[ Home ] [ News ] [ Contact ] [ Search ] [ nextnano.com ] Add materials

 Download Software
 Copyright notice
 Publications

 GUI: nextnanomat
 Tool: nextnano³
 Tool: nextnano++
 Tool: nextnano.QCL
 * password protected

 

 
Up
 

Which material parameters are used?

Input material parameters

Example: Si

There are basically two ways to introduce a new material to the simulator. If you need the material permanently, you can specify the parameters in the database, whereas if you only need it for a certain calculation you can add it to the input file. Both structures are exactly the same so that it makes no difference for the explanation.

The example demonstrates the introduction of the zinc blende material silicon to the database. The parameters for the material are specified in the keyword $binary-zb-default

In this section the parameters are explained step by step and the important details are pointed out.

The keyword looks like the following: 

!---------------------------------------------------------------------!
$binary-zb-default

 binary-type                          = Si-zb-default
 conduction-bands                     = 3   
 conduction-band-masses               = 0.156d0 0.156d0 0.156d0
                                        0.130d0 0.130d0 1.420d0
                                        0.190d0 0.190d0 0.916d0

 conduction-band-degeneracies         = 2       8       12
 conduction-band-nonparabolicities    = 0d0     0d0     0d0   
 conduction-band-energies             = -3.53d0 -5.28d0 -5.78d0
 valence-bands                        =
 valence-band-masses                  = 0.537d0 0.537d0 0.537d0
                                        0.153d0 0.153d0 0.153d0
                                        0.234d0 0.234d0 0.234d0

 valence-band-degeneracies            = 2       2       2
 valence-band-nonparabolicities       = 0d0     0d0     0d0
 valence-band-energies                = -6.93d0
 static-dielectric-constants          = 12.93d0 12.93d0 12.93d0
 optical-dielectric-constants         = 10.10d0 
 varshni-parametes                    = 0d0     0d0     0d0
                                        0d0     0d0     0d0

 band-shift                           = 0d0     
 absolute-deformation-potential-vb    = 2.05d0 
 absolute-deformation-potentials-cbs  = -10.4d0 -2.07d0 3.35d0
 uniax-vb-deformation-potentials      = -2.33d0 -4.75d0 
 uniax-cb-deformation-potentials      = 0d0     16.14d0 9.16d0 
 lattice-constants                    = 0.543d0 0.543d0 0.543d0
 lattice-constants-temp-coeff         = 3.88d-6 3.88d-6 3.8d-6  ! [nm/K]
(GaAs value)
 piezo-electric-constants             = 0d0     0d0     0d0   0d0
 elastic-constants                    = 16.57d0 6.393d0 7.962d0
 6x6kp-parameters                     = -6.69d0 -4.62d0 -8.56d0
                                        0.044d0  

 8x8kp-parameters                     = -6.69d0 -4.62d0 -8.56d0
                                        0d0     0d0     1d0
 number-of-minima-of-cband            = 1       4       6
 conduction-band-minima               = 0d0     0d0     0d0

                                        0.860d0 0.860d0 0.860d0
                                        0.860d0 0.860d0 -0.86d0
                                        -0.86d0 0.860d0 0.860d0
                                        -0.86d0 0.860d0 -0.86d0

                                        0d0     0d0     1d0   
                                        1d0     0d0     0d0   
                                        0d0     1d0     0d0   
                                        0d0     0d0    -1d0
                                       -1d0     0d0     0d0   
                                        0d0    -1d0     0d0   


 principal-axes-cb-masses             = 1d0     0d0     0d0   
                                        0d0     1d0     0d0   
                                        0d0     0d0     1d0   

                                        1d0    -1d0     0d0   
                                        1d0     1d0    -2d0   
                                        1d0     1d0     1d0   
                                        1d0    -1d0     0d0   
                                       -1d0    -1d0    -2d0   
                                        1d0     1d0    -1d0
                                        1d0     1d0     0d0   
                                       -1.00d0  1d0    -2d0
                                       -1.00d0  1d0     1d0   
                                        1d0     1d0     0d0   
                                        1d0    -1.00d0 -2d0
                                       -1.00d0  1d0    -1d0
 
