# Java implementation of two-dimensional input device editor for nextnano<sup>3</sup>

Alexander Hersonski

Fakultät für Informatik Technische Universität München

# Contents

| Contact person                                           |
|----------------------------------------------------------|
| nextnano <sup>3</sup> details                            |
| Background 6                                             |
| System requirements                                      |
| Getting started with nextnano <sup>3</sup> device editor |
| Using nextnano <sup>3</sup> device editor 10             |
| Creating an dopping11                                    |
| Creating an quantum region14                             |
| Editing                                                  |
| Layer                                                    |
| Add new layer 16                                         |
| Remove selected layer 16                                 |
| Move up, move down selected layer16                      |
| Layer properties                                         |
| Choosing a layer color16                                 |
| Region17                                                 |
| Rotate 17                                                |
| Move an region                                           |
| Copy an region17                                         |
| Cut an region 17                                         |
| Paste                                                    |
| clone region17                                           |
| Aligning and concatenating of objects18                  |
| Grid                                                     |
| Grid properties21                                        |
| Change editor scale (Zoom) 22                            |
| Input file                                               |
| Sending input file via email:                            |
| Shortkeys                                                |
| Pictures:                                                |



next**nano<sup>3</sup>** is a simulator for the calculation of the electronic properties of one, two and three-dimensional nanostructers in non-equilibrium.

#### **Contact person**

Prof. Dr. Peter Vogl

Walter Schottky Institut TU München Am Coulombwall 3 D-85748 Garching Tel. +49-89-289-12750 Fax +49-89-289-12737 vogl@wsi.tu-muenchen.de Stefan Birner

Walter Schottky Institut TU München Am Coulombwall 3 D-85748 Garching Tel. +49-89-289-12752 Fax +49-89-289-12737 stefan.birner@nextnano.de

#### nextnano<sup>3</sup> details

 $\square ext^{nano^{3}} - a$  state-of-the-art simulation tool for 3D quantum nanodevices



nextnano<sup>3</sup> is a simulator for calculating, in a consistent

manner, the realistic electronic structure of three-dimensional heterostructure quantum devices under bias and its current density close to equilibrium. The electronic structure is calculated fully quantum mechanically, whereas the current is determined by employing a semiclassical concept of local Fermi levels that are calculated self-consistently.

This code allows one to solve the 8-band-k.p-Schrödinger-Poisson equation for arbitrarily shaped 3D heterostructure device geometries, and for any (III-V and Si/Ge) combination of materials and alloys (including ternaries and lattice matched quaternaries, as well as nitrides in the zincblende or wurtzite structure) oriented along any chosen crystallographic growth direction. The method includes band offsets of the minimal and higher band edges, absolute deformation potentials, total elastic strain energy that is minimized for the whole device, the long-range Hartree potential induced by charged impurity distributions, voltage induced charge redistribution, piezo- and pyroelectric charges, as well as surface charges, in a fully self-consistent manner. In addition, magnetic fields can be included. The charge density is calculated for a given applied voltage by assuming the carriers to be in a local equilibrium that is characterized by energy-band dependent local quasi-Fermi levels. These local quasi-Fermi levels are determined by global current conservation, where the current is assumed to be proportional to the density and to the gradient of the quasi-Fermi level (associated with each band) exactly as in the semiclassical limit.

In the calculation of the current, recombination and generation processes can be included. Furthermore, our method automatically includes tunneling via the globally calculated electronic states, and yields optical transition energies and optical matrix elements.



(a) Schematic plot of a Double Gate MOSFET

(b) Cut through the 10 nm Si channel: Comparison of classical and quantum mechanical electron density and conduction band edge profile across the Si channel at room temperature. The quantum mechanical simulation gives a smaller current than a classical drift-diffusion calculation (by  $\sim$ 30% for a gate voltage of 0.4 V and drain voltage of 0.2 V).

Fig.1a: Schematic plot of a Double Gate MOSFET Fig 1b: Cut through the 10 nm Si channel

For a given nanostructure, the computations start by globally minimizing the total elastic energy using a conjugate gradient method. This yields the local strain tensor which in turn determines the piezoelectric polarization charges, the deformation potentials and band offsets. Subsequently, the multi-band-Schrödinger, Poisson, and current continuity equations are solved iteratively. All equations are discretized according to the finite difference method invoking the box integration scheme. The irregular rectilinear mesh is kept fixed during the calculations.



