ point{ } } }
	dispersion{ path{ point{ k } } }
	dispersion{ path{ spacing } }
	dispersion{ path{ num_points } }
	dispersion{ lines{ } }
	dispersion{ lines{ name } }
	dispersion{ lines{ k_max } }
	dispersion{ lines{ spacing } }
	dispersion{ full{ } }
	dispersion{ full{ name } }
	dispersion{ full{ kxgrid{ }, … } }
	dispersion{ full{ kxgrid{ line{ } }, … } }
	dispersion{ full{ kxgrid{ line{ pos } }, … } }
	dispersion{ full{ kxgrid{ line{ spacing } }, … } }
	dispersion{ superlattice{ } }
	dispersion{ superlattice{ name } }
	dispersion{ superlattice{ num_points } }
	dispersion{ superlattice{ num_points_x, … } }
	dispersion{ output_dispersions{ } }
	dispersion{ output_dispersions{ max_num } }
	dispersion{ output_masses{ } }
	dispersion{ output_masses{ max_num } }

	kp_6band{ }
	accuracy
	iterations
	num_ev
	lapack{ }
	arpack{ }
	preconditioner
	order_polynomial
	order_chebyshev
	order_legendre
	cutoff
	abs_cutoff
	forward_differences
	kp_parameters{ }
	kp_parameters{ use_Luttinger_parameters }
	kp_parameters{ approximate_kappa } }
	k_integration{ }
	k_integration{ relative_size }
	k_integration{ max_symmetry }
	k_integration{ num_points }
	k_integration{ num_subpoints }
	k_integration{ force_k0_subspace }
	dispersion{ }
	dispersion{ lines{ } }
	dispersion{ lines{ name } }
	dispersion{ lines{ k_max } }
	dispersion{ lines{ spacing } }
	dispersion{ path{ } }
	dispersion{ path{ name } }
	dispersion{ path{ point{ } } }
	dispersion{ path{ point{ k } } }
	dispersion{ path{ spacing } }
	dispersion{ path{ num_points } }
	dispersion{ full{ } }
	dispersion{ full{ name } }
	dispersion{ full{ kxgrid{ }, … } }
	dispersion{ full{ kxgrid{ line{ } }, … } }
	dispersion{ full{ kxgrid{ line{ pos } }, … } }
	dispersion{ full{ kxgrid{ line{ spacing } }, … } }
	dispersion{ superlattice{ } }
	dispersion{ superlattice{ name } }
	dispersion{ superlattice{ num_points } }
	dispersion{ superlattice{ num_points_x, … } }
	dispersion{ output_dispersions{ } }
	dispersion{ output_dispersions{ max_num } }
	dispersion{ output_masses{ } }
	dispersion{ output_masses{ max_num } }

	kp_8band{ }
	accuracy
	iterations
	num_electrons
	num_holes
	shift
	abs_shift
	shift_window
	lapack{ }
	arpack_inv{ }
	davidson{ }
	forward_differences
	electron_far_band
	correct_electron_gfactor
	rescale_kp_everywhere
	avoid_spurious