                                        1d0     0d0     0d0   
                                        0d0     1d0     0d0   
                                        0d0     0d0     1d0   
                                        0d0    -1.00d0  0d0   
                                        0d0     0d0    -1d0
                                        1d0     0d0     0d0   
                                        1d0     0d0     0d0   
                                        0d0     0d0     1d0   
                                        0d0    -1.00d0  0d0   
                                       -1.00d0  0d0     0d0   
                                        0d0     1d0     0d0   
                                        0d0     0d0    -1d0
                                        0d0     1d0     0d0   
                                        0d0     0d0    -1d0
                                       -1.00d0  0d0     0d0   
                                       -1.00d0  0d0     0d0   
                                        0d0    -1.00d0  0d0   



 number-of-minima-of-vband            = 1       1       1 
 valence-band-minima                  = 0d0     0d0     0d0
                                        0d0     0d0     0d0
                                        0d0     0d0     0d0

 principal-axes-vb-masses             = 1d0     0d0     0d0
                                        0d0     1d0     0d0
                                        0d0     0d0     1d0
                                        1d0     0d0     0d0
                                        0d0     1d0     0d0
                                        0d0     0d0     1d0
                                        1d0     0d0     0d0
                                        0d0     1d0     0d0
                                        0d0     0d0     1d0

$end_binary-zb-default
!---------------------------------------------------------------------!

 

 

!---------------------------------------------------------------------!
$default-materials 
 material-name                        = Si 
 material-model                       = binary-zb-default 
 material-type                        = Si-zb-default 

 

1. First of all a name for the material has to be provided. This is done by:

binary-type Si-zb-default
Name of material

                   

 

2. Specify electronic structure of material:
In this section the band structure of the material is defined including number of bands, number of minima, band edges and effective masses.

Conduction bands:

Number of conduction bands:

conduction-bands                 3
Number of conduction bands

Number of nondegenerate conduction bands (minima).You are free to specify more or less conduction bands than 3 but for the case of silicon three is enough.

Conduction band masses:

1. principal axis 2. principal axis 3. principal axis
conduction-band-masses  0.156d0 0.156d0 0.156d0 1. band (Gamma)
Unit:  [m0] (free electron mass) 1.420d0 0.130d0 0.130d0  2. band (L)
0.916d0 0.190d0 0.190d0 3. band (X)

The effective masses are defined in the principal axes system of the minima (principal-axes-cb-masses). These masses are associated to the eigenvectors of the minima in the order they are given in the parameter set. The eigenvectors are specified by their coordinates in the cartesian coordinate system of the crystal.
ml, mt1, mt2

Degeneracy of conduction bands:

conduction-band-degeneracies 2 8 12
Gamma band L band X (or DELTA) band

The degeneracy includes the number of degenerate minima per band as well as the twofold spin-degeneracy.

Nonparabolicity parameters:

conduction-band-nonparabolicities 0d0    0d0    0d0   
Unit:   [1/eV] Gamma band L band X (or DELTA) band

As used in a hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity [1/eV]

Conduction band energies:

conduction-band-energies -3.53d0 -5.28d0 -5.78d0 
Unit:   [eV] Gamma band L band X (or DELTA) band

The conduction band energies are the absolute energies for the band edges within the model-solid-model.

We take the values from the paper of Wei and Zunger for the valence-band-energies. From this averaged value, we add the energy gaps for Gamma, L and X respectively + 1/3 Deltaso (split-off) as the averaged valence band energy is 1/3 Deltaso below the valence band edge.

The conduction band energies should be given for 0 Kelvin. Varshni parameters should be used to get the conduction band energies for e.g. 300 K.

See FAQ for details.

 

Valence bands:

Number of valence bands:

valence-bands                 3
Number of valence bands

Number of nondegenerate valence bands (minima). Within the model-solid-model the number of valence band in zinc blende materials should always be equal to three!