(a) Electron density associated with the three lowest eigenstates of a GaAs 2D electron gas confined by high rectangular potential barriers.

(b) Effect of a high magnetic field perpendicular to the GaAs plane on these states. All 3 states shown belong to the lowest Landau level.

Fig.2a: Electron density by high rectangular potential barriers Fig 2b: Effect of a high magnetic field

The main iteration scheme itself consists of two parts. In the fist part, the wave functions and potential are kept fixed and the quasi-Fermi levels are calculated self-consistently from the current continuity equations, employing a conjugate gradient method and a simple relaxation scheme.

In the second part, the quasi-Fermi levels are kept constant, and the density and the potential are calculated self-consistently from the Schrödinger and Poisson equation. The discrete 8-band Schrödinger equation represents a huge sparse matrix (typically of dimension 10<sup>5</sup> for 3D structures) and is diagonalized using the Jacobi-Davidson method that yields the required inner eigenvalues and eigenfunctions close to the energy gap. To reduce the number of necessary diagonalizations, we employ an efficient predictor-corrector approach to calculate the potential from the nonlinear Poisson equation. In this approach, the wave functions are kept fixed within one iteration and the density is calculated perturbatively from the wave functions of the previous iteration. The nonlinear Poisson equation is solved using a modified Newton method, employing a conjugate gradient method and line minimizations. The code is written in Fortran 90 and consists of some 180.000 lines by now.

For 1D simulations a web based input file generator is available that guides the user through all steps necessary for creating input files. Extensive online documentation as well as several tutorial files are available on the nextnano<sup>3</sup> website at http://www.wsi.tu-muenchen.de/nextnano<sup>3</sup> (restricted by login and password). Executables and the source code (tested on Windows, Linux and Unix) are available for download. The material parameters in the database can be adjusted manually. Output files (band structure, densities, wave functions, strain, current, ...) can be visualized using standard graphics tools like Origin, AVS, Gsharp or MATLAB. Examples that were treated so far include quantum dots, HEMTs and Double Gate MOSFETs.

# Background

Building up on an already existing 1D input file generator which permits the specification of simple heterostructures by means of Perl/HTML, a Java 2D interface was programmed which shows an improved functionality and allows the editing of two-dimensional geometries.

The interface permits to design a 2D semiconductor device geometry and to process it with the next**nano**<sup>3</sup>executable by means of a generated input file. Any change in the device geometry made by the Device Editor will instantaneously alter the generated input file.

x, y coordinates of the device regions are given in a next**nano**<sup>3</sup> readable format, together with further information which are necessary as a input parameters for the simulation program.

This application allows the creation of ASCII input files for next**nano<sup>3</sup>** by means of a convenient graphics editor. The graphical Device Editor files can be saved and reloaded to be modified at a later stage. The device editor uses modern technologies of programming, among other things XML, Java Swing and JavaMailAPI (see http://java.sun.com und http://java.sun.com/xml)

It is also possible to save the project schemes on hard disk to allow patterns to be read in at later times for adjusting purposes. In addition, a mail module is inserted in the application which allows sending input files via mail. To use this feature the user should know the name of the corresponding SMTP server, login and password for the authentification on this server.

The application was written in form of Java applets. The advantage is that the user can run the device editor independently of platform either as a Java applet on-line or as a Java application off-line. The tests were carried out on Windows 9x, 2000, XP and Linux.

# System requirements

- Supported operating systems: Linux, Windows ME/9x/2000/XP, Mac OS X
- 3 MB HDD space and 128 MB RAM
- Sun JDK/JRE 1.3 or newer.