	kp_parameters{ }
	kp_parameters{ use_Luttinger_parameters }
	kp_parameters{ from_6band_parameters }
	kp_parameters{ approximate_kappa }
	kp_parameters{ evaluate_S }
	kp_parameters{ rescale_S_to }
	k_integration{ }
	k_integration{ relative_size }
	k_integration{ max_symmetry }
	k_integration{ num_points }
	k_integration{ num_subpoints }
	k_integration{ force_k0_subspace }
	interface{ }
	interface{ position }
	interface{ array_x{ } }
	interface{ array_x{ shift } }
	interface{ array_x{ min } }
	interface{ array_x{ max } }
	interface{ kp_parameters{ } }
	interface{ kp_parameters{ D_s, D_x, D_z } }
	interface{ kp_parameters{ alpha, beta } }
	interface{ kp_parameters{ reverse } }
	dispersion{ }
	dispersion{ full{ } }
	dispersion{ full{ name } }
	dispersion{ full{ kxgrid{ }, … } }
	dispersion{ full{ kxgrid{ line{ } }, … } }
	dispersion{ full{ kxgrid{ line{ pos } }, … } }
	dispersion{ full{ kxgrid{ line{ spacing } }, … } }
	dispersion{ path{ } }
	dispersion{ path{ name } }
	dispersion{ path{ point{ } } }
	dispersion{ path{ point{ k } } }
	dispersion{ path{ spacing } }
	dispersion{ path{ num_points } }
	dispersion{ lines{ } }
	dispersion{ lines{ name } }
	dispersion{ lines{ k_max } }
	dispersion{ lines{ spacing } }
	dispersion{ superlattice{ } }
	dispersion{ superlattice{ name } }
	dispersion{ superlattice{ num_points } }
	dispersion{ superlattice{ num_points_x, … } }
	dispersion{ output_dispersions{ } }
	dispersion{ output_dispersions{ max_num } }
	dispersion{ output_masses{ } }
	dispersion{ output_masses{ max_num } }
	classify_none{ }
	classify_by_energy{ }
	classify_by_energy{ method }
	classify_by_energy{ shift_electrons }
	classify_by_energy{ shift_holes }
	classify_by_energy{ cutoff }
	classify_by_all_energies{ }
	classify_by_all_energies{ method }
	classify_by_all_energies{ shift_electrons }
	classify_by_all_energies{ shift_holes }
	classify_by_all_energies{ permissive }
	classify_by_all_energies{ cutoff }
	classify_by_spinor{ }
	classify_by_spinor{ threshold_electron }
	classify_by_spinor{ threshold_hole }
	classify_by_spinor{ cutoff }
	classify_by_all_spinors{ }
	classify_by_all_spinors{ threshold_electron }
	classify_by_all_spinors{ threshold_hole }
	classify_by_all_spinors{ permissive }
	classify_by_all_spinors{ cutoff }
	linear_solver{ }
	linear_solver{ iterations }
	linear_solver{ abs_accuracy }
	linear_solver{ rel_accuracy }
	linear_solver{ use_cscg }
	linear_solver{ force_diagonal_preconditioner }

	boundary{ }
	x, y, z
	classical_boundary_x, …
	num_classical_x, …

	overlap_integrals{ }
	KP6_Gamma{ }
	HH_Gamma{ }
	LH_Gamma{ }
	SO_Gamma{ }
	HH_Delta{ }
	LH_Delta{ }
	SO_Delta{ }
	HH_X{ }
	LH_X{ }
	SO_X{ }
	HH_L{ }
	LH_L{ }
	SO_L{ }
	output_matrix_elements
	output_transition_energies

	momentum_matrix_elements{ }
	name
	direction
	output_matrix_elements
	output_transition_energies
	output_oscillator_strengths
	Gamma{ }
	X{ }
	Delta{ }
	L{ }
	HH{ }
	LH{ }
	SO{ }
	KP6{ }
	KP8{ }

	dipole_moment_matrix_elements{ }
	name
	direction
	output_matrix_elements
	output_transition_energies
	output_oscillator_strengths
	Gamma{ }
	X{ }
	Delta{ }
	L{ }
	HH{ }
	LH{ }
	SO{ }
	KP6{ }
	KP8{ }

	transition_energies{ }
	KP6_Gamma{ }
	HH_Gamma{ }
	LH_Gamma{ }
	SO_Gamma{ }
	Delta{ }
	HH_Delta{ }
	LH_Delta{ }
	SO_Delta{ }
	Gamma{ }
	X{ }
	HH_X{ }
	LH_X{ }
	SO_X{ }
	L{ }
	HH_L{ }
	LH_L{ }
	SO_L{ }
	HH{ }
	LH{ }
	SO{ }
	KP6{ }
	KP8{ }

	quantum{ region{ quantize_x{ }, … } }
	lifetimes{ }
	phonon_energy
	Gamma{ }
	X{ }
	Delta{ }
	L{ }
	HH{ }
	LH{ }
	SO{ }

	excitons{ }
	electron_mass
	hole_mass
	density_averaged_masses
	dielectric_const
	energy_cutoff
	accuracy

	output_wavefunctions{ }
	max_num
	all_k_points
	amplitudes
	probabilities
	in_one_file
	scale
	structured
	energy_shift
	include_energies_in_shifted_files

	output_subband_densities{ }
	max_num
	in_one_file

	quantum{ region{ output_quantum_densities{ } } }
	quantum{ region{ output_occupations_on_grid{ } } }
	max_num
	in_one_file

	quantum{ region{ output_energies_on_grid{ } } }
	max_num
	all_k_points
	structured
	in_one_file

	output_rotated_inverse_mass_tensor{ }
	boxes
	structured

	exchange_correlation{ }
	type
	initial_spin_pol
	output_spin_polarization{ }
	output_exchange_correlation{ }