Valence band masses:

1st principal axis 2nd principal axis 3rd principal axis
valence-band-masses  0.537d0 0.537d0 0.537d0 1. band (heavy hole)
Unit:  [m0] (free electron mass) 0.153d0 0.153d0 0.153d0  2. band (light hole)
0.234d0  0.234d0  0.234d0  3. band (split-off)

The effective masses are defined in the principal axes system of the minima (principal-axes-vb-masses).
By default only spherical masses for the valence bands have been implemented into the database (i.e. the masses for all principal axes are equal.)
If one wants to include valence band warping the k.p calculation should be used. Alternatively, the user can enter arbitrary effective-mass tensors into the database.

Degeneracy of valence bands:

valence-band-degeneracies 2 2 2
heavy hole light hole  split-off hole

The degeneracy include the number of degenerate minima per band as well as the twofold spin-degeneracy.

Nonparabolicity parameters:

valence-band-nonparabolicities 0d0    0d0    0d0   
Unit:   [1/eV] heavy hole light hole  split-off hole

As used in a hyperbolic dispersion k^2 ~ E(1+aE). a = nonparabolicity [1/eV]

Valence band energies:

valence-band-energies -6.93d0
Unit:   [eV] average valence band energy 

The valence band energies for heavy, light and split-off holes are calculated by defining an average valence band energy Ev,av for all three bands and adding the spin-orbit-splitting energy afterwards. The spin-orbit-splitting energy Deltaso is defined together with the k.p parameters.
The average valence band energy Ev,av is defined on an absolute energy scale and must take into account the valence band offsets which are averaged over the three holes.

 

3. Deformation potentials:

Valence band absolute deformation potential:

absolute-deformation-potential-vb 2.05d0
Unit:   [eV] absolute deformation potential for average valence band energy 

Within the model-solid theory there is only one absolute deformation potential for the average valence band edge, all other band edges result from relative changes.

Note: In wurtzite this specifier is not used.

Conduction band absolute deformation potentials:

absolute-deformation-potentials-cbs -10.4d0  -2.07d0  3.35d0 
Unit:   [eV] Gamma band L band X (or DELTA) band

The absolute deformation potentials for the conduction band edges are calculated from the band gap deformation potentials (agap) in the following way:

agap = ac - av      ->    ac = agap + av

Valence band uniaxial deformation potentials:

uniax-vb-deformation-potentials -2.33d0  -4.75d0  
Unit:   [eV]  

For the valence band in zinc blende materials there are only two shear deformation potentials b and d.

Conduction band uniaxial deformation potentials:

uniax-cb-deformation-potentials 0d0    16.14d0  9.16d0 
Unit:   [eV] Gamma band L band X (or DELTA) band

Each conduction band has its uniaxial deformation potential which causes degenerate minima to split. For the nondegenerate Gamma valley there is no uniaxial deformation potential.

 

4. Specify other material parameters:

Static dielectric constants:

static-dielectric-constants 12.93d0 12.93d0 12.93d0
Unit:   [eps_0] [1 0 0]   [0 1 0] [0 0 1] 

static-dielectric-constants = 9.28d0 9.28d0 10.01d0
                              eps1   eps2   eps3

Static dielectric constants. The numbers correspond to the crystal directions (similar to lattice-constants):
- in zinc blende: eps1 = eps2 = eps3
- in wurtzite:   eps1 = eps2   eps3
            eps3
is parallel to the c direction in wurtzite
            eps1/eps2 is perpendicular to the c direction in wurtzite
low frequency dielectric constant
epsilon(0)

The static dielectric constant enters the Poisson equation.
It is also needed to calculate the optical absorption and enters the equation for the exciton correction.
 