# Getting started with nextnano<sup>3</sup> device editor

A Java Runtime Environment must be installed. If you have not installed Java, you can download it here: http://java.sun.com/j2se/1.4/download.html

An installation program does not exist yet. To start the application proceed as follows:

- 1. The downloaded ZIP file must be unpacked into the desired directory.
  - additional libraries (**mail.jar**, **activation.jar**, **JSX2.0.9.5.jar**) for the running of the mail and Load/Save module of the applets must be copied into the following directory: **\$JAVA-HOME/j2se.../lib/ext**/
- Policy file ".java.policy" must be copied into your HOME directory. e.g. on Windows XP "C:\Documents and Settings\username" (only needed for the applet, not needed for 3b)

- a. For starting the applets a double click on index.html is enough.
- b. Starting from the Command Prompt On Windows: "Start"→"Run..."→"cmd" java -jar (\$YOUR\_PATH)\nanoproject.jar or javaw -jar (\$YOUR\_PATH)\nanoproject.jar

Here one must consider that PATH for to Java binary directory is set accordingly. For Windows i.e..: set PATH=C:\PathToJava\bin;%PATH%

After starting two windows appear: a browser window and an applet window. In the browser window all Softkeys are listed (3a). For 3b, only the applet window will open.

There is the possibility to open a new simulation area (scheme) or to load an existing pattern. In the popup-menu "Simulator" there is also the option "Delete policy file", if the user wants to disable read/write access of the applet to the hard disc.



Fig .3: The device editor view  $\rightarrow$  Start a new edit area

3.

Choose the **Domain type**, i..e. 110 (x,y) if the device geometry should lie in a (x,y) coordinate system (recommended), (101) for (x,z) orientation or (011) for (y,z) orientation. **Maximum X and Y** coordinates determine the maximum extension in x and y direction respectively of the device one want to simulate (units: nm). **Division Size along axis** is the zoom factor on a suitable scale (can be changed during editing the device).

| New simulation area                |       |
|------------------------------------|-------|
| Domain type <b>110</b>             | -     |
| maximum X coordinate [nm] 10       | 10,00 |
| maximum Y coordinate [nm] 10       | 10,00 |
| More size details                  |       |
| Division size along X axis [nm] 10 | 1,00  |
| Division size along Y axis [nm] 10 | 1,00  |
| Ok Cancel                          |       |
| Java Applet Window                 |       |

Fig. 4: The device editor view  $\rightarrow$  New simulation area

In "Composite" view the graphical objects are shown and in "Input file" view the input file which is constructed at run time is shown as a text file in next**nano<sup>3</sup>** syntax including keywords and specifiers.



Fig. 5: The device editor view  $\rightarrow$  Add new layer

A new layer is constructed by clicking on the button "Add new Layer". The principle of layers is similar to the well-known Photoshop<sup>©</sup> layers. A layer contains the elements belonging to a material and thus forms a cluster.

In the Pop-up window one can choose between material, doping and quantum regions. "Default material" determines the material which has the lowest priority (i.e. region-priority=1).

| Add new layer 🔀                                                                                                     |
|---------------------------------------------------------------------------------------------------------------------|
| Layer properties       Default material         Material       Doping         Quantum regions       Select material |
| GaSb 👻                                                                                                              |
| Ok Cancel                                                                                                           |
| Java Applet Window                                                                                                  |

Fig. 6: The device editor view  $\rightarrow$  Add new layer

# Using nextnano<sup>3</sup> device editor

To draw suitable geometrical figures (rectangles, semi-ellipses and triangles) one should select the appropriate shape buttons (1) and draw the object by using the mouse. The position and the size of the object can also be changed by using the keyboard (2).

Green circle: This check box shows whether the chosen layer is visible

Yellow circle: This check box shows which layer is active, i.e. can currently be edited.



Fig. 7: Using device editor  $\rightarrow$  Drawing

# Creating a doping region

Device editor permits to specify different types of clusters. For drawing doping regions, do the following: Click on button "Add new layer"  $\rightarrow$  "doping". The geometrical objects generated get transparent colors.