	cbr{ }
	name
	lead{ }
	lead{ name }
	lead{ x }
	lead{ kinetic_coupling }
	lead{ rel_kinetic_coupling }
	min_energy
	max_energy
	rel_min_energy
	rel_max_energy
	energy_resolution
	transmission_threshold
	ildos
	ldos
	output_ldos_single_file
	two_particle_options

	optics{ }
	optics{ debuglevel }
	optics{ global_illumination{ } }
	Maintained Keywords
	direction_x
	direction_y
	direction_z
	database_spectrum{ }
	database_spectrum{ name }
	database_spectrum{ concentration }
	import_spectrum{ }
	import_spectrum{ import_from }
	import_spectrum{ cutoff }
	import_spectrum{ energy_spectrum }
	import_spectrum{ absolute_intensities }
	import_spectrum{ concentration }
	constant_spectrum{ }
	constant_spectrum{ irradiance }
	planck_spectrum{ }
	planck_spectrum{ irradiance }
	planck_spectrum{ temperature }
	lorentzian_spectrum{ }
	lorentzian_spectrum{ irradiance }
	lorentzian_spectrum{ wavelength }
	lorentzian_spectrum{ energy }
	lorentzian_spectrum{ width }
	lorentzian_spectrum{ gamma }
	gaussian_spectrum{ }
	gaussian_spectrum{ irradiance }
	gaussian_spectrum{ wavelength }
	gaussian_spectrum{ energy }
	gaussian_spectrum{ width }
	gaussian_spectrum{ gamma }

	Examples

	optics{ global_reflectivity{ } }
	Maintained Keywords
	database_spectrum{ }
	database_spectrum{ name }
	import_spectrum{ }
	import_spectrum{ import_from }
	import_spectrum{ cutoff }
	import_spectrum{ energy_spectrum }
	constant_spectrum{ }
	constant_spectrum{ reflectivity }

	Examples

	optics{ global_absorption_coeff{ } }
	Maintained Keywords
	database_spectrum{ }
	database_spectrum{ name }
	import_spectrum{ }
	import_spectrum{ import_from }
	import_spectrum{ cutoff }
	import_spectrum{ energy_spectrum }
	import_spectrum{ decadic_absorption_unit }
	constant_spectrum{ }
	constant_spectrum{ absorption_coeff }
	constant_spectrum{ decadic_absorption_coeff }

	Examples

	optics{ global_refractive_index{ } }
	Maintained Keywords
	database_spectrum{ }
	database_spectrum{ name }
	import_spectrum{ }
	import_spectrum{ import_n_from }
	import_spectrum{ import_k_from }
	import_spectrum{ cutoff }
	import_spectrum{ energy_spectrum }
	constant_spectrum{ }
	constant_spectrum{ n }
	constant_spectrum{ k }
	compute_absorption_coeff{ }

	optics{ light_propagation{ } }
	Maintained Keywords
	min_wavelength
	max_wavelength
	min_energy
	max_energy
	use_global_spectra{ }
	use_global_spectra{ energy_resolution }
	use_local_spectra{ }
	use_local_spectra{ energy_resolution }
	use_computed_spectra{ }
	output_global_spectra{ }
	output_global_spectra{ reflectivity }
	output_global_spectra{ absorption_coeff }
	output_global_spectra{ decadic_absorption_coeff }
	output_global_spectra{ refractive_index }
	output_global_spectra{ spectra_over_energy }
	output_global_spectra{ spectra_over_frequency }
	output_global_spectra{ spectra_over_wavenumber }
	output_global_spectra{ spectra_over_wavelength }
	output_local_spectra{ }
	output_local_spectra{ absorption_coeff }
	output_local_spectra{ decadic_absorption_coeff }
	output_local_spectra{ spectra_over_energy }
	output_local_spectra{ spectra_over_frequency }
	output_local_spectra{ spectra_over_wavenumber }
	output_local_spectra{ spectra_over_wavelength }
	output_light{ }
	output_light{ illumination }
	output_light{ total_absorption }
	output_light{ total_transmission }
	output_light{ lightflux }
	output_light{ spectra_over_energy }
	output_light{ spectra_over_frequency }
	output_light{ spectra_over_wavenumber }
	output_light{ spectra_over_wavelength }
	output_light{ photon_spectra }
	output_light{ power_spectra }

	optics{ photogeneration{ } }
	Maintained Keywords
	output
	output_integrated
	output_energy_resolved