Optical dielectric constant:

optical-dielectric-constants 10.10d0
Unit:   [eps_0]  

 

Lattice constants:

lattice-constants  0.543d0 0.543d0 0.543d0
Unit:   [l0] (l0 is the internal length unit specified in $input-scaling-factors; default is nm) [1 0 0]   [0 1 0] [0 0 1] 

In a cubic crystal system (like diamond and zinc blende), the lattice constants in all three crystal axes are equal.

lattice-constants-temp-coeff 3.88d-6 3.88d-6 3.88d-6
Unit:   [l0/K] (l0 is the internal length unit specified in $input-scaling-factors; default is nm/K) [1 0 0]   [0 1 0] [0 0 1] 

The lattice constant is temperature dependent. The lattice constant in the database should be given for 300 K. For all other temperatures, the lattice constant is calculated by the following formula:

alc = alc(300 K) + b * (T - 300)

b = lattice-constants-temp-coeff         = 3.88d-6  3.88d-6  3.8d-6  ! [nm/K] (GaAs value)
T = temperature

The temperature dependent lattice constants can be switched off. See $numeric_control for more details.

Example: group III nitrides
AlN, GaN and InN have different thermal expansion coefficients which results in different strain values at different temperatures. This leads to a temperature dependent gradient of the polarization at interfaces and thus to different fields inside the barrier.
Example: pseudomorphic AlGaN (6 %) on GaN: electric field at room temperature 330 kV/cm
                                                                                        at 5 K                      110 kV/cm

For wurtzite nitrides one can also fit it to a polynomium of degree 4 (between 100 und 1000 K):

Y = A + B1*x + B2*x2 + B3*x3 + B4*x4

GaN: Parameter value error
------------------------------------------------------------
A   -2.02944E-6   1.7902E-7
B1   4.19934E-8   1.96339E-9
B2  -9.53432E-11  6.88747E-12
B3   9.58787E-14  9.36883E-15
B4  -3.52551E-17  4.29959E-18
------------------------------------------------------------

AlN: Parameter value error
------------------------------------------------------------
A   -2.31192E-6   6.68671E-8
B1   2.67408E-8   7.3336E-10
B2  -3.72491E-11  2.57259E-12
B3   2.84248E-14  3.49942E-15
B4  -9.11638E-18  1.60597E-18
------------------------------------------------------------

InN: At present difficult to specify as the material is currently revised profoundly.

Linear interpolation is not recommended for wurtzite nitrides, e.g. AlN has a negative expansion coefficient below 100 K.

The lattice constants are needed for the calculation of the strain.

 

Elastic constants:

elastic-constants 165.7d0 63.93d0 79.62d0
Unit:   [prs0] (prs0 is the internal length unit specified in $input-scaling-factors; default is GPa: 10^9 pa) C11   C12 C44

1 * 1011 dyn/cm2 = 10 GPa   ->  11.8 * 1011 dyn/cm2 = 118 GPa

The elastic constants are needed for the calculation of the strain in heterostructures.

 

Piezoelectric constants:

piezo-electric-constants        
Unit:   [C/m2] (zinc blende) e14     (1st  order coefficient)
  B114 B124 B156 (2nd order coefficients)
Unit:   [C/m2] (wurtzite) e33 e31 e15 (1st  order coefficients)
  ...     (2nd order coefficients)

For zinc blende materials there is one relevant 1st order piezoelectric constant: e14. For silicon and germanium there is no piezoelectric effect at all, thus the constants are zero in this case. In wurtzite there are three 1st order piezo constants: e33, e31, e15
Conventionally, the sign of the piezoelectric tensor components is fixed by assuming that the positive direction along the
- [111] direction (zincblende)
- [0001] direction (wurtzite)
 goes from the cation to the anion.

 

k.p parameters:

The k.p parameters are necessary even if no quantum mechanical calculation is performed because the valence band energies are calculated by diagonalizing the bulk k.p Hamiltonian. They also contain the spin-orbit coupling paramter Deltaso.