Fig. 8: Using device editor  $\rightarrow$  Add new layer  $\rightarrow$  Add doping

With the icon "Layer properties" one can change the type of doping (marked in the picture)

| Simulator Edit View Laver Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |                                                                                                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| Image: Composite         Image: Composite< | ۱. | Domain coordinates         Simulation flow control           Domain type         Simulation dimension           + + + + + + + + + + + + + + + + + + + |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •  | y y coordinates [nm] 0.0 100.0                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | Figure geometry         Superlative         Coments           Rectangle position         Rectangle size         Image: Size                           |
| 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | × [nm] 23,25 W [nm] 32,25<br>Y [nm] 72,00 H [nm] 6,00                                                                                                 |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Superlattice                                                                                                                                          |
| 8-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | Doping function Doping concentration 0,0                                                                                                              |
| 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    | Position <b>0.0 0.0</b><br>Exclude materials                                                                                                          |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | Base function 1 <b>constant</b><br>Base function 2 <b>constant</b>                                                                                    |
| 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |                                                                                                                                                       |
| 10,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    | InP       Impurity: n-type                                                                                                                            |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -  | Layer description                                                                                                                                     |
| Java Applet Window                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |                                                                                                                                                       |

Fig. 9: Using device editor  $\rightarrow$  Create the doping  $\rightarrow$  Layer properties

| Layer properties          |                  |
|---------------------------|------------------|
| Impurity: p-type Comments |                  |
| Impurity name             | my-name          |
| Impurity type             | p-type 💌         |
| Number of energy levels   | n-type<br>p-type |
| Energy levels             | trap             |
| Degeneracy                | 4                |
| Ok                        | Cancel           |
| Java Applet Window        |                  |

Fig. 10: Doping  $\rightarrow$  Layer properties

Other doping functions and their properties are accessible with a right mouse click on the left pane.



Fig. 11: Doping  $\rightarrow$  Doping function properties

# Creating an quantum region

Quantum regions can also be drawn using the icon "Add new Layer". Diagrammatically, a quantum region has the same properties as doping regions, thus the objects have transparent colors.

| Add new layer                     |   |
|-----------------------------------|---|
| Layer properties Default material |   |
| ◯ Material                        |   |
| O Doping                          |   |
| Quantum regions                   |   |
| Select material                   |   |
| (Al(x)Ga(1-x))0.51In0.49P         | - |
| Ok Cancel                         |   |
| Java Applet Window                |   |

Fig. 12: Using device editor  $\rightarrow$  Add new layer  $\rightarrow$  add quantum regions (1)

| 🍇 nextnano3 Device Editor (2D)                       |                                            |
|------------------------------------------------------|--------------------------------------------|
| Simulator Editt View Layer Output                    | _                                          |
|                                                      | Domain coordinates Simulation flow control |
| Composite Input file                                 | Domain type Simulation dimension           |
| 0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 | × coordinates (nm) 0.0 100.0               |
| [ <sup>2</sup> ] ▲                                   | y coordinates [nm] 0.0 100.0               |
|                                                      |                                            |
|                                                      |                                            |
|                                                      |                                            |
| 0.00                                                 |                                            |
| 8-                                                   | Model holes Model electrons classical      |
|                                                      | Valence band number 23                     |
| 0-1<br>0-1                                           | Separation model eigenvalue                |
|                                                      | Number of eigenvalues per band 3           |
|                                                      | Maximum energy for eigen states            |
|                                                      | Quantization along axiss 110               |
| <b>1</b>                                             |                                            |
| 2 <sup>-</sup>                                       |                                            |
|                                                      | Impurity: n-type       Impurity: p-type    |
| °                                                    | 🗾 🗹 Quantum region: active                 |
| Java Applet Window                                   |                                            |

Fig. 13: Using device editor  $\rightarrow$  Add new layer  $\rightarrow$  add quantum regions (2)

| Layer properties            |                             |                           | × |
|-----------------------------|-----------------------------|---------------------------|---|
| General Quantum mo          | del holes Quantum model ele | ectrons Comments          |   |
| Model name                  | classical 💌                 | Valence band number 23    |   |
| Separation model            | eigenvalue 🔻                |                           |   |
| Max eigenvalue              | 5                           | Max energy [ev] 2.040     |   |
| Number of eigenvalues pe    | er band 3                   |                           |   |
| Max energy for eigenstate   | es [eV] 0.5d0               |                           |   |
| Quantization along axiss    | 110                         | •                         |   |
| Boundary condition:         | 001 <b>Neumann 🔻</b> 010    | 0 Neumann ▼ 100 Neumann ▼ |   |
| Num ks                      | 001 0 010                   | 0 0 100 0                 |   |
| Method of brillouin zone in | tegration special-axis      | ▼                         |   |
| Num k.p parallel            | 0                           |                           |   |
|                             | Ok                          | Cancel                    |   |
| Java Applet Window          |                             |                           |   |

Via the icon "Layer properties", one gets to the properties of the quantum regions.