	Examples

	optics{ semiclassical_spectra{ } }
	Maintained Keywords
	refractive_index
	energy_broadening_gaussian
	energy_broadening_lorentzian
	absorption
	emission
	local_absorption
	local_emission
	output_spectra{ }
	output_spectra{ im_epsilon }
	output_spectra{ absorption_coeff }
	output_spectra{ decadic_absorption_coeff }
	output_spectra{ gain }
	output_spectra{ decadic_gain }
	output_spectra{ emission_photons }
	output_spectra{ emission_power }
	output_spectra{ spectra_over_energy }
	output_spectra{ spectra_over_frequency }
	output_spectra{ spectra_over_wavenumber }
	output_spectra{ spectra_over_wavelength }
	output_local_spectra{ }
	output_local_spectra{ im_epsilon }
	output_local_spectra{ absorption_coeff }
	output_local_spectra{ decadic_absorption_coeff }
	output_local_spectra{ gain }
	output_local_spectra{ decadic_gain }
	output_local_spectra{ emission_photons }
	output_local_spectra{ emission_power }
	output_local_spectra{ spectra_over_energy }
	output_local_spectra{ spectra_over_frequency }
	output_local_spectra{ spectra_over_wavenumber }
	output_local_spectra{ spectra_over_wavelegth }
	output_photon_density
	output_power_density

	optics{ quantum_spectra{ } }
	Maintained Keywords
	name
	spin_align
	interband
	intraband
	interband_approximation
	intraband_approximation
	enable_hole_hole
	enable_electron_hole
	enable_electron_electron
	use_kp8_EP
	k_integration{ }
	k_integration{ relative_size }
	k_integration{ num_points }
	k_integration{ num_integrationpoints }
	k_integration{ force_k0_subspace }
	energy_threshold
	transition_threshold
	occupation_threshold
	occupation_ignore
	occupation_zero_fermilevel
	occupation_interpolate_invfermi
	classify_none{ }
	classify_by_energy{ }
	classify_by_energy{ method }
	classify_by_energy{ shift_electrons }
	classify_by_energy{ shift_holes }
	classify_by_spinor{ }
	classify_by_spinor{ threshold_electron }
	classify_by_spinor{ threshold_hole }
	classify_states
	classification_threshold
	excitons{ }
	excitons{ num_exciton_levels }
	excitons{ coulomb_enhancement }
	absorption
	spontaneous_emission
	local_absorption
	local_spontaneous_emission
	polarization{ }
	polarization{ name }
	polarization{ re }
	polarization{ im }
	refractive_index
	normalization_volume
	min_energy
	max_energy
	energy_resolution
	energy_broadening_gaussian
	energy_broadening_lorentzian
	kramers_kronig{ }
	kramers_kronig{ im_epsilon_extension }
	kramers_kronig{ im_epsilon_rescale }
	kramers_kronig{ delta_static_epsilon }
	kramers_kronig{ delta_position }
	kramers_kronig{ delta2_static_epsilon }
	kramers_kronig{ delta2_position }
	kramers_kronig{ delta3_static_epsilon }
	kramers_kronig{ delta3_position }
	kramers_kronig{ use_for_absorption }
	kramers_kronig{ use_for_emission }
	output_energies
	output_occupations
	output_transitions
	output_spinor_components
	output_spectra{ }
	output_spectra{ im_epsilon }
	output_spectra{ absorption_coeff }
	output_spectra{ decadic_absorption_coeff }
	output_spectra{ gain }
	output_spectra{ decadic_gain }
	output_spectra{ re_epsilon }
	output_spectra{ refractive_index }
	output_spectra{ emission_photons }
	output_spectra{ emission_power }
	output_spectra{ spectra_over_energy }
	output_spectra{ spectra_over_frequency }
	output_spectra{ spectra_over_wavelength }
	output_spectra{ spectra_over_wavenumber }
	output_component_spectra{ }
	output_component_spectra{ threshold_im_epsilon }
	output_component_spectra{ threshold_emission_photons }
	output_component_spectra{ im_epsilon }
	output_component_spectra{ absorption_coeff }
	output_component_spectra{ decadic_absorption_coeff }
	output_component_spectra{ gain }
	output_component_spectra{ decadic_gain }
	output_component_spectra{ emission_photons }
	output_component_spectra{ emission_power }
	output_component_spectra{ spectra_over_energy }
	output_component_spectra{ spectra_over_frequency }
	output_component_spectra{ spectra_over_wavelength }
	output_component_spectra{ spectra_over_wavenumber }
	output_local_spectra{ }
	output_local_spectra{ im_epsilon }
	output_local_spectra{ absorption_coeff }
	output_local_spectra{ decadic_absorption_coeff }
	output_local_spectra{ gain }
	output_local_spectra{ decadic_gain }
	output_local_spectra{ emission_photons }
	output_local_spectra{ emission_power }
	output_local_spectra{ spectra_over_energy }
	output_local_spectra{ spectra_over_frequency }
	output_local_spectra{ spectra_over_wavelength }
	output_local_spectra{ spectra_over_wavenumber }