6-band k.p parameters:

6x6kp-parameters -6.69d0 -4.62d0 -8.56d0
Unit:   [kp_k^2_zb] (see $input-scaling-factors) L M N
  0.044d0    
Unit:   [eV] Deltaso    

The 6-band k.p parameters are given in the Dresselhaus notation L, M and N in default units of [hbar² / 2m0] The conversion from Luttinger to Dresselhaus notation works as follows:

Ldatabase = L 2m0/hbar2 = -   gamma1 - 4 gamma2 - 1
Mdatabase = M 2m0/hbar2 =   2 gamma2 -   gamma1 - 1
Ndatabase = N 2m0/hbar2 = - 6 gamma3
 

If the units of the L, M and N parameters are not given in the above defined defaults units of [hbar² / 2m0], the equations for the Luttinger parameters would read:

gamma1 = - 1/3 (L+2M) 2m0/hbar2 - 1
gamma2 = - 1/6 (L-M)  2m0/hbar2
gamma3 = - 1/6  N     2m0/hbar2
 

Additionally to the k.p parameters the spin-orbit coupling parameter Deltaso (split-off energy) is specified in this set.

 

      Important: There are different definitions of the L and M parameters available in the literature. (The gammas are called Luttinger parameters.)
  
nextnano³ definition:   L = ( - gamma1 - 4gamma2 - 1 ) * [hbar2/(2m0)] = A - 1
   
                     M = (  2gamma2 - gamma1  - 1 ) * [hbar2/(2m0)] = B - 1
                   
 N = N                                         = C
  
alternative definition:   L = ( - gamma1 - 4gamma2     ) * [hbar2/(2m0)] = A
           
             M = (  2gamma2 - gamma1      ) * [hbar2/(2m0)] = B
                   
 N = N                                        = C
 

L = F + 2G
M = H1 + H2
N = F - G + H1 - H2 = N+ + N-
N+ = N - N- ~= N - M 
(Here, H2 = 0 has been assumed.)
N- = M               
(Here, H2 = 0 has been assumed.)

Operator odering: ki (N - M) kj + kj M ki = ki N+ kj + kj N- ki
Bulk:          ki (N - M) kj + kj M ki = (N - M + M) kikj = N ki kj

 

8-band k.p parameters:

6x6kp-parameters -6.69d0 -4.62d0 -8.56d0
Unit:   [kp_k^2_zb] (see $input-scaling-factors) L' M'=M N'
  0d0 0d0 1d0
  B [hbar²/2m0] EP [eV] S [-]

The 8-band k.p parameters consist of the corrected valence band parameters L', M'=M and N' as well as the assymetry paramter B. The coupling between conduction and valence bands is described by the matrix element EP and the effective mass of the electron is S.

L' = L + Ep / Egap
M' = M
N' = N + Ep / Egap

S = 1/me - Ep (Egap + 2/3 Delta_so) / [ Egap ( Egap + Delta_so) ]
 

For exact definition and conversion of parameters: k.p-definiton

We have prepared an Excel sheet that calculates the parameters for the two different options:
rescaled model: S=1 (K=0) ==> Ep=? ==> L', N', EP
original model (convergence problems for S < 0): Ep given ==> S = ? ==> L', N', EP
Note: This Excel sheet probably still uses incorrect euqations for L' and N'. (This has to be corrected.)

 

Number of conduction band minima

number-of-minima-of-cband 1 4 6
  Gamma band L band X (or DELTA) band

The number of minima per band is taken without spin-degeneracy

 

Position of conduction band minima:

conduction-band-minima:

Gamma band  0d0     0d0     0d0   
L band  0.860d0  0.860d0  0.860d0
 0.860d0  0.860d0 -0.860d0
-0.860d0  0.860d0  0.860d0
-0.860d0  0.860d0 -0.860d0
X band  0d0     0d0     1d0   
 1d0     0d0     0d0   
 0d0     1d0     0d0   
 0d0     0d0    -1d0   
-1d0     0d0     0d0   
 0d0    -1d0     0d0   

The position of the minima in k-space is defined by this specifier. The coordinates are in units of [2pi/a] within the crystal coordinate system where a is the lattice constant.
Note: Currently it is assumed in parts of the program, that the ordering of the conduction band minima is like
1=Gamma
2=L
3=X
 

 

Principal axes for conduction band masses:
 

principal-axes-cb-masses 1d0    0d0     0d0    
Gamma band, 1st minimum 0d0     1d0    0d0    
  0d0     0d0     1d0   

The principal axis for the effective mass tensor are provided in this keyword. The units are not important because only the direction is.
In this example only one minimum is given!