Fig. 14: Using device editor  $\rightarrow$  Add new layer  $\rightarrow$  add quantum regions  $\rightarrow$  layer properties

# Editing

#### Layer

The following functions have an intuitive meaning

### Add new layer

| 🔹 🗈 🗈 🖻              |  |
|----------------------|--|
|                      |  |
| Add new layer        |  |
| 🗹 📃 Impurity: n-type |  |

Fig. 15: Using device editor  $\rightarrow$  Editing layer $\rightarrow$  add new layer

# **Remove selected layer**

| <br><b>3</b>            |  |
|-------------------------|--|
| S Remove selected laver |  |
| metal (zb)              |  |
| Impurity: n-type        |  |

Fig. 16: Using device editor  $\rightarrow$  Editing layer  $\rightarrow$  remove selected layer

# Move up, move down selected layer

|   | <₽ | » [       |                     |      |  |
|---|----|-----------|---------------------|------|--|
| 2 |    | SiO2      | Move up selected la | ayer |  |
| ~ |    | metal (zł | 0)                  |      |  |
| 1 |    | Impurity: | n-type              |      |  |

Fig. 17: Using device editor  $\rightarrow$  Editing layer  $\rightarrow$  move up, move down

## Layer properties

| - | 5 | > 🖸 🖬            | <b>P</b>         |
|---|---|------------------|------------------|
| 2 |   | SiO2             | Laver properties |
| 2 |   | metal (zb)       |                  |
| 2 |   | Impurity: n-type |                  |

Fig. 18: Using device editor  $\rightarrow$  Editing layer  $\rightarrow$  add quantum regions (2)

# Choosing a layer color

The application generates a random color for any newly provided layer. With a double click on the layer color, one can change it.



Fig. 19: Using device editor  $\rightarrow$  Editing layer  $\rightarrow$  chooseing a layer color

### Region

# Rotate

With a right mouse click on the selected region, the window "Rotate selected figures" pops up.

| Rotate selected figures | × |
|-------------------------|---|
| Rotation by angle       |   |
| ◯ 180°                  |   |
| 90° CW                  |   |
| ○ 90° CCVV              |   |
| Ok Cancel               |   |
| Java Applet Window      |   |

Fig. 20 Editing region→ Rotate selected figures

### Move a region

One can move one or several regions either by using the mouse, the keyboard (CTRL + mouse), or by directly specifying the amount in the menu dialog "figure geometry" (only for one region).

# Copy a region

One can copy one or several regions either by the right mouse click and selecting "Copy regions" or by the key combination CTRL + C.

#### Cut a region

One can cut one or several regions either by the right mouse click and selecting "Cut regions" or by the key combination CTRL + X.

#### Paste

One can paste one or several regions either by the right mouse click and selecting "Paste regions" or by the key combination CTRL + V.

#### **Clone region**

This function is accessible through the menu "EDIT  $\rightarrow$  Clone regions" or by the key combination CTRL+B

#### Aligning and concatenating of objects

Two or several objects can be selected with the combination of SHIFT+mouse. With the help of align and concatenate buttons (highlighted in the picture) the objects can be aligned or concatenated.