	Examples

	database{ }
	Top level keywords in database{ }
	Top-level attributes in database{ }
	Zincblende-related …zb{} groups in database{ }
	database{ binary_zb{} }
	database{ ternary_zb{} }
	database{ ternary2_zb{} }
	database{ bowing_zb{} }
	database{ quaternary_zb{} }
	database{ quaternary4_zb{} }
	database{ quinternary_zb{} }
	database{ quinternary6_zb{} }

	Wurtzite-related …wz{} groups in database{ }
	database{ binary_wz{} }
	database{ ternary_wz{} }
	database{ ternary2_wz{} }
	database{ bowing_wz{} }
	database{ quaternary_wz{} }
	database{ quaternary4_wz{} }
	database{ quinternary_wz{} }
	database{ quinternary6_wz{} }

	Optical groups in database{ }
	Maintained Keywords
	database{ optical_reflectivity{} }
	database{ optical_absorption_coeff{} }
	database{ optical_refractive_index{} }
	database{ illumination{} }

	Examples
	Spectra
	Solar spectra
	CIE luminants and light sources
	Light sources

	Nested groups in database{ …_zb{} } and database{ …_wz{} }
	Bands groups in database{ …_zb{} } and database{ …_wz{} }
	Bands for zincblende in database{ }
	database{ …{ conduction_bands{} } } for zincblende
	database{ …{ valence_bands{} } } for zincblende

	database{ …{ kp_6_bands{} } } for zincblende
	database{ …{ kp_8_bands{} } } for zincblende
	Bands for Wurtzite in database{ }
	database{ …{ conduction_bands{} } } for wurtzite
	database{ …{ valence_bands{} } } for wurtzite

	database{ …{ kp_6_bands{} } } for wurtzite
	database{ …{ kp_8_bands{} } } for wurtzite

	Strain groups in database{ …_zb{} } and database{ …_wz{} }
	Strain for zincblende
	database{ …{ lattice_consts{} } } for zincblende
	database{ …{ elastic_consts{} } } for zincblade
	database{ …{ piezoelectric_consts{} } } for zincblade

	Strain for wurtzite
	database{ …{ lattice_consts{} } } for wurtzite
	database{ …{ elastic_consts{} } } for wurtzite
	database{ …{ piezoelectric_consts{} } } for wurtzite
	database{ …{ pyroelectric_consts{} } } for wurtzite

	Low-field mobility groups in database{ …_zb{} } and database{ …_wz{} }
	database{ …{ mobility_constant{} } }
	database{ …{ mobility_masetti{} } }
	database{ …{ mobility_arora{} } }
	database{ …{ mobility_minimos{} } }

	High-field mobility groups in database{ …_zb{ } } and database{ …_wz{ } }
	mobility_haensch{ }
	mobility_haensch{ electrons{ } }
	mobility_haensch{ electrons{ vsat } }
	mobility_haensch{ holes{ } }
	mobility_haensch{ holes{ vsat } }
	mobility_canali{ }
	mobility_canali{ electrons{ } }
	mobility_canali{ electrons{ vsat } }
	mobility_canali{ electrons{ alpha } }
	mobility_canali{ electrons{ beta } }
	mobility_canali{ holes{ } }
	mobility_canali{ holes{ vsat } }
	mobility_canali{ holes{ alpha } }
	mobility_canali{ holes{ beta } }
	mobility_transferred{ }
	mobility_transferred{ electrons{ } }
	mobility_transferred{ electrons{ vsat } }
	mobility_transferred{ electrons{ alpha } }
	mobility_transferred{ electrons{ beta } }
	mobility_transferred{ electrons{ gamma } }
	mobility_transferred{ electrons{ E0 } }
	mobility_transferred{ holes{ } }
	mobility_transferred{ holes{ vsat } }
	mobility_transferred{ holes{ alpha } }
	mobility_transferred{ holes{ beta } }
	mobility_transferred{ holes{ gamma } }
	mobility_transferred{ holes{ E0 } }
	mobility_eastman{ }
	mobility_eastman{ electrons{ } }
	mobility_eastman{ electrons{ vsat } }
	mobility_eastman{ electrons{ alpha } }
	mobility_eastman{ electrons{ beta } }
	mobility_eastman{ holes{ } }
	mobility_eastman{ holes{ vsat } }
	mobility_eastman{ holes{ alpha } }
	mobility_eastman{ holes{ beta } }
	mobility_eastman4{ }
	mobility_eastman4{ electrons{ } }
	mobility_eastman4{ electrons{ vsat } }
	mobility_eastman4{ electrons{ v_mid } }
	mobility_eastman4{ electrons{ v_peak } }
	mobility_eastman4{ electrons{ E_mid } }
	mobility_eastman4{ electrons{ E_peak } }
	mobility_eastman4{ holes{ } }
	mobility_eastman4{ holes{ vsat } }
	mobility_eastman4{ holes{ v_mid } }
	mobility_eastman4{ holes{ v_peak } }
	mobility_eastman4{ holes{ E_mid } }
	mobility_eastman4{ holes{ E_peak } }