Same for valence bands

Please check the effective masses site for more details!!

 

 

Temperature dependent band gaps: Varshni parameters

(In a bulk semiconductor, both direct and indirect energy gaps in semiconductor materials are temperature-dependent quantities, with the functional form often fitted to the empirical Varshni form

Eg(T)  =  Eg (T=0)  -  a T/  ( T + b)

where alpha and beta are adjustable (Varshni) parameters. Although other, more physically justified and possibly quantitative accurate, functional forms have been proposed, they have yet to gain widespread acceptance. Consistent sets of Varshni parameters for all III-V materials were compiled in the paper by Vurgaftman et al.

The Varshni parameters can be switched off. See $numeric_control for more details.

Note: In an alloy composed of two binary materials, the Varshi parameters are not interpolated linearly. For material no. 1, the conduction band energy is calculated taking into account the Varshni parameters for material no. 1, then the conduction band energy for material no. 2 is calculated taking into account the Varshni parameters for material no. 2. Finally the conduction band energy for the ternary is calculated by interpolating between the conduction band energies of material no 1. and no. 2 including the bowing parameter for the conduction band energy (if it is different from zero).

 

How to deal with the review paper of Vurgaftman et al.

Band parameters for III–V compound semiconductors and their alloys
I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, J. Appl. Phys. 89 (11), 5815 (2001)

Vurgaftman units meaning nextnano3 units example (GaAs)
alc Angstrom lattice constant lattice-constants nm 0.565325d0
 
EgGamma eV band gap at Gamma point conduction-band-energies    
alpha(Gamma) eV/K Varshni band gap parameters +1/3 Deltaso + averaged valence band 0.5404d-3
beta(Gamma) K Varshni band gap parameters edge 204d0
EgL eV band gap at L point conduction-band-energies    
alpha(L) eV/K Varshni band gap parameters +1/3 Deltaso + averaged valence band 0.605d-3
beta(L) K Varshni band gap parameters edge 204d0
EgX eV band gap at X point conduction-band-energies    
alpha(X) eV/K Varshni band gap parameters +1/3 Deltaso + averaged valence band 0.460d-3
beta(X) K Varshni band gap parameters edge 204d0
Deltaso eV split-off energy gap 6x6kp-parameters (Deltaso, 2nd line) eV 0.341d0
           
m*e(Gamma)   electron effective mass at Gamma point      
m*l(L)   longitudinal electron effective mass at L point      
m*t(L)   transverse electron effective mass at L point      
m*DOS(L)   density of states (DOS) electron effective mass at L point      
m*l(X)   longitudinal electron effective mass at X point      
m*t(X)   transverse electron effective mass at X point      
m*DOS(X)   density of states (DOS) electron effective mass at X point      
m*SO   split-off hole mass      
           
gamma1   Luttinger parameters (GaAs 6.98) 6x6kp-parameters   -16.22d0  -3.86d0  -17.58d0
gamma2   Luttinger parameters (GaAs 2.06)   see equation to get L, M, N   to be put in 1 line (L, M, N)
gamma3   Luttinger parameters (GaAs 2.93   (see also Excel sheet!)   0.341d0
kappa   see P. Lawaetz, PRB 4, 3460 (1971)      
q   see P. Lawaetz, PRB 4, 3460 (1971)      
  8x8kp-parameters 1.4199d0  -3.86d0  0.0599d0
      (maybe rescalce Ep to get S=1)   to be put in 1 line (L', M', N')
          0.0d0  10.475d0  -2.876d0
          (B  EP  S)
Ep eV interband matrix element goes into L', M, N' of 8x8kp    
F (interband matrix element) (1 + 2S = F) Kane parameter (we use S instead)
           