Fug. 21: Using input device editor  $\rightarrow$  align und concatenate of objects

In the following picture an example structure (Double Gate MOSFET) is shown which consists of different clusters.

| 🏯 nextnano3 Device Editor (2D)                                       |                                                                                |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <u>Simulator Edit View Layer Output</u>                              |                                                                                |
|                                                                      | Domain coordinates Simulation flow control                                     |
| Composite Input file                                                 | Domain type Simulation dimension                                               |
| €.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 1 <mark>00.0</mark> | × coordinates [nm] U.U 1UU.U                                                   |
| P                                                                    | y coordinates [nm] 0.0 100.0                                                   |
| 0                                                                    |                                                                                |
| 2.<br>2.                                                             |                                                                                |
| 29                                                                   |                                                                                |
| 8                                                                    | Mahalalana dina Talana di Mana                                                 |
| 200                                                                  | Material properties Poisson conditions Material name metal (zb) Allow function |
| 04<br>0-                                                             | Nity Mitchell N/A                                                              |
|                                                                      |                                                                                |
|                                                                      |                                                                                |
|                                                                      |                                                                                |
|                                                                      | ✓ 5102                                                                         |
| Check to set                                                         | poisson bounds conditions (for material layer only)                            |
| Java Applet Window                                                   |                                                                                |

Fig. 22: Using the Device Editor  $\rightarrow$  Editing , Poisson boundary conditions

Red circle: If the material is a contact, a Poisson boundary condition can be set.



Fig. 23: Using the device editor  $\rightarrow$  check-box "Poisson boundary conditions"

# Grid

The grid can be visualized by clicking on the "GRID" button which is marked in the picture by a red square.



Fig. 24: Grid  $\rightarrow$  Using the grid option

#### **Grid properties**

For performing accurate next**nano**<sup>3</sup> calculations it is very important to add additional grid lines. This can be done by inserting additional nodes between the yellow grid lines. If one clicks on a specific column or row in the axes area, the manual input of "number of nodes" and "grid factor" (default should be 1.0) is possible. In the picture the input fields are marked by a blue rectangle. Then the whole column or row is active (marked with a transparent blue rectangle). A double-click on the chosen column or row makes it possible to open a window "grid properties" to manually input additional grid nodes.



Fig. 25: Grid  $\rightarrow$  Grid properties: Choice of the active column

| Grid properties    | × |
|--------------------|---|
| Number of nodes    |   |
| 0                  |   |
| Grid factor        |   |
| 1,00               |   |
| Ok Cancel          |   |
| Java Applet Window |   |

Fig. 26: Grid  $\rightarrow$  Grid properties: Number of nodes, grid factor

#### Change editor scale (Zoom)

For an explicit examination or additional editing of the objects, a zoom function is included in the Device Editor. The purpose of this function is to increase or to reduce the scale (zoom factor). The button "Change editor scale" can be found at the "origin" position of the x and y coordinate axes.

| 🏙 nextnano3 Device Editor (2D)   | Unit values 🔀                    |
|----------------------------------|----------------------------------|
| Simulator Edit View Layer Output | Division dimensions              |
| Composite Input file             | Horizontal division size [nm] 10 |
| .0 10.0 20.0 30.0 40.0 50.0      | Vertical division size [nm] 10   |
| Change editor scale              |                                  |
| 00<br>00                         |                                  |
|                                  | Java Applet Window               |

Fig. 27: Change editor scale: Position of zoom function, unit values

#### Input file

A click on "input file" [1] opens the view to the input file. The area is divided into two windows. In window [2] the input file is shown which does all changes in the device geometry at run time (by means of an XML engine). The input file will be parsed in frame [3]. This function is very useful to inspect the necessary steps.

| 🏽 nextnano3 Device Editor (20)   |                                                                                                                                                                                       |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Simulator Edit View Layer Output | Domain coordinates     Simulation flow control       Domain type     Simulation dimension <ul> <li>× coordinates [nm]</li> <li>0.0</li> <li>100.0</li> </ul> y     y coordinates [nm] |
| <pre>!</pre>                     | Material properties Poisson conditions<br>Material name metal (zb)<br>Alloy function N/A                                                                                              |
| /<br>Java Applet Window          |                                                                                                                                                                                       |

Fig.28: View of input file

#### Sending input file via email:

A mail module is included in the device editor which allows sending input files via email. By choosing from the menu "Simulator  $\rightarrow$  Send to" the window "Edit SMTP server properties" opens. In the window the server name, login name and password has to be filled in for access to the server. If the authentification at the serverwas successful, the dialog window "Send to email" opens in which the user can enter one or several email addresses. If for some reason the authentification at the server failed, the input mask appears again where one can modify the name of the server, login and password.