	Recombination groups in database{ …_zb{} } and database{ …_wz{} }
	database{ …{ recombination{} } }
	Example
	Shockley-Read-Hall (SRH) recombination
	Auger recombination
	Radiative recombination

	Phonons in database{ …_zb{} } and database{ …_wz{} }
	Phonons in zincblende materials
	database{ …{ acoustic_phonons{} } } for zincblade
	database{ …{ optical_phonons{} } } for zincblade

	Phonons in wurtzite materials
	database{ …{ acoustic_phonons{} } } for wurtzite
	database{ …{ optical_phonons{} } } for wurtzite

	Other groups in database{ …_zb{} } and database{ …_wz{} }
	Other groups and attributes for zincblende
	database{ …{ valence } } for zincblende
	database{ …{ mass_density{} } } for zincblende
	database{ …{ dielectric_consts{} } } for zincblende

	Other groups and attributes for wurtzite
	database{ …{ valence } } for wurtzite
	database{ …{ mass_density{} } } for wurtzite
	database{ …{ dielectric_consts{} } } for wurtzite

	database{ …_zb{ kp_30_bands{} } } (optional)

	Input Syntax
	General
	Case Sensitivity
	White-Spaces
	Semicolons

	Variables
	Numbers and arrays
	Strings

	Comments
	One-line comment
	Multi-line comment

	Conditional Statements
	Conditional lines
	Conditional blocks

	Data section
	Operators and functions
	Tables for number variables
	Arithmetic comparisons and logical operators
	Dealing with floating-point numbers
	Functions for array variables

	Debug statements
	Groups and attributes
	XML Tags
	Additional Examples and Remarks

	Simulation Output
	Basic information
	Diagnostic information and error handling with log file
	Visualization - VTK and AVS
	VTK format for rectilinear grid
	AVS format for rectilinear grid

	Command Line
	Maximizing Performance
	Release Notes
	1.25.13.b (2025-04-25)
	1.22.18.b (2024-12-18)
	1.20.8.b (2024-08-22)
	1.19.61.a (2024-06-28)
	1.19.49.a (2024-06-17)
	1.19.22.a (2024-05-14)
	1.19.17.a (2024-04-28)
	1.18.63.b (2024-03-24)
	1.17.20 (2023-08-07)
	1.14.33 (2023-05-12)
	1.13.0 (2023-02-19)
	1.12.35 (2022-12-17)
	1.10.19 (2022-08-09)
	1.9.92 (2022-06-08)
	EARLIER

	FAQs
	Features and Functionalities
	Where to find simulation LOG file
	How can I track how much memory is used during the simulations?
	Can I pass additional command line arguments to the executable?
	How can I speed up my calculations with respect to CPU time?
	Can I take advantage of parallelization of the nextnano software on multi-core CPUs?
	What boundary conditions are available?
	What are quasi-Fermi levels
	I do not understand the k p parameters
	Can I add new materials to the database?
	Should I use averaged outputs and boxes?
	Current in my simulation seems unphysical. How to deal with it?

	Error and Warning Messages
	Quantum-Current-Poisson fails to converge
	WARNING: Linear solver residual of ARPACK-INVERSE set too large in multiband quantum solver
	Error: (nodes number of coordinate 1) != (lines number in file)
	nextnano++ exit code: -1073741795
	nextnano++ exit code: -1
	nextnano++ exit code: 1
	nextnano++ exit code: 3

	Books
	Journal Papers
	Theses
	PDF Documentation