VBO eV valence band offset
ac eV conduction band deformation potential take Zunger's values (Diploma Thesis M. Sabathil)    
av eV valence band deformation potential take Zunger's values (Diploma Thesis M. Sabathil)    
b eV shear deformation potentials uniax-vb-deformation-potentials eV -1.6d0  -4.6d0   (b d)
d eV shear deformation potentials uniax-vb-deformation-potentials eV b and d to be put in 1 line
           
c11 GPa elastic constants     (error in Vurgaftman elastic-constants GPa 122.1
c12 GPa elastic constants     of factor 10! elastic-constants GPa 56.6
c44 GPa elastic constants     except nitrides) elastic-constants GPa 60.0

Others

piezo-electric constants = 0.16d0 ! [C/m2]
e14
(see e.g. Landolt-Börnstein)

static-dielectric-constants = 9.28d0 9.28d0 10.01d0
                              eps1   eps2   eps3

Static dielectric constants. The numbers correspond to the crystal directions (similar to lattice-constants):
- in zinc blende: eps1 = eps2 = eps3
- in wurtzite:   eps1 = eps2   eps3
            eps3
is parallel to the c direction in wurtzite
            eps1/eps2 is perpendicular to the c direction in wurtzite
low frequency dielectric constant
epsilon(0) (see e.g. Landolt-Börnstein)

optical-dielectric-constants = 10.94d0
epsilon(infinity) (see e.g. Landolt-Börnstein)

Useful internet sites showing material properties

 

Errata in Vurgaftman's paper

The c11, c22, c33 elastic constants are in Gdyn/cm2 rather than in GPa for the nonnitride materials and should be divided by a factor of 10. Fortunately, only their ratios enter most bandstructure calculations.

The F parameter for zinc-blende InN should be -2.77.

In Table XI, the Gamma-valley and X-valley gaps for zinc-blende AlN are interchanged (although they are correct in the text), and the correct value for the F parameter in AlN is -0.76 (rather than 0.76 in the text).

Luttinger parameter gamma3 for GaP should be 1.25 (rather than 2.93, the value for GaAs), and the X-valley and L-valley bowing parameters for GaPSb should be 1.7 eV instead of 2.7 eV.

In Table XXVII, the correct values for the indirect-gap bowing parameters for GaPSb are: C(EgX)=1.7 eV and C(EgL)=1.7 eV.

The bowing factor for zinc blende GaAsN reads 20.4-100x rather than 120.4-100x (Table XXX).

Errata/addenda will be published by the authors once they accumulated enough of these misprints and/or new info about some material systems (See note in reference 10 of second Vurgaftman paper (Vurgaftman2)).

 

How to add new specifiers for the zinc blende and wurtzite material parameters into the database

  • database_nn3_keywords.val
    add new specifier to zinc blende, wurtzite, bowing for zinc blende, bowing for wurtzite
     
  • database_nn3.in
    enter material parameters for new specifier to all zinc blende, wurtzite, bowing for zinc blende, bowing for wurtzite material parameters

     
  • keywords.val
    add new specifier to zinc blende, wurtzite, bowing for zinc blende, bowing for wurtzite
     
  • MODULE mod_type_binary_zb_dflt
    MODULE mod_type_ternary_zb_dflt
    MODULE mod_type_binary_wz_dflt
    MODULE mod_type_ternary_wz_dflt
    add variable for new specifier
     
  • Generate a new module similar to, for instance,
    MODULE mod_op_dielc (optical-dielectric-constants)
     
  • MODULE module_out_in
    (To output material parameters, another specifier has to be added into keywords.val: $output-material)
     
  • MODULE mod_default_zb_binary_models
    MODULE mod_default_wz_binary_models
    MODULE mod_default_zb_ternary_models
    MODULE mod_default_wz_ternary_models
     
  • MODULE mod_read_zb_binary_models
    MODULE mod_read_wz_binary_models
    MODULE mod_read_zb_ternary_models
    MODULE mod_read_wz_ternary_models
    MODULE mod_read_zb_quaternary_models