Fig. 29: Sending email

| Edit SMTP server properties |                |
|-----------------------------|----------------|
| Edit SMTP server propertie  | mail in tum de |
| User name                   | hersonsk       |
| Password                    | *****          |
| [                           | Ok Cancel      |
| Java Applet Window          |                |

Fig. 30: Sending e-mail  $\rightarrow$  Edit SMTP Server properties



| To: [fan.birner@wsi.tu-muenchen.de] using acount hersonsk on mail.in.tum.de |
|-----------------------------------------------------------------------------|
| output-file = x grid.dat                                                    |
| grid-coordinate = 0 1 0                                                     |
| output-file = v grid.dat                                                    |
| send output-grid                                                            |
| , and_output grid                                                           |
| 1                                                                           |
| ·                                                                           |
| I                                                                           |
| \$output-file-format                                                        |
| simulation-dimension = 1                                                    |
| file-format = Origin                                                        |
| simulation-dimension = 2                                                    |
| file-format = $AWS$                                                         |
| $rimulation_dimension = 3$                                                  |
| file_formet = NVC                                                           |
| ford output file format                                                     |
| seug_ouchuc-lite-rormac                                                     |
|                                                                             |
| !                                                                           |
|                                                                             |
|                                                                             |
| Edit server properties Send Cancel                                          |
| Java Applet Window                                                          |

X

Fig. 31: Sending email  $\rightarrow$  send to

# Shortkeys

| edit         | increase the size and the width of the figure  | shift + [ <b>right</b> ] |                               | new simulation area               | strg+N  |
|--------------|------------------------------------------------|--------------------------|-------------------------------|-----------------------------------|---------|
|              | decrease the size and the width of the figure  | shift + <b>[left]</b>    |                               |                                   |         |
|              | decrease the size and the height of the figure | shift + <b>[up]</b>      | scheme                        | load scheme from file             | strg+O  |
|              | increase the size and the height of the figure | shift + [down]           |                               | save scheme to file               | strg+S  |
|              |                                                |                          |                               |                                   |         |
|              | move right                                     | ctrl + [right]           | input file                    | save input file                   | strg+L  |
|              | move left                                      | ctrl + [left]            |                               | send input file via e-<br>mail    | strg+E  |
|              | move up                                        | ctrl + <b>[up]</b>       | layer:                        | Add new layer                     | alt+A   |
|              | move down                                      | ctrl + [down]            |                               | remove layer                      | alt+X   |
|              |                                                |                          |                               | move up selected layer            | alt+U   |
|              | undo operation                                 | strg+Z                   |                               | move down selected layer          | alt+D   |
|              | redo operation                                 | strg+Y                   |                               | edit selected layer               | alt+F12 |
|              | copy regions                                   | strg+C                   | material properties           | Material name                     | alt+N   |
|              | cut regions                                    | strg X                   |                               | Alloy function                    | alt+F   |
|              | paste regions                                  | strrg+V                  | PBC                           | set poisson boundary<br>condition | strg+B  |
|              | clone regions                                  | strg+B                   |                               | view poisson boundary condition   | alt+E   |
|              | rotate object                                  | strg+R                   |                               |                                   |         |
|              |                                                |                          | doping und<br>impurites:      | inpurity parameters               | alt+P   |
| 2<br>objects | alighn left                                    | shift+L                  | <b>F</b> a cont               | doping funktions<br>properties    | alt+G   |
|              | align top                                      | shift+T                  | quantum region<br>properties: | deactivate quantum<br>cluster     | alt+Q   |
|              | align bottom                                   | shift B                  |                               | quantum model holes               | alt+H   |
|              | align right                                    | shift R                  |                               | quantum model                     | alt+S   |
|              |                                                |                          |                               |                                   |         |
|              | concatenate left                               | strg+L                   | view:                         | compisite view                    | alt+C   |
|              | concatenate top                                | strg+T                   |                               | view inputfile                    | alt+I   |
|              | concatenate bottom                             | strg+B                   |                               | edit modus                        | alt+F2  |
|              | concatenate right                              | strg+R                   |                               | show grid und regions             | alt+F3  |
| output       | output 1-band-Schroedinger                     | shift+F2                 |                               | change simulation area            | alt+Z   |
|              | output k.p. data                               | shift+F3                 |                               | 20011                             |         |
|              | output band structure                          | shift+F4                 | overall parameters            | domain coordinates                | strg+D  |
|              | output densities                               | shift+F5                 |                               | Lattice temperature               | Strg+T  |
|              | output strain                                  | shift+F6                 |                               | simulation flow control           | strg+F  |
|              | output current data                            | shift+F7                 |                               | magnetic filed                    | strg+M  |
|              | output grid                                    | shift+F8                 |                               | default material name             | strg+A  |
|              |                                                |                          |                               |                                   |         |

| FIG.1A: SCHEMATIC PLOT OF A DOUBLE GATE MOSFET                                                           | 4   |
|----------------------------------------------------------------------------------------------------------|-----|
| FIG 1B: CUT THROUGH THE 10 NM SI CHANNEL                                                                 | 4   |
| FIG.2A: ELECTRON DENSITY BY HIGH RECTANGULAR POTENTIAL BARRIERS                                          | 4   |
| FIG 2B: EFFECT OF A HIGH MAGNETIC FIELD                                                                  | 4   |
| Fig. 3: The device editor view $\rightarrow$ Start a new edit area                                       | 7   |
| Fig. 4: The device editor view $\rightarrow$ New simulation area                                         | 8   |
| Fig. 5: The device editor view $\rightarrow$ Add New Layer                                               | 8   |
| Fig. 6: The device editor view $\rightarrow$ Add new layer                                               | 9   |
| FIG. 7: USING DEVICE EDITOR $\rightarrow$ DRAWING                                                        | 10  |
| FIG. 8: USING DEVICE EDITOR $\rightarrow$ ADD NEW LAYER $\rightarrow$ ADD DOPING                         | .11 |
| FIG. 9: USING DEVICE EDITOR $\rightarrow$ CREATE THE DOPING $\rightarrow$ Layer properties               | .12 |
| FIG. 10: DOPING $\rightarrow$ Layer properties                                                           | .12 |
| FIG. 11: DOPING $\rightarrow$ DOPING FUNCTION PROPERTIES                                                 | 13  |
| FIG. 12: USING DEVICE EDITOR $\rightarrow$ ADD NEW LAYER $\rightarrow$ ADD QUANTUM REGIONS (1)           | .14 |
| FIG. 13: USING DEVICE EDITOR $\rightarrow$ ADD NEW LAYER $\rightarrow$ ADD QUANTUM REGIONS (2)           | .14 |
| Fig. 14: Using device editor $\rightarrow$ Add new layer $\rightarrow$ add quantum regions $\rightarrow$ |     |
| LAYER PROPERTIES                                                                                         | 15  |
| FIG. 20 Editing region $\rightarrow$ Rotate selected figures                                             | .17 |
| Fug. 21: Using input device editor $\rightarrow$ align und concatenate of objects                        | 18  |
| FIG. 22: USING THE DEVICE EDITOR → EDITING , POISSON BOUNDARY CONDITIONS                                 | .19 |
| FIG. 23: USING THE DEVICE EDITOR $\rightarrow$ CHECK-BOX "POISSON BOUNDARY CONDITIONS                    | 5"  |
|                                                                                                          | .19 |
| FIG. 24: GRID $\rightarrow$ USING THE GRID OPTION                                                        | 20  |
| FIG. 25: GRID $\rightarrow$ GRID PROPERTIES: CHOICE OF THE ACTIVE COLUMN                                 | .21 |
| FIG. 26: GRID $\rightarrow$ GRID PROPERTIES: NUMBER OF NODES, GRID FACTOR                                | .21 |
| FIG. 27: CHANGE EDITOR SCALE: POSITION OF ZOOM FUNCTION, UNIT VALUES                                     | .22 |
| FIG.28: VIEW OF INPUT FILE                                                                               | .23 |
| FIG. 29: SENDING EMAIL                                                                                   | .24 |
| FIG. 30: Sending e-mail $\rightarrow$ Edit SMTP Server properties                                        | .24 |
| Fig. 31: Sending email $\rightarrow$ send to                                                             | .25 |